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Abstract— Ascertaining on the suitability of the Weibull model
to describe fading channels, a theoretical framework for the mul-
tivariate Weibull distribution, generated from correlated Gaus-
sian elements, is presented. Concerning the bivariate Weibull
model with arbitrary average fading powers, novel closed-form
expressions for the joint probability density function (pdf),
moments-generating function, cumulative distribution function
(cdf), product moments, and the correlation coefficient are pre-
sented. Moreover, useful analytical formulae for the pdf and cdf
of the multivariate Weibull distribution, with identical average
fading powers and exponential correlation, are obtained. The
derived theoretical results are applied to analytically evaluate
the outage probability of selection diversity receivers, operating
over correlated Weibull fading channels.

I. INTRODUCTION

Multivariate statistical analysis plays an important role
for the investigation of wireless telecommunications system’s
performance in multi-channel fading environments, when cor-
relation among diversity branches is assumed. This situation is
applicable with diversity receivers in which antennae are not
sufficiently separated, such as in wireless terminals with insuf-
ficient antenna spacing equipped with space and polarization
antenna diversity (mobile terminal, indoor base-station, etc). In
these applications, the fading among the channels is correlated,
resulting in a degradation of the diversity gain obtained [1].

There are a few approaches to the multivariate analysis of
fading models in the open technical literature. Nakagami in
[2], has defined the m-bivariate probability density function
(pdf), while Tan and Beaulieu [3] have derived an infinite se-
ries representation for the bivariate Nakagami-m and Rayleigh
cumulative distribution function (cdf). Alternatively, Simon
and Alouini [4] have proposed an expression for the bivariate
Rayleigh cdf in the form of a single integral with finite limits
with the integrand composed of elementary functions. More
recently, Karagiannidis et al. [5] have presented a formula for
the multivariate Nakagami-m pdf with exponential correlation
and an infinite series approach for the corresponding cdf,
bounding the error resulting from the truncation of the infinite
series. The same authors have extended their analysis to the
arbitrary correlated case, approximating the correlation matrix
with a Green’s matrix [6]. The theoretical results presented in
[5], have been also used to study the performance of triple-
branch [7] selection combining (SC) receivers over correlated
Nakagami-m fading channels. Finally, Mallik [8] has pre-

sented useful theoretical results for the multivariate Rayleigh
distribution, which are in agreement with those in [5]. In that
work, the theoretical results have been used to the perfor-
mance analysis of digital modulations over correlated Rayleigh
fading channels with diversity combining. The Weibull dis-
tribution plays an important role in several scientific fields,
such as in radar clutter, reliability engineering, and failure
data analysis. Concerning wireless communications theory,
the Weibull model exhibits an excellent fit to experimental
fading channel measurements, for both indoor [9] and out-
door [10] environments. A physical justification for modelling
wireless fading channels with the Weibull distribution has
been given in [11]. However, only very recently, the topic of
communications over Weibull fading channels begun to receive
renewed interest. Considering the performance of diversity
receivers over Weibull fading channels, a study for the evalu-
ation of the generalized-selection combining (GSC) receiver’s
performance over independent Weibull fading channels has
been presented [12]. More recently, three other contributions
dealing with diversity combining, in independent [13], [14]
and correlated [15] fading, have been presented. However, to
the best of the authors’ knowledge, there is not any published
work in the open technical literature concerning correlative
Weibull fading, generated from correlated Gaussian elements,
and including applications on wireless communications theory.

In this paper, we present both the statistical analysis for the
multivariate Weibull distribution and its applications in wire-
less communications systems. More specifically, the bivariate
Weibull pdf, with arbitrary fading powers, is presented as a
function of the Gaussian elements of the multipath components
and closed-form expressions for the corresponding moments-
generating function (mgf), cdf, product moments, and corre-
lation coefficient are derived. The multivariate Weibull fading
model, derived also from Gaussian elements, with exponential
correlation and identical average fading powers is also inves-
tigated and useful analytical expressions for the joint pdf and
cdf are presented. These novel theoretical results are applied
to SC receivers, operating in correlated Weibull fading, where
the outage probability is analytically derived.

