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Abstract—The latest growth of storage capabilities has led to an
accumulating volume of medical data stored locally by various
healthcare entities. Given the recent progress observed in the
domain of artificial intelligence, these data could be efficiently
exploited, leading to improved and less expensive healthcare
conditions. However, the common practice is medical data to
be solely locally used, ending up poorly exploited, due to strict
sharing restrictions stemming mainly from privacy limitation
of their sensitive nature. Considering the centralized character
of conventional machine learning approaches, it is apparent
that they cannot reassure the privacy required. On the other
hand, federated learning (FL) can be regarded as an upcoming
and promising answer to efficient exploitation of medical data,
considering its decentralized approach. In more details, FL can
enable collaboration among various participating entities on
the development and training of a common, central and fully
shared model without need of sharing owned sensitive data.
Thus, apparently FL approach not only can mitigate the privacy-
preservation issues but can lead to the development of reliable
and robust healthcare tools. Indicatively, FL can facilitate the
development of a model capable of assessing the health risk,
which can be a vital tool for medical sciences. To this end, in
this work we present a tool capable of assessing the occurrence
of different diseases or complications. This tool is based on FL
technique utilizing deep neural network model. The FL model
developed herein is indicatively applied to four different medical
applications proving its generality in the healthcare domain. The
FL approach discussed herein is compared with a corresponding
centralized learning. According to the demonstrated results,
FL can consist a useful health risk assessment tool exhibiting
acceptable performance while preserving privacy in sensitive
medical data.

Index Terms—Federated Learning, Health Risk Assessment,
Mellitus Diabetes, Heart Disease, Maternal Mortality, Breast
Cancer. I. INTRODUCTION

It is widely recognised that health systems must put more
emphasis on prevention and adopt a person-centred approach.
For this purpose, the utilization of machine learning (ML),
linked to a patients’ database is capable of elaborating risk
assessment models with improved precision. The ultimate goal
of ML is to facilitate the development learning algorithms
that do the learning automatically from the available data
with minimal or even none human intervention [1]. In the
existing literature, plenty of centralized ML techniques have
been developed with the aim to contribute to medical diagnosis
[2]–[5]. However, lately several privacy issues have aroused
combined with the need of dealing with huge amount of
data. Those two factors gradually led to the development of
decentralized ML approaches, such as federated learning (FL)
[6]–[11].

The main advantage of FL is that different clients do
not share raw data with the server or any of the of the
residual participants, since the training dataset is retained
in the source of generation, e.g., specific hospital. More
specifically, each client performs the model training through
its local dataset individually, and forwards only the training
parameters to the central server, instead of sending the overall
raw data. In this manner, the central unit has no explicit
access to privacy-sensitive data. Following that, the server
is aggregating the received parameters, updates the global
model and finally sends it to the learners, while the considered
process is repeated until convergence of the global model.
Therefore, the privacy-preserving mechanism constitutes an
inherent characteristic of FL. The use of federated learning
(FL) for medical applications has been investigated among
others in [12], [13], [14]. In more details, [12] has investigated
the advantages and impact of FL regarding medical applica-
tions while highlighting relevant technical considerations as
well. In [13] current and emerging methods for federated as
well as secure and privacy-preserving artificial intelligence are
discussed with focus on medical imaging applications. Finally,
in [14] the concept of clustered FL is used in order to achieve
automatic diagnosis of COVID-19.

Motivated by the above, we propose the application of a
robust, privacy-preserving FL based tool to disease risk assess-
ment. To this end, the local training is based on deep neural
networks (DNN), which is implemented with the capability to
provide binary health risk assessment. The latter can be used as
a quantitative indicator for the appearance of a specific disease.
This indicator could be particularly useful for identifying a
potential health problem at an early stage, assisting clinicians
and medical professionals, as well as encouraging citizens to
be better informed about their health, reducing avoidance of
medical examinations. Thus, the developed tool can automat-
ically provide a provisional risk assessment which can then
be followed-up with further detailed and established methods
and treated promptly in order to minimize their likelihood of
progression to higher levels of severity. It is highlighted that
the decentralized learning approach used in FL is compatible
with the privacy-preservation restrictions related to the sharing
of medical data. To verify the reliability and generality of
the developed tool, four datasets are used, which correspond
to four different health problems, namely diabetes mellitus,
heart failure, maternal mortality, and breast cancer. According
to results generated in this work, the developed tool exhibits a
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reliable performance for all the considered health problems, as
well as minor performance deviations compared to a respective
centralized learning (CL) model.

