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ABSTRACT

We investigate the performance of two-way interference-
limited amplify-and-forward (AF) relaying systems with
selection-combining (SC) over Nakagami-m fading chan-
nels. In particular, a tight lower bound on the end-to-end
outage probability (OP) is derived in closed-form, while a
useful expression is presented for the asymptotically low out-
age regime. Some special cases of practical interest (e.g., no
interference power and Rayleigh fading channels) are also
studied. The numerical results provide important physical
insights into the implications of model parameters on the
system performance.

Index Terms— Amplify-and-forward, interference lim-
ited systems, outage probability, two-way selective relaying.

1. INTRODUCTION

The development of cooperative diversity schemes has been
motivated by the high data rate demands of wireless applica-
tions. In this context, in amplify-and-forward (AF) relaying
schemes, the relay just amplifies the received signal before
sending it to the destination (without doing any demodulating
and decoding of the received signal) [1]. On this basis, AF
relaying systems have low implementation complexity and
are easy to deploy [2]. Furthermore, AF relaying has been
adopted in the LTE-A standard by the 3GPP group [3].

In several recent works, co-channel interference (CCI) has
been a dominant factor in the context of wireless relaying (see
e.g., [4–7] and references therein). In two-way relaying sys-
tems and during the first time slot, two nodes transmit simul-
taneously to the relay, and the relay will broadcast data to the
designated destinations in the second time slot. In [8], the op-
timal outage performance of a two-way relaying network in
the interference-free case was investigated. The authors in [9]
obtained the outage probability (OP) and symbol error prob-
ability (SEP) of interference-limited systems over Rayleigh
fading channels, where they worked with the upper bound
of the harmonic mean. Furthermore, in [10], the authors ex-
amined the outage performance of dual-hop AF relaying sys-
tems with CCI over independent, non-identically distributed
(i.n.i.d.) Nakagami-m fading channels, while they extended

their work to two-way relaying systems in [11], where they
considered the impact of interference only at the relay; in ad-
dition, they approximated the probability distribution func-
tion (PDF) of the sum of interferers’ powers by a gamma ran-
dom variable (RV). In [12], the authors examined the OP of
two-way AF relaying systems with CCI over Nakagami-m
fading channels, where the relay was not subject to interfer-
ence. Opportunistic relaying or selective relaying is a method
to enhance the performance of cooperative system by select-
ing one relay to transmit. In [13–20], authors investigated
different performance metrics of the two-way interference-
free selective relaying systems. To the best of our knowledge,
there is no work considering two-way interference-limited AF
relaying systems with selection-combing. As a matter of fact,
the most important differences between the work presented
here and [11, 12] are: 1) In [12], only one relay exists in the
network; moreover closed-from results were derived only for
Rayleigh fading channels, 2) In [11], only one relay exists in
the network, while the relay gain does not contain the inter-
ferers’ effect.
The contributions of this paper can be summarized as follows:

• We consider a two-way multi-relay dual-hop configura-
tion, where the source nodes are subject to noise only,
while relays are affected by multiple interferers. All
channels are assumed to experience Nakagami-m fad-
ing [21]. For this scenario, a tight closed-form lower
bound on the OP is derived.

• In order to get some additional insights into the im-
pact of system parameters, we consider the asymptot-
ically low outage regime, where the diversity order is
obtained. Finally, we particularize our results to some
cases of practical interest.

Notation: Throughout this paper, we use fh(.) and Fh(.) to
denote the PDF and cumulative distribution function (CDF)
of a RV h, respectively. Also Γ(n) =

∫∞
0
e−ttn−1 dt is

the gamma function [22, Eq. (8.310.1)], and Γ(b, x) =∫∞
x
e−ttb−1 dt and γ(b, x) = Γ(n) − Γ(b, x) are the upper

and lower incomplete gamma functions [22, Eq. (8.350.2,
8.350.1)], respectively. The operator E[.] stands for expecta-
tion, while Pr(.) denotes probability.
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2. SYSTEM MODEL AND FADING STATISTICS