II. THE WEIBULL FADING MODEL

The fading model for the Weibull distribution considers a
multipath wave propagating in a non-homogeneous environ-
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ment. At a given point the received signal encompasses a
multipath component and the propagation environment is such
that the resulting signal is observed as a non-linear function
of the modulus of this component. Supposing also, that such a
non-linearity is in the form of a power, the resulting envelope
is observed as the modulus of the multipath component to the
power of 2/β > 0 [11].

Let’s assume a multichannel Weibull fading model, where
the the envelope Z� of the �th channel (� = 1, 2, . . . , L,
with L the number of channels) can be written as a function
of the Gaussian in-phase X� and quadrature Y� elements of
the multipath components, so that Z� =

(
X2

� + Y 2
�

)1/β
, or

alternatively as a function of Rayleigh distributed random
variable (RV) as

Z� = R
2/β
� . (1)

The pdf of the Rayleigh distributed RV, R�, is given by [1]

fR�
(r) =

2 r

Ω�
exp

(
− r2

Ω�

)
(2)

where E
〈
R2

�

〉
= Ω2

� and E 〈·〉 denotes expectation. The
corresponding cdf and the nth order moment are given by
[1]

FR�
(r) = 1 − exp

(−r2/Ω�

)
(3)

and
E 〈Rn

� 〉 = Ωn
� Γ (1 + n/2) (4)

respectively, where Γ(·) is the Gamma function [16, eq.
(8.310/1)] and n is a positive integer.

Using (2) and following a standard method for transforma-
tion of RVs, the pdf of Z� can be easily obtained as

fZ�
(r) =

β

Ω�
rβ−1 exp

(
− rβ

Ω�

)
(5)

with E
〈
Zβ

�

〉
= Ω�. It is easily recognized that the above

pdf follows the Weibull distribution with fading parameter β,
which expresses the severity of fading (β ≥ 0). As the value of
β increases, the severity of the fading decreases, while for the
special case of β = 2, (5) reduces to the well-known Rayleigh
pdf. Defining function dτ = 1+τ/β, where, in general, τ is a
nonnegative real variable, the corresponding marginal cdf and
the nth order moment of Z� can be expressed as

FZ�
(r) = 1 − exp

(
− rβ

Ω�

)
(6)

and
E 〈Zn
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respectively.

A. The Bivariate Weibull Model

The pdf, the cdf, and the (n + m)th order product moment
of R1 and R2 (L = 2) are expressed as [1, eq. (6.2)]
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(9) (see at top of this page), and
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respectively. In the above equations, I0 (·) is the zeroth
order modified Bessel of the first kind [16, eq. (8.406/1)],
Q1 (·, ·) is the first order Marcum’s Q-function [1, eq. (4.11)],
2F1 (·, ·; ·; ·) is the Gauss hypergeometric function [16, eq.
(9.100)], and ρ is the (Gaussian) correlation coefficient be-
tween R2

1 and R2
2 defined as

ρ
�
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R2

1, R
2
2

)
/

[√
var (R2

1)
√

var (R2
2)
]

. (11)

1) Joint pdf: By applying the RVs transformation of (1) in
(8), the joint pdf of the Weibull distributed envelopes RVs Z1

and Z2 can be obtained in closed-form as

fZ1,Z2 (r1, r2) =
β2

4
(r1 r2)

β/2−1
fR1,R2

(
r

β/2
1 , r

β/2
2

)
.

(12)
2) Correlation coefficient: With the aid of (1), the product

moments of (n + m)th order of Z1 and Z2 can be derived as
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Moreover, the correlation coefficient between Z2
1 and Z2

2

can be expressed as a function of the correlation coefficient
between R2

1 and R2
2 as follows

� =
E
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2
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Fig. 1. Weibull Correlation coefficient, �, as a function of the Gaussian
correlation coefficient, ρ.