II. DEVELOPED FL-BASED TOOL

As it has already been mentioned, FL enables the training
of a shared model in a distributed manner, by exploiting the
collected data of the multiple clients e.g., hospitals, clinics,
etc., without those being intervened by the server. Hence,
each client contributes to the construction of the model by
performing local training on its own dataset, while the server’s
role is to aggregate, update, and redistribute the updated model
back to the particular client. By using this approach, a model
that is able to assess the risk level for different health problems
can be trained in a collaborative manner, without the need to
exchange sensitive medical data.

According to Fig. 1, we consider a FL network consisting
of N clients indexed as n ∈ N = {1, 2, ..., N} and a
central server. Each client n posses a local dataset Dn =
{xn,k, rn,k}Dn

k=1, where Dn = |Dn| are the data samples, xn,k
is the k-th input data vector of client n representing risk factors
and rn,k is the corresponding output which denotes the risk
level. We clarify that xn,k,∀n, k, consists of T risk factors,
i.e., the vector xn,k has T entries. It is also noted that since in
this work we focus on binary risk assessment, it holds that
rn,k ∈ {0, 1}, ∀n, k where rn,k = 1 indicates health risk
occurrence and rn,k = 0 the opposite case. The whole dataset
is denoted as D = ∪

n∈N
Dn, while the size of the training data

is D =
∑N

n=1 Dn. Moreover, the local loss function on the
data set Dn, defined as

Fn(w)
△
=

1

Dn

∑
k∈Dn

f(w,xn,k, rn,k), ∀n ∈ N, (1)

where f(w, xn,k, rn,k) captures the error of the model pa-
rameter w for the input-output vector pair {xn,k, rn,k}. Since
we focus on binary health risk assessment, the function
f(w, xn,k, rn,k) used in our model is the binary cross-entropy,
which is highly recommended for binary classification prob-
lems [15]. The training process is capable to find the global
parameter w which minimizes the loss function on the whole
data set, which is given by J(w) = 1

D

∑N
n=1 DnFn(w) [11].

Fig. 1: Reference architecture of medical risk assessment with
FL.

The whole training process is divided in an arbitrary number
of communication rounds, denoted by i. Thus, during the
first round the server initializes w0, while the i-th round is
described by the following steps [16]–[18]:
1) The central server reports the global parameter wi to all

clients during the considered round.
2) After receiving the global model parameter, each client

n ∈ N , train its local model by applying a few steps
of the stochastic gradient descent (SGD) method using
appropriately tuned value of learning rate. SGD method
has been chosen since it has been found that models trained
by it appear to have vanishing generalization errors with
few iterations [19]. However, it needs to be mentioned that
regarding local training, alternative gradient descent-based
methods can be used as well [17].

3) After receiving all the local parameters, the server aggre-
gates them, in order to update the global model parameter,
by applying

wi+1 =
1

D

∑
n∈N

Dnwi+1
n . (2)

As far as the training of local model is concerned, we
use classic feedforward fully connected DNN of architecture
appropriately tuned for each dataset utilized. More specifically,
the input layer consist of neurons equal to the number of risk
factors included in the dataset examined. The number of both
hidden layers and respective neurons vary for each examined
dataset in order to accommodate the different size of input
layer introduced. Regarding the output layer, it consists of one
neuron, which is activated via sigmoid function, given the fact
that here we focus on provisional health risk assessment using
binary classification to denote if health problem risk occurs or
not.

III. DESCRIPTIONS OF CASE STUDIES

By focusing on binary health risk assessment, we assess the
occurrence risk level for four different cases, namely diabetes
mellitus, typical heart disease, maternal mortality, and breast
cancer. Statistics of datasets utilized are presented in Table I,
where “C” and “N” denote categorical and numerical type of
risk factor. Here, the DNN architecture is described by vector
l = l1, ..., ln, where each of lk, for k = 1, .., n represents the
neurons number for k layer. For D1, D2, D3 and D4, l is given
by (6,4,2,1), (10,8,4,2,1), (5,3,2,1) and (9,4,2,1) respectively.

