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Abstract—Realizing efficient, delay-bounded, and reliable com-
munications for a massive number of user equipments (UEs)
in massive Ultra-Reliable and Low-Latency Communications
(mURLLC) is extremely challenging as it needs to simulta-
neously take into account the latency, reliability, and massive
access requirements. To support these requirements, the third
generation partnership project (3GPP) has introduced grant-
free non-orthogonal multiple access (GF-NOMA) with multiple
configured-grants (MCGs), where UE can choose any of these
grants as soon as the data arrives. In this paper, we develop a
novel learning framework for MCG-GF-NOMA systems. We first
design the MCG-GF-NOMA model by characterizing each CG.
We then formulate the MCG-GF-NOMA resources configuration
problem taking into account three constraints. Finally, we pro-
pose a Cooperative Multi-Agent based Double Deep Q-Network
(CMA-DDQN) algorithm to allocate the channel resources among
MCGs to maximize the number of successful transmissions under
the latency constraint. Our results show that the MCG-GF-
NOMA framework can simultaneously improve the low latency
and high reliability performances for mURLLC.

Index Terms—Multiple configured-grants, massive URLLC,
NOMA, deep reinforcement learning, resource configuration.

I. INTRODUCTION

Massive URLLC (mURLLC), which integrates Ultra-
Reliable and Low-Latency Communications (URLLC) with
massive access, is becoming a new and important service class
in the next generation (6G) for the time-sensitive traffics and
has received tremendous research attention [1]. However, ad-
dressing the need in mURLLC is fundamentally challenging as
it needs to simultaneously guarantee the latency, reliability, and
massive access requirements. To support these requirements,
several new features were standardized by the third generation
partnership project (3GPP).

1) To reduce the latency, the grant-free (GF) (a.k.a.
configured-grant (CG)) transmission is proposed in 3GPP Re-
lease 15 [2] as an alternative for traditional grant-based (GB)
(a.k.a. dynamic-grant (DG)) in Long Term Evolution (LTE).
In GF transmission, the User Equipment (UE) is allowed to
transmit data to the Base Station (BS) in an arrive-and-go
manner without scheduling request and uplink (UL) resource
grant to reduce latency.

2) To increase the reliability, the K-repetition GF transmis-
sion has been proposed by 3GPP, where a pre-defined number
of consecutive replicas of the same packet are transmitted in

the consecutive time slots [2]. More details about K-repetition
GF transmission can be found in [3].

3) To mitigate the serious transmission delay and network
congestion problems caused by collision events in contention-
based GF transmission and enhance the UL connectivity, non-
orthogonal multiple access (NOMA) has been proposed to
synergize with GF transmission [4], where GF-NOMA allows
multiple UEs to transmit over the same physical resource
by employing user-specific signature patterns (e.g, codebook,
pilot sequence, demodulation reference signal, power, etc.) [4].

4) To support different starting offsets of the resources with
respect to UL packet arrival time, 3GPP proposed multiple
CGs (MCG) transmission in Release 16 [5]. On the one hand,
there is a chance of reducing the latency in cases where the
data of an UE arrives after the starting slot offset of one CG.
On the other hand, there is a chance of mitigating the collision
events when multiple UEs are active and waiting for the CG
period to transmit the packet. MCGs also support different
resource sizes, repetitions, and periodicity, to suit different data
requirements, respectively [6].

As mentioned before, research on the MCG-GF-NOMA
networks to support mURLLC is fundamental and essential,
which is an untreated and challenging problem. To cope with
it, accurately modeling, analyzing, and optimizing the MCG-
GF-NOMA resource is fundamentally important. In this paper,
we address the following fundamental questions: 1) how to
design the MCG-GF-NOMA network; 2) how to quantify
the performances of the MCG-GF-NOMA network; 3) how
to formulate the MCG-GF-NOMA resources configuration
problem; and 4) how to balance the allocations of channel
resources among MCGs so as to provide maximum successful
transmissions in mURLLC service with bursty traffic. The
main contributions of this paper are as follows:

• We develop a novel MCG-GF-NOMA learning frame-
work for attaining the long-term successfully served UEs
under the latency constraint in mURLLC service. In this
framework, we design a MCG-GF-NOMA system, where
we characterize each CG using the parameters including
the number of contention-transmission units (CTUs), the
starting slot of each CG within a subframe, and the
number of repetitions of each CG. We then formulate the
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MCG-GF-NOMA resource configuration problem taking
into account three constraints.