Using (7) and (14) and after some straightforward simplifica-
tions, � can be obtained in closed-form as

� =
(1 − ρ)d4

2F1 (d2, d2; 1; ρ)
Γ (d4) /Γ2 (d2) − 1

. (16)

In Fig. 1, � is plotted as a function of ρ for several values
of β. It is clear, that � also ranges between zero and unity
as ρ does. Moreover, for a fixed value of ρ, as β increases �
decreases, while for the special cases of ρ = 0 and ρ = 1,
� = 0 and � = 1, respectively.

3) Joint cdf: The joint cdf of Z1 and Z2 can be easily
obtained, replacing r1 and r2 with r

β/2
1 and r

β/2
2 , respectively,

in (9), i.e.,

FZ1,Z2 (r1, r2) = FR1,R2

(
r

β/2
1 , r

β/2
2

)
. (17)

4) Joint mgf: Rewriting the Bessel function in (12) with an
infinite series representation [16, eq. (8.445)], the joint pdf of
Z1 and Z2 can be rewritten as

fZ1,Z2 (r1, r2) = β2 exp
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− 1
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2
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(Ω1 Ω2)
k+1

.

(18)

Using the above equation, the joint mgf of Z1 and Z2 can
be derived as MZ1,Z2 (s1, s2) = E 〈exp (−s1 Z1 − s2 Z2)〉,
where some integrals of the form defined as Υ(ξ, d) =∫∞
0

xd−1 exp
(−x − ξ xβ

)
dx appear, with d and ξ being

arbitrary positive values. The same kind of integrals has been
already analytically solved in [15], in terms of the Meijer’s
G-function as
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with l/k = β, k and l positive integers, and G [·] being the
Meijer’s G-function [16, eq. (9.301)]. Depending upon the

value of β, a set with minimum values of k and l can be
properly chosen (e.g. for β = 3.5 we have to choose k = 2
and l = 7). For the special case where β is an integer, it must
be set k = 1 and l = β. Thus, using (19), the joint mgf of Z1

and Z2 can be obtained as
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B. The Multivariate Weibull Model

Several correlation models have been proposed and used
for the performance analysis of various wireless systems,
corresponding to specific modulation, detection and diversity
combining schemes. One of the most frequently used models
is the exponential correlation model and corresponds to the
scenario of multichannel reception from equispaced diversity
antennas, in which the correlation between the pairs of com-
bined signals decays as the spacing between the antennas
increases.

Using the exponentially correlated Rayleigh model pre-
sented in [8], the exponentially correlated Weibull model can
be derived. The multivariate pdf of identically distributed (i.d.)
Rayleigh RVs, {R�}L

�=1, with exponential correlation, is given
by [8, eq. (57)]

f−→
R

(−→r ) =
(

2
Ω
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i
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(21)

where E
〈
R2

�

〉
= Ω2, −→r = (r1, r2, . . . , rL), and

−→
R =

(R1, R2, . . . , RL). The correlation coefficient between R2
i and

R2
j is given by ρi,j = ρ|i−j|, when i �= j, while ρi,j = 1, when

i = j, with i, j = 1, 2, . . . , L.
1) Joint pdf: By applying the transformation given by (1)

in (21), the joint pdf of the Weibull distributed envelopes RVs−→
Z = (Z1, Z2, . . . , ZL) can be obtained in closed-form as

f−→
Z

(−→r ) =
(

β

Ω

)L ∏L
i=1 rβ−1

i

(1 − ρ2)L−1
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× exp
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.

(22)

The correlation coefficient between Z2
i and Z2

j is given by
�i,j = �|i−j|, when i �= j, while �i,j = 1, when i = j, with
i, j = 1, 2, . . . , L and � given by (16). Substituting the Bessel
function in (22), with its infinite series representation [16, eq.
(8.445)] resulting in (23) (see top of the next page).
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2) Joint cdf: The multivariate cdf of i.d. Weibull distributed
RVs, {R�}, with exponential correlation, can be easily derived
using (23) as
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where γ (·, ·) is the lower incomplete Gamma function [16, eq.
(8.350/1)], which for integer values of the first argument can
be further reduced to standard functions [16, eq. (8.352/1)],
but this presentation is omitted due to space limitations.