A. Dataset D1 - Diabetes Mellitus
Dataset D1 is related to type 2 Diabetes Mellitus, which is

a metabolic disorder associated with chronic hyperglycaemia
leading to complications of various organs [20]. Thus, dia-
betes represents a major public health concern. D1, available
at Kaggle [21], is originally from the National Institute of
Diabetes and Digestive and Kidney Diseases [22]. It consists
of D=768 sample instances, each of them corresponding
to female patients of equal number. Aforementioned dataset
includes eight risk factors, namely “Pregnancies” for total
number of pregnancies, “Glucose” for plasma glucose con-
centration, “DiabetesPedigreeFunction” for diabetes pedigree
function, “SkinThickness” for triceps skin fold thickness in

2022 International Balkan Conference on Communications and Networking (BalkanCom)

58Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 11:02:52 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Risk factors

Risk factor Type Mean Median Dispersion Min. Max.
Pregnancies C - 1 2.41 - -
Glucose N 120.89 117.0 0.26 0.0 199.0
Blood N 69.11 72.0 0.28 0.0 122.0
Pressure
Skin N 20.54 23.0 0.78 0.0 99.0
Thickness
Insulin N 79.80 30.50 1.44 0.0 846.0
BMI N 31.993 32.0 0.246 0.0 67.1
Diabetes N 0.472 0.373 0.702 0.078 2.420
Pedigree
Function
Age N 33.24 29.0 0.35 21.0 81.0

(a) Diabetes Mellitus (D1)
Risk factor Type Mean Median Dispersion Min. Max.
Cholesterol N 198.80 223 0.55 0 603
MaxHR N 136.81 138 0.19 60 202
RestingBP N 132.40 130 0.14 0 200
Age N 53.51 54 0.18 28 77
Oldpeak N 0.887 0.6 1.201 -2.6 6.2
StSlope C - 2 0.893 - -
RestingECG C - 0 0.949 - -
Gender C - 1 0.514 - -
FastingBS C - 0 0.543 - -
Exercise C - 0 0.675 - -
Angina
ChestPain C - 3 1.13 - -
Type

(b) Heart Failure Dataset (D2)
Risk factor Type Mean Median Dispersion Min. Max.
Age N 29.87 26.0 0.45 10.0 70.0
SystolicBP N 113.20 120.0 0.16 70.0 160.0
DiastolicBP N 76.46 80.0 0.18 49.0 100.0
BS N 8.726 7.5 0.377 6.0 19.0
BodyTemp N 98.665 98.0 0.014 98.0 103.0
Heart N 74.3 76.0 0.11 7.0 90.0
Rate

(c) Maternal Mortality (D3)
Risk factor Type Mean Median Dispersion Min. Max.
Clump N 3.961 3.63 0.714 0.0 10.0
Thickness
Unif. N 2.652 0.91 1.163 0.0 9.99
Cell Size
Unif. N 2.722 0.99 1.106 0.0 10.0
Cell Shape
Marginal N 2.320 0.85 1.245 0.0 9.98
Adhesion
Single N 2.739 1.79 0.815 0.02 9.96
Cell Size
Bare N 3.063 0.86 1.194 0.0 9.99
Nuclei
Bland N 2.942 2.2 0.831 0.01 9.97
Chromatine
Normal N 2.371 0.80 1.29 0.0 10.0
Nucleoli
Mitoses N 1.115 0.60 1.587 0.0 9.92

(d) Breast Cancer (D4)

mm, “BloodPressure” for diastolic blood pressure in mmHg,
“Insulin” for 2-h serum insulin in mU/mL, “BMI” for Body
Mass Index in kg/m2 and “Age” for age in years and cor-
responding risk label value, equal to 0 if the occurence of
diabetes is of high risk and 1 for the opposite case. All
risk factors, which are either of numerical or categorical
type (Table I-a) are discretized using the Entropy-Minimum

Description Length (MDL) discretization method. It needs to
be mentioned that, according to Fig. 2a, only six risk factors
(T=6) are finally considered to the risk assessment, since blood
pressure and skin thickness have been found to be rarely
dependent on the risk level according to the importance of
features, in terms of risk factors, using ExtraTreesClassifier as
proposed in [23].

