The effects of RF impairments in Vehicle-to-Vehicle Communications

Alexandros–Apostolos A. Boulogeorgos1, Paschalis C. Sofotasios1,2, Sami Muhaiedat3,4, Mikko Valkama2, and George K. Karagiannidis1,3

1Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
e-mail: \{ampoulg; sofotasios; geokarag\}@auth.gr
2Department of Electronics and Communications Engineering, Tampere University of Technology, 33101 Tampere, Finland
e-mail: \{paschalis sofotasios; mikko e. valkama\}@tut.fi
3Department of Electrical and Computer Engineering, Khalifa University, PO Box 127788, Abu Dhabi, UAE
4Department of Electronic Engineering, University of Surrey, GU2 7XH, Guildford, United Kingdom
e-mail: muhaidat@ieee.org

\textbf{Abstract}—Radio frequency (RF) front-ends constitute a fundamental part of both conventional and emerging wireless communication systems. However, in spite of their importance they are often assumed ideal, although they are practically subject to certain detrimental impairments, such as amplifier non-linearities, phase noise and in-phase and quadrature (I/Q) imbalance (IQI). The present work is devoted to the quantification and evaluation of the RF IQI effects in the context of realistic wireless vehicle-to-vehicle (V2V) communications over double-Nakagami–\textit{m} fading channels. Novel closed form expressions are derived for the corresponding outage probability for the case of ideal transmitter (TX) and receiver (RX), ideal TX and I/Q imbalanced RX, I/Q imbalanced TX and ideal RX, and joint I/Q imbalanced TX/RX. The offered analytic results have a relatively convenient algebraic representation and their validity is extensively justified through comparisons with respective results from computer simulations. Based on these, it is shown that cascaded fading results to considerable degradations in the system performance and that assuming ideal RF front-ends at the TX and RX induces non-negligible errors in the outage probability evaluation that can exceed 20\% in several V2V communication scenarios.

\section{I. INTRODUCTION}

It is well known that vehicle-to-vehicle (V2V) communications constitute a fundamental part of emerging communication systems. This also includes intelligent transportation systems (ITSs), which have been attracting considerable attention due to the large number of applications they can be deployed for. It is recalled that transceivers in V2V communication systems experience fading effects that typically differ from conventional terrestrial cellular communication scenarios. This difference arises from the mobility and physical location of the involved TX/RX as well as by the presence of reflectors/scatterers in highways and urban environments. Based on this, the omnidirectional TX and RX antennas in these systems are located at relatively low elevations and thus, the corresponding wireless channel has been shown to exhibit a non-stationary behavior. As a consequence, the performance of corresponding communication systems is subject to non-negligible deteriorations in terms of throughput and outage probability (OP), which becomes particularly problematic in certain communication scenarios including safety applications [1]. This is also the case for the detrimental effects of fading conditions [2]–[13]. To this effect, wireless channels in V2V communications should be also accurately characterized and modeled in order to evaluate the performance of these systems precisely and incorporate the essential techniques that are capable of fulfilling the necessary application requirements that ensure efficient and robust wireless transmission.

The performance of V2V communication systems has been investigated in several analyses, see e.g. [14]–[16], and references therein, assuming an ideal radio frequency (RF) front-end. However, the system performance is degraded in practice by non-negligible RF impairments, such as high-power amplifier (HPA) non-linearity, in-phase and quadrature-phase (I/Q) imbalance (IQI), low-noise amplifier (LNA) non-linearity, antenna coupling, phase noise (PN) and carrier frequency offset (CFO) [17]. In particular, IQI represents the mismatch between analog components in the I and Q branches, which results from the limited accuracy of analog hardware. In this context, the effects of RF impairments were investigated in [18]–[20], while performance degradation due to IQI was investigated in [17], [21]–[27]. Specifically, the authors in [21], [22] quantified the effect of IQI on the performance of multiple-input multiple-output (MIMO), whereas the authors in [17], [23], and [25] investigated the performance of relaying systems in the presence of IQI. The impact of IQI in cognitive radio systems was also analyzed in [20], [28], where it was shown that in a multi-channel environment IQI increases the false alarm probability significantly compared to the simplistic ideal RF receiver case.