• We propose a Cooperative Multi-Agent learning tech-
nique based Double Deep Q-Network (CMA-DDQN)
algorithm to balance the allocations of resources among
MCGs so as to maximize the number of successful
transmissions under the latency constraint, which breaks
down the selection of high-dimensional parameters into
multiple parallel sub-tasks with a number of agents
cooperatively being trained to produce each parameter.

• Our results show that the MCG-GF-NOMA learning
framework can improve the mURLLC performances.
First, the number of successfully served UEs in the MCG-
GF-NOMA system is up to four times more than that
in the SCG-GF-NOMA system. Second, the MCG-GF-
NOMA can also increase the CTU resource utilization
efficiency compared to the SCG-GF-NOMA system.

The remainder of this paper is structured as follows. Section
II illustrates the system model of MCG-GF-NOMA system.
Section III describes the problem analysis and formulation.
Section IV elaborates on the proposed CMA-DDQN algorithm
for solving the formulated problem. The simulation results are
illustrated in Section V. Finally, Section VI concludes the main
concept, insights and results of this paper.

II. SYSTEM MODEL

We consider a single-cell UL wireless network with a
coverage radius of R. Particularly, a BS is located at the center
of the cell, and a number of NUE static UEs are randomly
distributed around the BS in an area of the plane R2. The BS
is unaware of the status of these UEs, hence no UL channel
resource is scheduled to them in advance. To capture the
effects of the physical radio, we consider the standard power-
law path-loss model with the path-loss attenuation r−η , where
r is the Euclidean distance between the UE and the BS and
η is the path-loss attenuation factor. In addition, we consider
a Rayleigh flat-fading environment, where the channel power
gains h are exponentially distributed (i.i.d.) random variables
with unit mean.

We consider the MCG-GF-NOMA system as shown in
Fig. 1. The BS configures NCG UL CGs at each subframe.
The UE chooses the configuration with the earliest starting
point to transmit data. The smallest transmission unit that a
UE can compete for is called a contention transmission unit
(CTU). A CTU may comprise of a MA physical resource and
a MA signature [7]. Without loss of generality, we consider
that there are NCTU unique CTUs over F time-frequency RBs
configured by the BS in each CG configuration period. Each
CG is consist of different resources in the CTU domains, and
is associated with the following transmission parameters:

• Number of CTUs (NCTU)
• Starting slot within a subframe (Nstart)
• Number of repetitions (Nrepe)
• Number of slots in a subframe (Nslot)

Without loss of generality, we consider the number of slots
in each subframe Nslot is the same for each CG. Thus,

Fig. 1: Multiple CGs (MCG) configurations for K-repetition
GF transmission, T: packet transmission, D: DL processing,

F: ACK/NACK feedback, and U: UL processing.

for ease of presentation, we represent each CGi in the tth
subframe by CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i}. As illustrated in

Fig. 1, CGt
1{1, 0, 4} and CGt

2{1, 2, 3} are two CGs in the 1st
subframe.

III. PROBLEM ANALYSIS AND FORMULATION

In a given subframe t, the BS preconfigured NCG CGs for
UEs to transmit data. As soon as the URLLC data arrives,
a UE can choose the CGt

i with the earliest starting point
(i.e., the smallest N t

start,i) to transmit data. Suppose that the
UE choose the CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i}, then the UE

randomly choose a CTU from N t
CTU,i available CTUs and

start transmit at slot N t
start,i for N t

repe,i repetitions. The BS
decodes each repetition independently and the transmission
is successful when at least one repetition succeeds. After
processing all the received N t

repe,i repetitions, the BS transmits
the ACK/NACK feedback to the UE. Considering the small
packets for URLLC, we set the packet transmission time as one
TTI. The feedback time and processing time are also assumed
to be one TTI like our previous work [3].