III. OUTAGE PERFORMANCE OF SC RECEIVERS

The baseband received signal in the �th (� = 1, 2, . . . , L)
antenna of the SC is ζ� = sZ� +n�, where s is the transmitted
symbol of energy Es = E

〈|s|2〉 and n� is the additive white
Gaussian noise with a single-sided power spectral density
N0. The instantaneous SNR per symbol for each diversity
channel can be expressed as γ� = Z2

� Es/N0. The corre-
sponding average SNR per symbol is γ� = E

〈
Z2

�

〉
Es/N0 =

Γ (d2) Ω2/β
� Es/N0. Using the property of the Weibull distri-

bution, that the nth power of a Weibull RV with parameters
(β,Ω�) (see (5)) gives another Weibull distributed RV with
parameters (β/n,Ω�), it can be easily derived that the SNR per
symbol of the �th channel is also a Weibull RV with parameters(
β/2, (a γ�)

β/2
)

and a = 1/Γ (d2). Hence, having available
a formula for the fading envelopes, as those in the previous
section, the corresponding expression of the SNRs per symbol
can be easily derived, and thus, studying the performance of
diversity receivers over correlated fading environments1.

1Using the analytical tools presented in Section II, a complete analytical
performance study, including moments, error performance, etc, of several
diversity receivers can be presented. However, only the outage performance
of SC receivers is presented, due to space limitations.

A. Dual-Branch SC Receivers

The instantaneous SNR per symbol at the output of a dual-
branch (L = 2) SC receiver will be the one with the highest
value between the two branches, i.e., γsc = max {γ1, γ2}.
Using (17), the cdf of γsc can be obtained in closed-form as in
(25) (see at top of this page). Since the Marqum’s Q-function
is not included in the most well-known mathematical software
packages, such as Mathematica and Maple, alternatively, this
cdf can be expressed in the form of an infinite series repre-
sentation. Hence, using (18), the joint cdf of γ1 and γ2 can be
derived as Fγ1,γ2 (γ1, γ2) =

∫ γ1

0

∫ γ2

0
fγ1,γ2 (γ1, γ2) dγ1 dγ2,

which using [16, eq. (8.350/1) and (8.352/1)], yields

Fγ1,γ2 (γ1, γ2) =
∞∑

k=0

(1 − ρ) ρk

×
2∏

i=1

{
1 − exp

[
− 1

1 − ρ

(
γi

a γi

)β/2
]

×
k∑

m=0

1
m!

1
(1 − ρ)m

(
γi

a γi

)mβ/2
}

.

(26)

Using (26), the cdf of γsc can be obtained setting γ = γ1 = γ2

as
Fγsc

(γ) = Fγ1,γ2 (γ, γ) . (27)

Differentiating (27) with respect to γ, the pdf of γsc can be
also obtained as in (28) (see at top of the next page).

The outage probability, Pout, is defined as the probability
that the SC output SNR falls below a given threshold, γth,
and can be obtained by replacing γ with γth in (27) as

Pout (γth) = Fγsc
(γth) . (29)

Having numerically evaluated (29), in Fig. 2, Pout is plotted
as a function of the normalized outage threshold, γth/γ1,
for a dual-branch SC, with unequal input SNRs per symbol
(γ2 = 1.25 γ1), and for different values of β and � = 0.5
(correlated). For comparison purposes, the curve for � = 0
(uncorrelated) is also included as a special case for best
performance. The obtained results clearly show that Pout

degrades with an increase of the � and/or fading severity.
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Fig. 2. Outage probability of dual-branch SC for γ2 = 1.25 γ1.

B. Multi-Branch SC Receivers

The outage probability of multi-branch SC receivers can
be obtained using (24), following the procedure described in
Section III, i.e., replacing β with β/2 and Ω with (a γ)β/2

(γ = γ�, ∀�), and setting γth = r�, ∀�. In Fig. 3, Pout is
plotted as a function of the normalized outage threshold,
γth/γ, for a triple-branch SC, with i.d. input average SNRs
per symbol, exponential correlation, and same parameters as
in Fig. 2. It is observed that same findings are also observed.
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