Nevertheless, to the best of the authors’ knowledge no analyses have been reported in the open technical literature on the detrimental effects of IQI in V2V communications over cascaded fading channels. Motivated by this, the present work
is devoted to the analysis and quantification of IQI effects in the context of wireless transmission over double Nakagami-\(m\) fading channels. To this end, novel analytic expressions are derived for the corresponding OP considering the following three scenarios: i) ideal TX with I/Q imbalanced RX; ii) I/Q imbalanced TX with ideal RX; iii) joint I/Q imbalanced TX and RX. The derived expressions are validated extensively through comparisons with respective results from computer simulations and are subsequently employed in analyzing the corresponding performance providing useful insights for future design and deployments of V2V communication systems.

II. SYSTEM AND SIGNAL MODEL

In this Section, we consider a V2V communication system, as presented in Fig. 1, where the TX and RX are equipped with a single antenna. In this context, it is essential to firstly revisit the ideal signal model, which is henceforth referred to as ideal RF front-end, and the realistic IQI signal models in direct-conversion transmitter (TX) and receiver (RX) scenarios.

![Fig. 1. Indicative V2V Communication Scenario.](image)

A. Ideal RF front-end

Without loss of generality, the \(a\) parameter in Fig. 1 represents the wireless communication link’s complex fading coefficient, whose magnitude \(h\) is assumed to be the product of statistically independent, but not necessarily identically distributed Nakagami-\(m\) random variables\(^1\), namely [15]

\[
h = \prod_{i=1}^{2} h_i. \tag{1}\]

As already mentioned, due to the increased mobility, the nature of the surrounding environment and the position of the TX and RX antennas in V2V communications, the double Nakagami-\(m\) fading distribution has been shown to provide adequate modeling of the corresponding fading effects [15]. Furthermore, we assume a signal, \(s\), transmitted over a flat wireless channel, \(h\), with additive white Guassian noise, \(n\). The received RF signal is passed through various processing stages, also known as the RF front-end of the receiver, and include filtering, amplification, analog I/Q demodulation and sampling. To this effect, the corresponding baseband equivalent received signal is represented as

\[
r_{\text{ideal}} = hs + n \tag{2}\]

and based on this, the instantaneous signal to noise ratio (SNR) per symbol at the RX input is expressed as

\[
\gamma_{\text{ideal}} = \frac{E_s}{N_0} |h|^2 \tag{3}\]

\(^1\)For the special case of \(m = 1\), the double-Nakagami-\(m\) processes reduces to the double Rayleigh processes.

where \(E_s\) denotes the energy per transmitted symbol and \(N_0\) is the single-sided AWGN power spectral density (PSD). Therefore, the corresponding average SNR is expressed as [29]

\[
\overline{\gamma} = \frac{E_s}{N_0} \prod_{i=1}^{2} \Omega_i \tag{4}\]

with \(\Omega_i\) denoting the scaling parameter of the \(i^{th}\) Nakagami-\(m\) process.

B. I/Q imbalance Model

The time-domain baseband representation of the IQI impaired signal is given by [19]

\[
g_{\text{IQI}} = K_1^{t/r} g_d + K_2^{t/r} g_d^* \tag{5}\]

where \(g_d\) denotes the baseband IQI–free signal and \(g_d^*\) arises due to the involved IQI effects. Furthermore, the IQI coefficients \(K_1^{t/r}\) and \(K_2^{t/r}\) are expressed as

\[
K_1^{t/r} = \frac{1}{2} \left(1 + \epsilon^{t/r}e^{\pm j\phi^{t/r}} \right) \tag{6}\]

and

\[
K_2^{t/r} = 1 - \left(K_1^{t/r}\right)^* \tag{7}\]

where the positive and negative signs in (6) and the \(t/r\) superscripts denote the up and down conversion processes, respectively, whereas the \(\epsilon^{t/r}\) and \(\phi^{t/r}\) terms account for the TX/RX amplitude and phase mismatch, respectively. Furthermore, the \(K_1^{t/r}\) and \(K_2^{t/r}\) coefficients are related to the corresponding image rejection ratio (IRR), which determines the amount of attenuation of the image frequency band, namely

\[
\text{IRR}_{t/r} = \frac{|K_1^{t/r}|^2}{|K_2^{t/r}|^2}. \tag{8}\]

It is recalled that the second term \(K_2^{t/r} g_d^*\) is caused by the involved imbalances and represents the self-interference effect, while in practical analog RF front-end electronics, the value of IRR is typically in the range of 20dB–40dB [30]–[33].