We consider a cooperative relaying system that is composed
of two single-antenna source nodes (S1 and S2), which ex-
change information via the k-th relay Rk where k = 1, ...,K.
Moreover, Rk experiences CCI from Nk users in the net-
work. Additionally, fk is the channel coefficient between S1
and Rk and vice versa (i.e., the S1 → Rk and Rk → S1
links) and gk is the channel coefficient between S2 and Rk
which is reciprocal (i.e., the S2 → Rk and Rk → S2 links).
Also, hk,i, is the channel coefficient between Rk and the i-th
(i = 1, ..., Nk) interferer at Rk. Additionally, Pk, Ps1 and
Ps2 are the transmitted powers of Rk, S1 and S2, respec-
tively. Furthermore, Pk,i is the power of the i-th CCI signal
impairing Rk, and σ2 denotes the noise variance at all nodes.
Hence, the instantaneous SNRs for the S1→ Rk, S2→ Rk,
Rk → S1, and Rk → S2 links are given by γ1k =

Ps1 |fk|
2

σ2 ,

γ2k =
Ps2
|gk|2

σ2 , γ3k = Pk|fk|2
σ2 and γ4k = Pk|gk|2

σ2 , respec-
tively. Also the instantaneous interference-to-noise ratio for
the i-th CCI at Rk is given by γk,i =

Pk,i|hk,i|2
σ2 .

As was previously mentioned, in this paper we assume
that the amplitude of all links follows the Nakagami-m distri-
bution, where m ≥ 0.5 represents the fading severity param-
eter [23]. We recall that the PDF and CDF of the Nakagami-
m fading channels, are given by [21, Eqs. (2.21, 9.272)],
respectively. As such, the distribution of the corresponding
SNRs are Gamma RVs, where the shape parameter is m and
the scale parameter is Ω/m, where Ω is the average SNR per
symbol. For the case under consideration, the shape param-
eters of fk, gk and hk,i are respectively m1k, m2k and mk,i,
while the scale parameters are 1/ak, 1/bk and 1/βk. Note that
ak

∆
= m1k

Ω1k
, bk

∆
= m2k

Ω2k
and βk

∆
=

mk,i

Ωk,i
. The signal received at

the relay is as ykn = yk + n where yk is as follows

yk =
√
Ps1fkxs1 +

√
Ps2gkxs2 +

Nk∑
i=1

√
Pk,ihk,ixk,i (1)

where xs1, xs2 and xk,i are the signals generated from S1, S2
and the i-th interferer affecting the relay, respectively, while
n is the additive white Gaussian noise (AWGN) at the relay.
The amplification factor of the k-th relay is defined as

G−1
k

∆
=

√√√√Ps1 |fk|
2

+ Ps2 |gk|
2

+

Nk∑
i=1

Pk,i|hk,i|2 + σ2. (2)

Since S1 is aware of its transmitted signal, it can perfectly
eliminate the self-interference term. The received SINR at
S1 from the signal transmitted by Rk can then be expressed
as

γS1k =
PkPs2G

2
k|fk|

2|gk|2

G2
kPk|fk|

2

(
Nk∑
i=1

Pk,i|hk,i|2 + σ2

)
+ σ2

. (3)

By assuming Ps1 = Pk = Ps, the received SINR at S1 can
be further simplified according to

γS1k =
γ1kγ2k

γ1k + γ2k + (γ1k + 1)

(
Nk∑
i=1

γk,i + 1

) . (4)

In a similar way the received signal at S2 can be derived,
though the expression is omitted due to space limitations.