A. MCG-GF-NOMA Reliability Analysis

During each RTT, if the GF-NOMA procedure fails, the UE
fails to be served and its packets will be dropped. The GF-
NOMA fails if: (i) a CTU collision occurs when two or more
UEs choose the same CTU (i.e., UE detection fails); or (ii)
the successive interference cancellation (SIC) decoding fails
(i.e., data decoding fails).

1) CTU dectection: At each RTT, each active UE transmits
its packets to the BS by randomly choosing a CTU from the
earliest CGi. The BS can detect the UEs that have chosen
different CTUs. However, if multiple UEs choose the same
CTU, the BS cannot differentiate these UEs and therefore
cannot decode the data. We categorize the CTUs from each
CGi into three types [8]:

• idle CTU: a CTU which has not been chosen by any UE;
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• singleton CTU : a CTU chosen by only one UE;
• collision CTU : a CTU chosen by two or more UEs.

After collision detection at the tth subframe for the CGi, the
BS observes the set of singleton CTUs N t

SC,i, the set of idle
CTUs N t

IC,i, and the set of collision CTUs N t
CC,i for each

CGi.
2) SIC decoding: After detecting UEs that have chosen the

singleton CTUs, the BS performs the SIC to decode the data
of these UEs. Based on the NOMA principles, at each iterative
stage of SIC, the BS first decodes the UE with the strongest
received power and then subtracted the successfully decoded
signal from the received signal (we assume perfect SIC the
same as [8]). It worth noting that during the decoding, the
UEs that transmit on different RBs do not interfere with each
other due to the orthogonality, and only UEs that transmit on
the same RB cause interference. Thus, in order to characterize
the UEs transmitting with CGi on the f th RB, we represent
the N t

f,SU,i as the set of UEs that have chosen the singleton

CTUs for the CGi on the f th RB, the N t
f,SU,i =

∣∣∣N t
f,SU,i

∣∣∣ as
the number of UEs that have chosen the singleton CTUs for
the CGi on the f th RB (|·| denotes the number of elements
in any vector ·), and N t

f,CU,i as the number of UEs that have
chosen the collision CTUs using the CGi on the f th RB. We
define the received power of the sth UE in the nth repetition
of the CGi on the f th RB as

P t
s,f,i = Pht

s,f,irs
−η, (1)

where P is the transmission power, r is the Euclidean distance
between the UE and the BS, η is the path-loss attenuation
factor, h is the Rayleigh fading channel power gain from the
UE to the BS.

Suppose that the received power obeys P t
1,f,i ≥ P t

2,f,i ≥
... ≥ P t

Nt
f,SU,i

, the decoding order should be from the 1st UE to
the Nf,SU,ith UE. In each iterative stage of SIC decoding, the
CTU with the strongest received power is decoded by treating
the received powers of other CTUs over the same RB as the
interference. Thus, at the tth subframe, in the nth repetition of
the CGi on the f th RB, the signal-to-interference-plus-noise
ratio (SINR) of the sth stage of SIC decoding of the sth UE
is derived as

SINRt
s,f,i =

P t
s,f,i

Nt
f,SU,i∑

m=s+1
P t
m,f,i +

Nt
f,CU,i∑
n′=1

P t
n′,f,i + σ2

, (2)

where σ2 is the noise power.
Each iterative stage of SIC decoding is successful when

the SINR in that stage is larger than the SINR threshold,
i.e., SINRt

s,f,i ≥ γth. The SIC procedure stops when one
iterative stage of the SIC fails or when there are no more
signals to decode. The SIC decoding procedure for each CGi

is described in the following.
• Step 1: Start the nth repetition with the initial n = 1,
N t

f,SU,i, N
t
f,SU,i and N t

f,CU,i;
• Step 2: Decode the sth UE with the initial s = 1 using

(2);

• Step 3: If the sth UE is successfully decoded, put the
decoded UE in setN t

f,suc,i(n) and go to Step 4, otherwise
go to Step 5;

• Step 4: If s ≤ N t
f,SU,i, do s = s + 1, go to Step 2,

otherwise go to Step 5;
• Step 5: SIC for the nth repetition stops;
• Step 6: If n ≤ Nrepe,i, do n = n + 1, go to Step 1,

otherwise go to the end.
Finally, the set of successfully served UEs using the CGi on
the f th RB at the tth subframe is derived as

N t
f,suc,i =

Nrepe,i⋃
n=1

(N t
f,suc,i(n)), (3)

the set of the successfully served UEs using the CGi at the
tth subframe is obtained as

N t
suc,i =

F t⋃
f=1

(N t
f,suc,i), (4)

and the set of the successfully served UEs at the tth subframe
is obtained as

N t
suc =

NCG⋃
i=1

(N t
suc,i). (5)

Then, N t
suc = |N t

suc| is the number of successfully served
UEs.

