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Abstract—The second-order statistics and the channel capacity
of the Weibull fading channel are studied. Exact closed-form ex-
pressions are derived for the average level crossing rate, the av-
erage fade duration, as well as the average Shannon’s channel ca-
pacity of the Weibull fading process. Numerical results are pre-
sented to illustrate the proposed mathematical analysis and to ex-
amine the effects of the fading severity on the concerned quantities.

Index Terms—Fade duration, level crossing rate (LCR),
Shannon’s channel capacity, Weibull fading channels.

I. INTRODUCTION

I N THE PAST, experimental data have shown that the
Weibull fading channel model exhibits an excellent fit both

for indoor [1] and outdoor environments [2]. Recently, the
appropriateness of the Weibull distribution to model fading
channels was also reported in [3], where a path-loss model for
the Digital Enhanced Cordless Telecommunications (DECT)
system at 1.89 GHz, was studied. Previously published works
related to the performance analysis of digital communications
receivers over Weibull fading channels include the following.
In [4], the Weibull fading channel model was considered for the
evaluation of the first two moments of the output signal-to-noise
power ratio (SNR) in generalized selection combining (GSC)
receivers. In [5], the performance of switched and stay diversity
receivers in Weibull fading was studied. In [6], dual selection
combining (SC) receivers in correlated Weibull fading were
considered and in [7], important performance measures such
as the outage probability and the average output SNR were
studied, for -branch SC receivers over independent and
identically distributed Weibull fading channels. However, to
the best of the authors’ knowledge, there is not any publication
in the open technical literature related to important Weibull
fading channel characteristics, such us average level crossing
rate (LCR), average fade duration (AFD) [8] and average
Shannon’s channel capacity [9], [10]. In this letter, exact
closed-form expressions for the average LCR, the AFD and the
average channel capacity of the Weibull fading channel model
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are derived. Selected numerical results are presented to outline
the proposed mathematical analysis. The effect of the fading
severity on the channel’s statistics is pointed out and compared
to the well-known Rayleigh channel model.

II. SECOND ORDER STATISTICS

Let be the received sampled envelope and its derivative
with respect to time, with joined probability density function
(pdf) . The average LCR and AFD are defined as

(1)

(2)

respectively, where is the cumulative distribution func-
tion (cdf) of . In the following, the first- and the second-order
statistics of are studied, in order to evaluate (1) and (2) in
closed-form expressions. Let and be the in-phase
and quadrature components of a narrow-band process at timing
instance , such that

(3)

where is the fading amplitude of the th wave, with
, is the random phase uniformly distributed

in , is the number of the waves and is the Doppler
shift, with , where is the maximum Doppler
shift and is the corresponding angle of wave arrival. Taking
into account the central limit theorem, for fixed and for a
large value of , ( , 2) can be considered as zero
mean Gaussian process with variance , i.e.,
and , where denotes expectation. It is
convenient to alleviate this notation, by omitting the variable

in the equations. It is well-known that a sum of two quadra-
ture Gaussian components is also a Gaussian process, i.e.,

, where . The random
phase is uniformly distributed in
and the envelope is Rayleigh distributed, with
pdf

(4)
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where . Let the received sampled signal
be , where is a positive real
constant value. Using [11, eq. (5-5)] and (4), the corresponding
pdf of the envelope

(5)

of the received signal can be easily obtained as

(6)

with . It is easily recognized that the pdf of fol-
lows the Weibull distribution [12, Ch. 17] with fading param-
eter , which expresses the severity of fading. As the value of

increases, the severity of the fading decreases, while for the
special case of , (6) reduces to the well-known Rayleigh
pdf. The corresponding cdf of is given by

(7)

Using (5), the derivative of with respect to time is

(8)

where is the time derivative of . For isotropic scattering,
is a Gaussian distributed random variable (rv) with zero mean
and variance [8], and thus, conditioned on

is also a zero mean Gaussian rv. The standard deviation of
conditioned on can be obtained from (8) as

(9)

and the corresponding pdf is given by

(10)

The joined pdf of and can be obtained replacing (6), (9) and
(10) into [11, eq. (7-4)], yielding

(11)
After replacing (11) into (1) and normalizing the signal level
to its root mean square (rms) value, , with

and , where is
the Gamma function [13, eq. (8.310/1)], the average LCR for
the Weibull channel can be obtained in simple closed-form as

(12)

The expression for the AFD is obtained by normalizing the
signal level to its rms value in (7) and replacing then, together
with (12), into (2) resulting in

(13)

Note, that when , (12) and (13) reduce to previous pub-
lished expressions for the well-known Rayleigh model [8, eqs.

(1.3–35) and (1.3–43)]. The maximum value of the average LCR
can be derived solving the equation which is obtained by differ-
entiating (12) with respect to , setting the result equal to zero,
i.e., and then replacing into (12).
It can be easily shown that the average LCR is maximized at

as . It is interesting
to note that the severity of fading does not affect .

III. AVERAGE CHANNEL CAPACITY

We consider a signal’s transmission of bandwidth and
symbols’ energy . Since the th power of a Weibull rv, with
parameters and , follows also the Weibull distribution, with
parameters and , [12, Ch. 17], the pdf of the received
SNR per symbol, defined as , with the
double-sided noise power spectral density of the additive white
Gaussian noise (AWGN), can be written as [5]

(14)

where is the corresponding average SNR per symbol,
. The average channel capacity, in

Shannon’s sense, is defined as [9]

(15)

By replacing (14) into (15), the average channel capacity for the
Weibull fading channel is written as

(16)

The above integral can be evaluated in closed-form as follows.
By expressing the logarithmic and exponential integrands in
(16) as Meijer’s G-functions [13, eq. (9.301)], i.e.,

and
[14, eq. (11)] and using [14, eq. (21)], the integral in (16) can
be solved in closed-form and the average channel capacity can
be obtained as

(17)

where , with
an arbitrary real value and positive integer. Moreover,

, where and are positive integers. Depending upon the
value of , a set with minimum values of and can be properly
chosen (e.g., for we have to choose and ).
Note, that for the special case of being integer and

.

IV. NUMERICAL RESULTS

We have numerically evaluated (12), (13) and (17) and the
results are depicted in Figs. 1–3, respectively. In Fig. 1, the nor-



SAGIAS et al.: CHANNEL CAPACITY AND SECOND-ORDER STATISTICS IN WEIBULL FADING 379

Fig. 1. Normalized average LCR versus normalized envelope level.

Fig. 2. Normalized AFD versus normalized envelope level.

malized average LCR is plotted as a function of the normalized
envelope level for several values of . As it was expected,
when the fading severity increases (i.e., decreases) the nor-
malized average LCR increases, which means that fades occur
more frequently. Moreover, lower signal levels are crossed less
frequently, whereas higher signal level are crossed more fre-
quently. In Fig. 2, the normalized AFD is plotted as a func-
tion of the normalized envelope level for several values of

. It easily recognized that, the less fading severity, the less
time the signal remains in deep fades. In Fig. 3, the normal-
ized average channel capacity (spectral efficiency) is plotted as
a function of the average SNR per symbol. For comparison pur-
poses, the normalized channel capacity for the AWGN channel

Fig. 3. Normalized average channel capacity versus average SNR per symbol.

is also plotted. As it was expected, the
average capacity of the Weibull fading channel is always less
than the capacity provided by the AWGN channel.
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