3. PERFORMANCE ANALYSIS

By setting γrk
∆
=

Nk∑
i=1

γk,i, the received SINR at S1 can be

tightly upper bounded in the interference-limited regime, ac-
cording to

γS1k ≤
γ1kγ2k
γrk+1

γ1k+γ2k
γrk+1 + γ1k

=

γ1kγ2k
γrk+2

γ1k + γ2k
γrk+2

=
XY

X + Y
(5)

where Xk
∆
= γ1k, Yk

∆
= γ2k

γrk+2 . Note that a similar ex-
pression can be derived for the received SINR at S2 when
Ps2 = Pk = Ps. It is well known that the min(X,Y ) is a
tight upper bound of XY

X+Y ; in fact, as X and Y go to infinity
the bound becomes exact. Hence, we use this bound for all
derivations henceforth. Then, the upper bounded SINR at S1
and S2 can be expressed as

γup
S1k

= min

(
γ1k,

γ2k

γrk + 2

)
,

γup
S2k

= min

(
γ2k,

γ1k

γrk + 2

)
. (6)

The end-to-end SINR for the k-th relay of this system can be
written as

γSCk
= min (γS1k, γS2k) ≤ min

(
γup
S1k

, γup
S2k

) ∆
= γup

SCk
. (7)

Finally, the end-to-end SINR of this system can be written as

γe2e = max
k

γSCk
≤ max

k
γup
SCk

∆
= γup

e2e. (8)

To compute the OP of the end-to-end SINR, we first need to
derive the OP of Xk and Yk. In general, it is known (see
e.g., [24]) that the sum of L i.i.d. Gamma RVs with common
shape parameter k and scale parameter θ (i.e. g (k, θ)), is also
a Gamma RV with parameters kL and θ. Hence, the PDF of

γrk can be written as g (mk, 1/βk), where mk
∆
=

Nk∑
i=1

mk,i.

The CDFs of Xk and Yk are given by:

Proposition 1 The CDFs of Xk and Yk are respectively

FXk
(z) = 1− Γ (m1k, akz)

Γ (m1k)
, FYk

(z) = 1−
βmk

k

Γ (mk)
e−2bkz

×
m2k−1∑
i=0

i∑
j=0

(
i
j

)
(bkz)

i
2i−j

i!

Γ (j +mk)

(bkz + βk)
j+mk

. (9)
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Proof 1 See Section 8.1.

From (9), it is clear that m2k should be integer. After com-
puting the CDFs of Xk and Yk, we now proceed to derive the
CDFs of γup

S1k
and γup

S2k
via the next proposition.

Proposition 2 The CDF of γup
S1k

is given by

Fγup
S1k

(z) = 1− Γ (m1k, akz)

Γ (m1k)

βmk

k

Γ (mk)
e−2bkz

×
m2k−1∑
i=0

i∑
t=0

(bkz)
i
2i−t

i!

(
i
t

)
Γ (mk + t)

(βk + bkz)
mk+t . (10)

Proof 2 Due to space limitations, the proof is omitted.

Note that a similar expression can be found for the CDF of
γup
S2k

. With these results in our hands, we can now evaluate
the CDF of the upper bounded end-to-end SINR.

Proposition 3 The CDF of the upper bounded end-to-end
SINR of the k-th relay, γup

SCk
, is given by

Fγup
SCk

(z) = 1− e−2(ak+bk)z

2t+l−i−j
β2mk

k

(Γ (mk))
2

m1k−1∑
i=0

m2k−1∑
j=0

i∑
t=0

j∑
l=0(

i
t

)(
j
l

)
aikb

j
kz
i+j

i!j!

Γ (mk + t)Γ (mk + l)

(akz + βk)
mk+t

(bkz + βk)
mk+l

.

(11)

Proof 3 See Section 8.2.

We can infer from (11) that m1k and m2k should take integer
values.

Proposition 4 The CDF of the upper bounded end-to-end
SINR, γup

e2e, is given by

Fγup
e2e

(z) =

K∑
k=0

(−1)k

k!