C. V2V systems impaired by IQI

This subsection presents the signal model for single-carrier transmission in which the TX and/or the RX is subject to IQI.

1) TX impaired by IQI: In this scenario, it is assumed that TX suffers from IQI while the RF front-end of the RX is ideal. To this effect, it follows from (5) that the baseband equivalent transmitted signal is expressed as

\[
s_{\text{IQI}} = K_1^{t/r} s + K_2^{t/r} s^* \tag{9}\]

whereas the baseband equivalent received signal is given by

\[
r_{\text{IQI}}^{t/r} = hs_{\text{IQI}} + n = K_1^{t/r} hs + K_2^{t/r} hs^* + n. \tag{10}\]

Furthermore, the instantaneous SINR per symbol at the input of the RX is expressed as

\[
\gamma = \frac{|K_1^{t/r}|^2 |h|^2 E_s}{|K_2^{t/r}|^2 |h|^2 E_s + N_0} \tag{11}\]
which with the aid of (8) and after basic algebraic manipulations can be re-written as follows:

\[\gamma = \frac{1}{\TRR_{\gamma} + \frac{1}{|K_1|^2 |\gamma_{\text{dual}}|^2}}. \]

(12)

Based on (9) and (12), in the context of direct-conversion transmitter, the IQI effect can be considered as the so-called self-image problem, where the baseband equivalent transmitted signal is interfered by its own complex conjugate [34].

2) RX impaired by IQI: In this scenario, it is assumed that the RX suffers from IQI while the RF front-end is ideal. Based on (5), the baseband equivalent received signal is given by

\[r = K_1^* h s + K_2^* h^* s^* + K_1^* n + K_2^* n^* \]

(13)

and the instantaneous SINR per symbol at the RX input is

\[\gamma = \frac{|K_1|^2 |h|^2 E_s}{|K_2|^2 |h|^2 E_s + (|K_1|^2 + |K_2|^2)^2} \]

\[\times N_0 \]

which with the aid of (8) and after basic algebraic manipulations can be equivalently expressed as follows:

\[\gamma = \frac{1}{\TRR_{\gamma} + (1 + \frac{1}{\TRR_{\gamma}}) \frac{1}{|\gamma_{\text{dual}}|^2}}. \]

(15)

3) Joint TX/RX impaired by IQI: In this scenario, it is assumed that both TX and RX suffer from IQI. This is a more realistic scenario and based on (5), it follows that the baseband equivalent received signal is given by

\[r = (\xi_{11} h + \xi_{22} h^*) s + (\xi_{12} h + \xi_{21} h^*) s^* + K_1^* n + K_2^* n^* \]

\[\xi_{11} = K_1^* K_1^*, \quad \xi_{22} = K_2^* (K_2^*)^*, \quad \xi_{12} = K_1^* K_2^* \]

\[\xi_{21} = K_2^* (K_1^*)^*. \]

To this effect, the instantaneous SINR per symbol at the input of the RX is expressed as

\[\gamma = \frac{|Z|^2 E_s}{|W|^2 E_s + (|K_1|^2 + |K_2|^2)^2} \]

\[\times N_0 \]

with \(|Z|^2 = |\xi_{11} h + \xi_{22} h^*|^2 \) and \(|W|^2 = |\xi_{12} h + \xi_{21} h^*|^2 \) i.e.,

\[|W|^2 = |\xi_{12}|^2 |h|^2 + |\xi_{21}|^2 |h|^2 + 2R\{\xi_{12}\xi_{21}h^2\} \]

\[\text{whereas} \quad |\xi_{22}|^2 / |\xi_{11}|^2 = 1/\TRR_{\gamma} \]

(18)

equation (18) can be expressed as \(|W|^2 \approx |\xi_{12}|^2 |h|^2 + |\xi_{21}|^2 |h|^2 \). Based on the above eq. (17) can be re-written as

\[\gamma \approx \frac{|\xi_{11}|^2}{|\xi_{12}|^2 + |\xi_{21}|^2 + (|K_1|^2 + |K_2|^2)^2} \]

\[\text{with} \quad \frac{1}{|\gamma_{\text{dual}}|^2}. \]

(20)

which is particularly accurate as the involved relative error does not practically exceed 1%.