B. Dataset D2 - Heart Failure
Heart failure consists a significant public health problem

related to increased mortality, morbidity and healthcare ex-
penditures [24]. Here, we use dataset D2 downloaded from
[25]. In more details, D2 consists of D=918 sample instances
with eleven risk factors and a risk level value equal to 1 or 0,
indicating the occurence or no occurence of heart failure risk,
respectively. The consisting risk factors are: “Age” in years,
Gender, “RestingBP” for resting blood pressure in mmHg,
“Cholesterol” for serum cholesterol in mm/dl, “FastingBS”
for fasting blood sugar, “RestingECG” for resting electrocar-
diogram results, “MaxHR” for maximum heart rate achieved,
“ExerciseAngina” for exerciseinduced angina, “Oldpeak” for
old peak measured in depression, “STslope” for the slope of
the peak exercise ST segment. Risk factors shown in Table I-b
are discretized using the Entropy-MDL discretization method.
As it is shown in Fig. 2b, it needs to be mentioned that only
ten risk factors (T=10) are considered to the risk assessment
since “RestingBP” has been found to be rarely dependent on
the risk level according to the importance of features, in terms
of risk factors, using ExtraTreesClassifier.

C. Dataset D3 - Maternal Mortality
Maternal mortality discussed here is associated with com-

plications of pregnancy and childbirth. Corresponding dataset
is D3, which has been downloaded from [26] and has been
collected from different hospitals, community clinics, maternal
health cares from the rural areas of Bangladesh [27] and [28].
D3 consists of D=1014 sample instances including six risk
factors and a risk level value equal to 0 and 1 corresponding to
the cases of existence or no existence of high risk for maternal
mortality, respectively. Included risk factors are: “Age” for
the patient’s age during pregnancy in years, “SystolicBP” for
the upper value of blood pressure in mmHg, “DiastolicBP”
for the lower value of blood pressure in mmHg, “BS” for
the blood glucose levels in terms of a molar concentration
in mmol/L, “BodyTemp” for body temperature and “Heart
Rate” for normal resting heart rate in beats/min. Risk factors
depicted in Table I-c are discretized using the Entropy-MDL
discretization method. Also, as it is shown in Fig. 2c, only five
risk factors (T=5) are finally considered to the risk assessment,
since Body Temperature has been found to be rarely dependent
on the risk level according to the importance of features, in
terms of risk factors, using ExtraTreesClassifier.

D. Dataset D4 - Breast Cancer
Dataset D4, consisting of D=683 instances, has been down-

loaded from [29]. Risk factors, included in D4, are computed
from a digitized image of a fine needle aspirate (FNA) of a
breast mass. They describe characteristics of the cell nuclei
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(a) Dataset D1 (b) Dataset D2 (c) Dataset D3 (d) Dataset D4
Fig. 2: Feature importance for the considered diseases

TABLE II: Federated learning (FL)/centralized learning(CL) - Metrics for all datasets
Dataset Binary Accuracy Precision Recall AUC Specificity F1(

TP+TN
TP+TN+FP+FN

) (
TP

TP+FP

) (
TP

TP+FN

) (
TN

TN+FP

) (
TP

TP+ 1
2
(FP+FN)

)
Diabetes mellitus (D1) 0.791/0.799 0.695/0.694 0.746/0.782 0.837/0.836 0.808/0.808 0.719/0.735
Typical heart disease (D2) 0.832/0.788 0.904/0.925 0.794/0.692 0.926/0.927 0.883/0.883 0.846/0.791
Maternal mortality (D3) 0.925/0.902 0.960/0.915 0.942/0.962 0.927/0.925 0.870/0.702 0.951/0.938
Breast cancer (D4) 0.963/0.978 0.965/0.966 0.948/0.983 0.998/0.998 0.974/0.975 0.957/0.974

present in the image [30].
Dataset D4 includes nine risk factors (“Clump thickness”
for clump thickness, “Unif Cell Size” for uniformity of
cell size, “Unif Cell Shape” for uniformity of cell shape,
“Marginal Adhesion” for marginal adhesion, “Single Cell
Size” for single epithelial cell size, “Bare Nuclei” for bare
nuclei, “Bland ChromaLine” for bland chromaline, “Normal
Nucleoli” for normal nucleoli and “Mitoses” for mitoses, Table
I-d). Entropy-MDL discretization method is applied in order
to accommodate appropriately the amount of the categorical
values for all risk factors, which end up being nine (T=9), as it
is shown in Fig. 2d. Risk level value equals 0 or 1, indicating
the case of benign and malignant respectively.