K∑
n1,...,nk

m1k−1∑
ik

m2k−1∑
jk

ik∑
tk

jk∑
lk

k∏
p=1

[
(
ip
tp

)(
jp
lp

)(
β
mnp
np

Γ
(
mnp

))2
Γ
(
mnp

+ lp
)(

bnpz + βnp

)mnp+lp

×
(
anp

)ip(
bnp

)jp
(2z)

k∑
p=1

(ip+jp)

ip!jp!2

k∑
p=1

(tp+lp)

e

k∑
p=1

2(anp+bnp )z

Γ
(
mnp

+ tp
)(

anp
z + βnp

)mnp+tp

]

where

K∑
n1,...,nk

∆
=

K∑
n1=1

...

K∑
nk=1︸ ︷︷ ︸

n1<...<nk

,

m1k∑
ik

∆
=

m11∑
i1=1

...

m1k∑
ik=1

. (12)

Proof 4 See Section 8.3.

Hereafter, we investigate the lower bounded OP for two-way
interference-limited systems based on (12). The OP is the
probability that either the S1 to relay link SINR or the S2
to relay link SINR falls bellow a certain threshold, γth. By
using (12), we can now obtain the following lower bound on
the exact OP of the system

Pout(γth) ≥ P lb
out (γth) = Fγup

e2e
(γth) . (13)

Note that, (13) can be easily evaluated since it includes finite
summations of elementary functions.

4. ASYMPTOTIC PERFORMANCE ANALYSIS

Since the results of the previous section provide limited phys-
ical insights, we now focus on the asymptotically low outage
regime. In this regime, γth tends to zero and we can approx-
imate the PDF distribution of the end-to-end SINR around
the origin via a Taylor’s series. For the sake of simplicity
we assume that m1k = m1 and m2k = m2. More impor-
tantly, it can be shown that the diversity order for fixed inter-
ference power over Nakagami-m fading channels is equal to
min(m1,m2)×K. We now elaborate on the case of Rayleigh
fading, by setting all m parameters to one while the interfer-
ence power, Pk,i, is assumed constant; then, the asymptotic
OP for Rayleigh fading channels is obtained as

P∞out (γth) =

K∑
k=0

(−1)
k

k!

K∑
n1,...,nk

k∑
p=0

1

p!

k∑
r1,...,rp

p∏
q=1

[(
anrq

+ bnrq

)(Nnrq

βnrq

+ 2

)]
γKth + o(γKth). (14)

Note that, in this case γup
e2e = min

(
γ1k
2 , γ2k2

)
, while the diver-

sity order isK which is in agreement with min(m1,m2)×K.

5. PRACTICAL CASES OF INTEREST

In this section, we particularize the previously reported results
to some practical cases of interest. We begin with the case of
no interference:

a) Interference-free (Nk = 0 ∀k = 1, ...,K)
When we set (Pk,i = 0 ∀k = 1, ...,K), (13) simplifies to

P lb
out (γth) = 1 +

K∑
k=1

(−1)
k

k!

K∑
n1,...,nk

m1k−1∑
ik

m2k−1∑
jk

k∏
p=1β

2mnp
np

(
ip
tp

)(
jp
lp

)

e
2

k∑
p=1

(anp+bnp )γth

(
anp

)ip(
bnp

)jp
(2γth)

k∑
p=1

(ip+jp)

ip!jp!2

k∑
p=1

(tp+lp)


(15)

where, in this case, γup
S1k

= min
(
γ1k,

γ2k
2

)
, which is a tight

upper bound for γ1kγ2k
2γ1k+γ2k

while γup
S2k

= min
(
γ2k,

γ1k
2

)
.
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b) Rayleigh fading channels
For Rayleigh fading channels, after some simple manipu-

lations, (13) turns into

P lb,ray
out (γth) =

K∑
k=0

(−1)
k

k!

K∑
n1,...,nk

e
−2

k∑
p=1

(anp+bnp )γth

k∏
p=1

[
β

2Nnp
np(

anp
γth + βnp

)Nnp
(
bnp

γth + βnp

)Nnp

]
. (16)

Note that the diversity order in this case is equal to K.