B. Problem Formulation

In this work, we aim to tackle the problem of optimizing
the MCG-GF-NOMA configuration defined by parameters
CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i} for each subframe t. At each

subframe t, the BS aims at maximizing a long-term objective
Rt related to the average number of UEs that have successfully
send data with respect to the stochastic policy π that maps the
current observation history Ot to the probabilities of selecting
each possible parameters in At. This optimization problem
(P1) can be formulated as:

(P1 :) max
π(At|Ot)

∞∑
k=t

γk−tEπ[N
k
suc] (6)

s.t.

NCG∑
i=1

N t
CTU,i = N t

CTU,SCG, (7)

N t
start,i +N t

repe,i + 3 = Nslot,∀i ∈ [1, NCG], (8)

N t
start,i < N t

start,i+1 < Nslot − 3, ∀i ∈ [1, NCG], (9)

where γ ∈ [0, 1) is the discount factor for the performance
accrued in the future subframes, and γ = 0 means that the
agent just concerns the immediate reward. The CTU resource
constraint in (7) is set to compare with the SCG-GF-NOMA
scheme, where N t

CTU,SCG is the configured CTU numbers
for the SCG-GF-NOMA. That is to say, the MCG-GF-NOMA
configuration uses the same frequency resources but overlap in
time and have different starting points so they do not require
the additional resources compared to the conventional SCG-
GF-NOMA scheme. The latency constraint in (8) is set to
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satisfy the latency requirement. That is to say, the transmission
must be completed in one subframe (1 ms). Otherwise, the
packet will be dropped. The starting slot constraint in (9) is
set to support different UL packet arrival times.

IV. PROPOSED OPTIMIZATION SOLUTION

In this section, we propose a Cooperative Multi-Agent
Double Deep Q-Network (CMA-DDQN) approach to tackle
the problem (P1), which breaks down the selection in high-
dimensional action space into multiple parallel sub-tasks.
The state space, action space, reward function design of the
proposed CMA-DDQN based algorithm are specified.

A. Reinforcement Learning Framework

We define S ∈ S , A ∈ A, and R ∈ R as any state, action,
and reward from their corresponding sets, respectively. At the
beginning of each subframe t, the RL-agent first observes the
current state St corresponding to a set of previous observations
U t′ for all prior subframes (t′ = 1, ..., t− 1) in order to select
an specific action At ∈ A(St). After carrying out the action
At, the RL-agent transits to a new observed state St+1 and
obtains a corresponding reward Rt+1 as the feedback from the
environment, which is designed based on the new observed
state St+1 and guides the agent to achieve the optimization
goal. After enough iterations, the BS can learn the optimal
policy that maximizes the long-term rewards.

The detailed descriptions of the state, action and reward of
problem (P1) are introduced as follows.

1) States in the Q-learning Model: In terms of the state
space of the proposed CMA-DDQN model, it contains five
parts: the number of the collision CTUs N t′

CC, the number of
the idle CTUs N t′

IC, the number of the singleton CTUs N t′

SC,
the number of UEs that have been successfully detected and
decoded under the latency constraint N t′

suc, and the number of
UEs that have been successfully detected but not successfully
decoded N t′

fdec.
2) Actions in the Q-learning Model: Practically, the MCG-

GF-NOMA system is always configured with multiple CGs
to serve UEs with random traffic. In this section, we
study the problem (P1) of optimizing the resource config-
uration for multiple CGs each with parameters CGt =
{N t

CTU,i, N
t
start,i, N

t
repe,i}

NCG
i=1 , where N t

CTU,i is chosen from
the set of the number of the CTUs NCTU, N t

start,i is chosen
from the set of the value of the repetitions Nstart, and N t

repe,i

is chosen from the set of the value of the repetitions Nrepe.
This joint optimization by configuring each parameter in each
CG can improve the overall data transmission performance.
However, considering multiple CGs results in the increment
of observations space, which exponentially increases the size
of state space. For example, the number of available actions
corresponds to the possible combinations of configurations

|A| =
NCG∏
i=1

(|NCTU,i| × |Nstart,i| × |Nrepe,i|). To train Q-

agent with this expansion, the requirements of time and
computational resources greatly increase. In view of this, we

revise the configured parameters by considering the constraints
from (7) to (9).