III. OUTAGE PROBABILITY IN V2V COMMUNICATIONS

It is recalled that the OP can be defined as the probability that the symbol error rate is greater than a certain quality of service level and is computed as the probability that the instantaneous SNR or SINR falls below the corresponding predetermined threshold [35]. In what follows, we derive a novel analytical framework for the OP over double Nakagami-\(m \) fading channels subject to the aforementioned IQI scenarios in V2V communication systems. The offered analytic expressions are validated through extensive comparisons with respective results from computer simulations.

A. Ideal RF front-end

It is recalled that the envelope PDF of double Nakagami-\(m \) channels i.e. \(N = 2 \), is given in [29, Eq. (6)]. Based on this and with the aid of [36, eq. (2.3)], it immediately follows that

\[p_{\gamma}(\gamma) = A\gamma^{m_1+m_2-1}K_{m_1-m_2}(B\sqrt{\gamma}) \]

(21)

where \(K_0(\cdot) \) denotes the modified Bessel function of the second kind whereas \(A = 2/(\gamma^{m_1+m_2}) \)

\[\prod_{i=1}^{m_2} \Gamma(m_i) \]

and \(B = \prod_{i=1}^{m_2} m_i/\sqrt{\gamma} \). Therefore, the corresponding CDF is

\[F_{\gamma}(x) = A \int_{0}^{x} x^{m_1+m_2-1}K_{m_1-m_2}(B\sqrt{\gamma}) \]

\[dx \]

which can be expressed in closed-form using [37, eq. (1.12.2)]

\[F_{\gamma}(\gamma) = \frac{A\gamma^{m_1+m_2-1}K_{m_1-m_2}(B\sqrt{\gamma})}{m_2^{m_1+m_2}B^{m_2-m_1}} \]

\[\times f_2\left(m_1; m_1+1, m_1-m_2+1; \frac{B^2\gamma}{4}\right) \]

\[+ \frac{A\gamma^{m_1+m_2-1}K_{m_1-m_2}(B\sqrt{\gamma})}{m_2^{m_1+m_2}B^{m_2-m_1}} \]

\[\times f_2\left(m_2; m_2+1, m_2-m_1+1; \frac{B^2\gamma}{4}\right) \]

\[\text{where} \quad f_2(\cdot) \]

(22)

and with the aid of (25), at the top of the next page. Notably, the involved integral can be expressed in closed-form with the aid of [38, eq. (8.468)]. Based on this and by performing the necessary variable transformation, the SNR PDF of the double Nakagami-\(m \) fading model can be alternatively expressed as

\[p_{\gamma}(\gamma) = A\sqrt{\pi} \sum_{l=0}^{m_1-m_2-\frac{1}{2}} \frac{m_1-m_2+l+\frac{1}{2}}{l!(m_1-m_2-l+\frac{1}{2})!(2B)^l/2^{l-\frac{1}{2}}e^{B^2\gamma}} \]

\[\text{whereas} \quad \text{the corresponding CDF is given by (25), at the top of the next page.} \]

Notably, the involved integral can be expressed in closed-form with the aid of [38, eq. (8.468)]. Based on this and by performing the necessary variable change of variables and substituting in (25), the following expression is deduced

\[F_{\gamma}(\gamma) = A \sum_{l=0}^{m_1-m_2-\frac{1}{2}} \frac{m_1-m_2+l+\frac{1}{2}}{l!(2B)^lB^{m_1+m_2-L}(m_1-m_2-l+\frac{1}{2})} \]

\[\times \gamma \left(m_1-m_2+l+\frac{1}{2}, B\sqrt{\gamma}\right) \]