6. SIMULATION RESULTS

In this section, the presented theoretical results are validated
by a set of Monte-Carlo simulations, where we assume that
Nk = N, Pk,i = PI ,m1k = 2,m2k = 1,mk,i = 1.5,Ω1k =
Ω2k = 1,Ωk,i = 0.1 ∀k = 1, 2, 3. Figure 1 illustrates the an-
alytical lower bound for the OP (13), where Ps/PI is kept
constant. We observe that by increasing the number of relays
and the fading parameter m or decreasing the number of in-
terferers, the OP decreases too. Also, as the SNR increases,
the OP reaches an error floor since the effect of interference
becomes dominant.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

E
nd

−t
o−

E
nd

 O
ut

ag
e 

Pr
ob

ab
ili

ty

 

 

Simulation
Analytical lower bound (13)

K = 1,N = 1, Ps/PI = 15dB

N = 1, Ps/PI = 10dB

N = 5, Ps/PI = 15dB

m = 1,N = 1, Ps/PI = 15dB

N = 1, Ps/PI = 15dB
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7. CONCLUSIONS

In this paper, we investigated the performance of a dual-hop
two-way SC AF relaying, where all relay nodes are impaired
by CCI. More specifically, we have derived new tight lower
bounds for the OP of the system at arbitrary SINRs. Simpli-
fied results in the low outage regime were also deduced.

8. APPENDIX

8.1. Proof of Proposition 8.1

Mathematically speaking, the CDF of Yk can be written as

FYk
(z) = Pr (Y ≤ z) = Fγ2 (z (γRk + 1) | γRk)

=
βmk

k

Γ (mk)

∞∫
0

[
γ (m2k, bkz (x+ 2))

Γ (m2k)

]
xmk−1

eβkx
dx. (17)

Assuming integer values for m2k, (17) can be rewritten as

FYk
(z)

= 1−
βmk

k

Γ (mk)

m2k−1∑
i=0

i∑
j=0

(bkz)
i
2i−j

j!(i− j)!e2bkz

∞∫
0

xj+mk−1

e(bkz+βk)x
dx.

Using [22, Eq. (17.13.3)], the above integral can be evaluated
to yield (9).

8.2. Proof of Proposition 3

Since Xk and Yk are dependent to each other, we have

Fγup
SCk

(z) = 1− Pr
(

min
(
γup
S1k

, γup
S2k

)
≥ z
)

= 1−

Pr

(
min

(
γ1k,

γ2k

γrk + 2

)
≥ z,min

(
γ2k,

γ1k

γrk + 2

)
≥ z
)

= 1− Eγrk
[

Pr
(
γ1k ≥ z (γrk + 2)

∣∣∣γrk)]
Eγrk

[
Pr
(
γ2k ≥ z (γrk + 2)

∣∣∣γrk)]. (18)

The two expectations can be evaluated using Proposition 1.

8.3. Proof of Proposition 4

Since γup
SCk

in (8) are independent, we can write the CDF of
the upper bounded end-to-end SINR as

Fγup
e2e

(z) =

K∏
k=1

Fγup
SCk

(z). (19)

To compute (19), we can use the following expansion

K∏
k=1

(1− xk) =

K∑
k=0

(−1)
k

k!

K∑
n1,...,nk

k∏
p=1

xnp
(20)

where xk is defined as

xk
∆
= e−2(ak+bk)z

(
βmk

k

Γ (mk)

)2 m1k−1∑
i=0

m2k−1∑
j=0

i∑
t=0

j∑
l=0

(
i
t

)

×
(
j
l

)
(akz)

i
(bkz)

j

i!j!2t+l−i−j
Γ (mk + t)

(akz + βk)
mk+t

Γ (mk + l)

(bkz + βk)
mk+l

.

(21)

Now using the following identity

k∏
l=1

(
e−αlγ

ml∑
i=0

αilγ
i

i!

)
= e
−

k∑
l=1

αlγ
mk∑
ik

 k∏
l=1

αill
il!
γ

k∑
l=1

il


(22)

and applying (20) and (22) on (19), we can obtain (12) after
some manipulations.
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