First, considering the CTU resource constraint
NCG∑
i=1

N t
CTU,i = N t

CTU,SCG as presented in (7), we could

obtain the action set At
CTU, which consists of the actions

At
CTU ∈ At

CTU with At
CTU = {N t

CTU,1, ..., N
t
CTU,NCG

}.
In addition, considering the starting slot constraint
N t

start,i < N t
start,i+1 < Nslot − 3,∀i ∈ [1, NCG] in (9), we

could obtain the action set At
start, which consists of the actions

At
start ∈ At

start with At
start = {N t

start,1, ..., N
t
start,NCG

}.
According to the latency constraint in (8), we have
N t

repe,i = Nslot − 3 − N t
start,i,∀i,. Therefore, two

actions set At
CTU and At

start is enough to characterize
the multiple CG configurations defined by parameters
CGt

i{N t
CTU,i, N

t
start,i, N

t
repe,i}.

3) Reward Function in the Q-Learning Model: As the op-
timization goal is to maximize the number of the successfully
served UEs under the latency constraint, we define the reward
Rt+1 as

Rt+1 = N t
suc, (10)

where N t
suc is the number of UEs that have been successfully

detected and decoded under the latency constraint.

B. Cooperative Multi-Agent DDQN Approach

A large number of actions and states will inevitably re-
sult in massive computation latency and severely affect the
performance of the RL algorithm. To address this issue,
deep reinforcement learning (DRL) is introduced, where DRL
can directly control the behavior of each agent and solve
complex decision-making problems, through interaction with
the environment [9]. In addition, Multi-Agent RL (MA-RL)
is introduced with centralized or decentralized rewards. To
convert this selfishness into cooperative behavior, the same
reward may be assigned to all agents [10]. In this section, we
apply the Cooperative Multi-Agent technique based DDQN
(CMA-DDQN) to prevent the selfish behavior of agents.

The CMA-DDQN algorithm utilizes the experience replay
technique to enhance the convergence performance of RL.
When updating the CMA-DDQN algorithm, mini-batch sam-
ples are selected randomly from the experience memory as
the input of the neural network, which breaks down the
correlation among the training samples. In addition, through
averaging the selected samples, the distribution of training
samples can be smoothed, which avoids the training diver-
gence. We define At

x as the action selected by the xth
agent. Each xth agent is responsible for updating the value
Q(St, At

x) of action At
x in state St, where the state variable

St = [At−1, U t−1, At−2, U t−2, ..., At−Mo , U t−Mo ] only in-
cludes information about the last Mo RTTs. All agents receive
the same reward Rt+1 at the end of each subframe.

The DDQN agents are trained in parallel. Each agent x
parameterizes the action-state value function Q(St, At

x) by
using a function Q(St, At

x,θx), where θx represents the
weights matrix of a multiple layers DNN with fully-connected
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layers. The variables in the state St is fed into the DNN as
the input; the Rectifier Linear Units (ReLUs) are adopted as
intermediate hidden layers; while the output layer is consisted
of linear units, which are in one-to-one correspondence with
all available actions in A. The online update of weights matrix
θx is carried out along each training episode by using DDQN
[11]. Accordingly, learning takes place over multiple training
episodes, where each episode consists of several RTT periods.
In each RTT, the parameters θx of the Q-function approxima-
tor Q(St, At

x,θx) are updated using RMSProp optimizer [12]
as

θt+1
x = θt

x − λRMS∇LDDQN
x (θt

x) (11)

where λRMS ∈ (0, 1] is RMSProp learning rate, ∇LDDQN
x (θt

x)
is the gradient of the loss function LDDQN

x (θt
x) used to

train the state-action value function. The gradient of the loss
function is defined as