(26)

which is also valid for the case that \(m_1-m_2+\frac{1}{2} \in \mathbb{N} \).
\[F_\gamma(\gamma) = \sum_{l=0}^{m_1 - m_2 - \frac{1}{2}} \frac{A}{l!} \frac{\Gamma(m_1 - m_2 + l + \frac{1}{2})}{\Gamma(m_1 - m_2 - l + \frac{1}{2})} \left(\frac{1}{2} \right)^l \int_0^\gamma x^{\frac{m_1 - m_2 - \frac{1}{2}}{2} - \frac{\xi}{2} - \frac{B}{2} \xi^2} e^{-\frac{\xi}{2} - \frac{B}{2} \xi} d\xi. \] (25)

B. V2V systems impaired by IQI

1) TX impaired by IQI: Using (12), in the case of single-carrier V2V communication with only TX impaired with IQI, the corresponding OP can be expressed as

\[P_{\text{out}} = F_\gamma \left(\frac{1}{\left| K_1 \right|^2} \left(\frac{1}{\gamma_{th}} - \frac{1}{\text{TRR}_t} \right) \right) \] (27)

with \(\gamma_{th} \leq \text{IRR}_t \). By also using (23) and (25), eq. (27) can be expressed by (28), top of the next page, which for the special case that \(m_1 - m_2 + \frac{1}{2} \in \mathbb{N} \) can be further simplified to

\[P_{\text{out}} = \sum_{l=0}^{m_1 - m_2 - \frac{1}{2}} \frac{2^{l + 1/2 - m_1}}{l!} \frac{\Gamma(m_1 - m_2 + l + \frac{1}{2})}{\Gamma(m_1 - m_2 - l + \frac{1}{2})} \times \gamma \left(m_1 - m_2 + l + \frac{1}{2}, \frac{B}{\sqrt{\frac{1}{\gamma_{th}} - \frac{1}{\text{TRR}_t}}} \right) \] (29)

where \(\gamma(a, x) \) is the lower incomplete gamma function [37].

2) RX impaired by IQI: With the aid of (15), the corresponding OP in this scenario is given by

\[P_{\text{out}} = F_{\gamma_{\text{ideal}}} \left(\frac{1}{\left| K_1 \right|^2} \left(\frac{1}{\gamma_{th}} - \frac{1}{\text{TRR}_r} \right) \right) \] (30)

with \(\gamma_{th} \leq \text{IRR}_r \). Using (23) and (25), it follows that

\[P_{\text{out}} = \frac{A \Gamma(m_2 - m_1)}{m_1 2^{m_2 - m_1 - m_2} B^{m_2 - m_1}} \left(\frac{1}{\gamma_{th}} - \frac{1}{\text{TRR}_r} \right)^{m_1} \times _1 F_2 \left(m_1; m_1 + 1, m_1 - m_2 + 1; \frac{B^2}{4} \frac{1 + \frac{1}{\text{TRR}_r}}{\gamma_{th} - \frac{1}{\text{TRR}_r}} \right) \]

+ \[\frac{A \Gamma(m_1 - m_2)}{m_2 2^{m_1 - m_2 + 1} B^{m_1 - m_2}} \left(\frac{1}{\gamma_{th}} - \frac{1}{\text{TRR}_r} \right)^{m_2} \times _1 F_2 \left(m_2; m_2 + 1, m_2 - m_1 + 1; \frac{B^2}{4} \frac{1 + \frac{1}{\text{TRR}_r}}{\gamma_{th} - \frac{1}{\text{TRR}_r}} \right) \] (31)

which for \(m_1 - m_2 + \frac{1}{2} \in \mathbb{N} \) can be expressed as

\[P_{\text{out}} = \sum_{l=0}^{m_1 - m_2 - \frac{1}{2}} \frac{A \sqrt{\pi} \Gamma(m_1 - m_2 + l + \frac{1}{2})}{l! 2^{l + 1/2} B^{m_1 + m_2} \Gamma(m_1 - m_2 - l + \frac{1}{2})} \times \gamma \left(m_1 - m_2 + l + \frac{1}{2}, \frac{B}{\sqrt{\frac{1}{\gamma_{th}} - \frac{1}{\text{TRR}_r}}} \right) \] (32)