IV. PERFORMANCE EVALUATION AND DISCUSSION

The purpose of this work is to provide a reliable health
risk assessment tool capable of successful medical provisional
diagnosis irrespectively of disease or complication type with-
out violating privacy issues corresponding either to patients
or medical institutions. The number of clients vary for each
examined case (N=3, 2, 5 and 8 for D1, D2, D3 and D4
respectively), proving our tool is adaptable to varying clients
number, and it is assumed that the total number of data
samples D is equally distributed to participating clients. In all
datasets examined, 80% of data samples are used for training
keeping the rest of total ones for testing. The efficiency of our
tool is measured in terms of appropriate statistic metrics for
medical applications. It is highlighted that the accuracy may
not be a reliable measure in the case of imbalanced datasets
[31], while an indicative example is depicted in Fig. 3. Thus,
more delicated measures are also utilized, namely Precision,
Recall, Specificity, F1 (Table II) and AUC, where AUC is
the area under the Receiver Operating Characteristics (ROC)
curve, TP, TN, FP and FP correspond to True Positives, True
Negatives, False Positives and False Negatives, respectively.

At first, our FL based risk assessment tool is compared with
the conventional centralized learning approach. According to
the results derived herein, the proposed FL risk assessment
tool is capable of achieving high efficiency medical prognosis,
since all the examined metrics exhibit, in general, minor

Fig. 3: Balance ratio for examined datasets

modifications, compared to the ones provided by the CL
corresponding approach (Table II). Efficiency levels have been
found to strongly depend upon the quality of dataset, in
terms of number of different instances, amount and relevance
of risk factors, etc. Although all examined datasets succeed
in exhibiting high levels of Binary Accuracy (at least over
0.791 according to Table II), we can not rely exclusively
on this metric since it is not a reliable one in the case of
not well-balanced datasets, alike the ones used here (Fig. 3).
Our FL tool exhibits a high level distinguishment between
binary risk level 0 and 1, since minimum AUC value observed
equals 0.837 (Table II). In the case of medical applications,
Precision is considered as an important metric, given the
fact that it is important a patient who is negative not to be
faulty diagnosed as positive and undergo through unnecessary
and often expensive further medical tests. In the aforesaid
table, it can be observed that our FL tool provides excellent
levels of precision for the D2, D3 and D4 (precision has
been found to exceed 0.9) and an acceptable level for D1
(0.70 approximately). For medical application, it is also crucial
to achieve high level of Recall since it is unacceptable a
patient who is positive to be classified as negative. Thus, it is
promising that excellent Recall values are observed by our FL
tool for D3 and D4 (above 0.94) and satisfactory ones for D1
and D2. F1 values observed are indicative of the satisfactory
balance we achieve between Precision and Recall. Specificity
of the datasets, which is in general associated with successfully
diagnosing healthy patients as negatives, also exhibits high
levels for all of investigated datasets.
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V. CONCLUSIONS

In this work, we investigated the application of a FL based
model to health risk assessment irrespectively to disease or
complication type. The developed tool is capable of providing
an automatic provisional health risk assessment which can
then be followed-up with further elaborated methods and
treatments. By using four datasets that correspond to differ-
ent health problems, it was shown that the developed tool
exhibits reliable performance in terms of observed metrics
values whereas it has a satisfactory generality potential in
the healthcare. Although the main motivation for using FL
in healthcare is the protection of privacy-sensitive data, it has
been found that our FL model achieves similar performance
to a respective CL model. Based on the aforementioned obser-
vations, the prediction of future health risk assessment would
be of high importance to be investigated. Also, it deserves to
be noted that although FL can help to reduce the transmission
of sensitive data to a cloud server, it has been shown that
exchanging model updated during the training process can still
reveal sensitive information. To this end, a privacy-by-design
federated learning mechanism for health risk assessment needs
to be developed.
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