3) Joint TX/RX impaired by IQI: With the aid of (20), the corresponding OP in the case is expressed as follows

\[P_{\text{out}} = F_{\gamma_{\text{ideal}}} \left(\frac{|K_1|^2 + |K_2|^2}{|\xi_{11}|^2 - (|\xi_{12}|^2 + |\xi_{21}|^2)} \right) \] (33)

where \(\gamma_{th} \leq |\xi_{11}|^2 / (|\xi_{12}|^2 + |\xi_{21}|^2) \). It is evident that by following the same methodology, equation (33) can be expressed in closed-form according to (III-B3), top of the next page, which for the specific case that \(m_1 - m_2 + \frac{1}{2} \in \mathbb{N} \), it can be further simplified to the following expression

\[P_{\text{out}} = \frac{A \sqrt{\pi} \Gamma(m_1 - m_2 + l + \frac{1}{2})}{B^{m_1 + m_2} \sum_{l=0}^{m_1 - m_2 - \frac{1}{2}}} \times \gamma \left(m_1 - m_2 + l + \frac{1}{2}, \frac{B}{\sqrt{\frac{1}{\gamma_{th}} - \frac{1}{\text{TRR}_r}}} \right) \] (35)

It is noted here that when the distance separating the involved vehicles is larger than 5m, the corresponding line of sight (LOS) component tends to disappear resulting to more severe fading conditions [14]. This also holds for double Rayleigh fading scenarios [39]–[41], which constitutes a specific case of the double Nakagami-\(m \) for \(m_2 = m_1 = 1 \).

IV. NUMERICAL RESULTS

In this section, we analyze the effects of IQI on the performance of wireless V2V communications over double Nakagami-\(m \) fading channels in terms of the corresponding
\[P_{\text{out}} = \left(\frac{1}{|K_1|^2 \left(\frac{1}{\gamma_{th}} - \frac{1}{\text{IRR}_t} \right)} \right)^{m_1} \frac{\Gamma(m_2 - m_1)}{m_1 2^{m_1 - m_2} B^{m_2 - m_1}} F_2 \left(\frac{m_1; m_1 + 1, m_1 - m_2 + 1; K_1^2 \left(\frac{B^2}{4} \frac{1}{\gamma_{th}} - \frac{1}{\text{IRR}_t} \right)}{\frac{1}{\gamma_{th}} - \frac{1}{\text{IRR}_t}} \right) + \left(\frac{1}{|K_1|^2 \left(\frac{1}{\gamma_{th}} - \frac{1}{\text{IRR}_t} \right)} \right)^{m_2} \frac{\Gamma(m_1 - m_2)}{m_2 2^{1-m_1+m_2} B^{m_2-m_1}} F_2 \left(\frac{m_2; m_2 + 1, m_2 - m_1 + 1; B^2}{4 |K_1|^2 \left(\frac{1}{\gamma_{th}} - \frac{1}{\text{IRR}_t} \right)} \right) \]

This paper investigated the OP performance of V2V communication systems over double Nakagami-\(m \) channels in the presence of IQI at the RF front-end. We considered three scenarios in our analysis corresponding to ideal TX with I/Q imbalanced RX, I/Q imbalanced TX with ideal RX, and joint I/Q imbalanced TX and RX. The ideal case was also taken into consideration for comparison and the derived analytic results were validated through extensive comparisons with computer simulations. It was shown that the severity of fading affects significantly the corresponding performance and that assuming ideal RF front-end results to around 20% erroneous OP. This
highlights the importance of accurate channel characterization and consideration for RF impairments in the analysis, design and deployment of V2V communication systems.

ACKNOWLEDGMENTS

This work was supported by the Finnish Funding Agency for Technology and Innovation (Tekes) under the project entitled “Energy-Efficient Wireless Networks and Connectivity of Devices-Systems (EWINE-S)”, and by the Academy of Finland under the projects No. 251138 Digitally-Enhanced RF for Cognitive Radio Devices and No. 284694 “Fundamentals of Ultra Dense 5G Networks with Application to Machine Type Communication”.

REFERENCES