∇LDDQN
x (θt

x)

= ESj ,Aj
x,Rj+1,Sj+1 [(R

j+1 + γmax
a∈A

Q(Sj+1, Aj
x, θ̄

t
x) (12)

−Q(Sj , Aj
x,θ

t
x))∇θx

Q(Sj , Aj
x,θ

t
x)],

where the expectation is taken over the minibatch,
which are randomly selected from previous samples
(Sj , Aj

x, S
j+1, Rj+1) for j ∈ {t −Mr, ..., t} with Mr being

the replay memory size [9]. When t − Mr is negative, it
represents to include samples from the previous episode.
Furthermore, θ̄t is the target Q-network in DDQN that is used
to estimate the future value of the Q-function in the update
rule, and θ̄t is periodically copied from the current value θt

and kept unchanged for several episodes.
Through calculating the expectation of the selected previous

samples in minibatch and updating the θt by (11), the DDQN
value function Q(s, a,θ) can be obtained. The detailed CMA-
DDQN algorithm is presented in Algorithm 1. We consider
ϵ-greedy approach to balance exploitation and exploration in
the actor of the Q-Agent, where ϵ is a positive real number and
ϵ < 1. In each subframe t, the Q-agent randomly generates a
probability P t

ϵ to compare with ϵ. Then, with the probability ϵ,
the algorithm randomly chooses an action from the remaining
feasible actions to improve the estimate of the non-greedy
action’s value. With the probability 1−ϵ, the algorithm exploits
the current knowledge of the Q-value table to choose the action
that maximizes the expected reward.

V. SIMULATION RESULTS

In this section, we examine the effectiveness of our proposed
MCG-GF-NOMA system with CMA-DDQN algorithm via
simulation. We adopt the standard network parameters listed
in Table I following [13], and hyperparameters for the DQN
learning algorithm are listed in Table II. All testing perfor-
mance results are obtained by averaging over 1000 episodes.
The BS is located at the center of a circular area with a
10 km radius, and the UEs are randomly located within the
cell. The DQN is set with two hidden layers, each with 128
ReLU units. In the following, we present our simulation results

Algorithm 1 CMA-DQN Based MCG-GF-NOMA Uplink
Resource Configuration

Input: : Action space A and Operation Iteration I.
1 Algorithm hyperparameters: learning rate λRMS ∈ (0, 1],

discount rate γ ∈ [0, 1), ϵ-greedy rate ϵ ∈ (0, 1], target
network update frequency Y ;

2 Initialization of replay memory M to capacity D, the state-
action value function Q(S,A,θ), the parameters of primary
Q-network θ, and the target Q-network θ̄;

3 for Iteration ← 1 to I do
4 Initialization of S1 by executing a random action A0

x;
5 for t ← 1 to T do
6 if pϵ < ϵ Then select a random action At

x from Ax

7 else select At
x = argmax

a∈Ax

Q(St, At
x,θx).

8 The BS broadcasts At
x and backlogged UEs attempt

communication in the tth subframe;
9 The BS observes state St+1, and calculate the related

reward Rt+1;
10 Store transition (St, At

x, R
t+1, St+1) in replay mem-

ory Mx;
11 Sample random minibatch of transitions

(St, At
x, R

t+1, St+1) from replay memory Mx;
12 Perform a gradient descent step and update parameters

θx for Q(St, At
x,θx) using (12);

13 Update the parameter θ̄ = θ of the target Q-network
every Y steps.

14 end
15 end

TABLE I: Simulation Parameters

Parameters Value Parameters Value
Number of
symbols in a slot
Nsym

7 Number of static
UEs NUE

10000(low)/
50000(high)

Path-loss
exponent η

4 Noise power σ2 -132 dBm

Transmission
power P

23 dBm The received
SINR threshold
γth

-10 dB

Duration of traffic
T

1000 ms Number of
CTUs for the
SCG-GF-NOMA
NCTU,SCG

64

The set of the
number of CTUs
NCTU

{8, 16, 24, 32,
40, 48, 56}

The set of the
starting slot
Nstart

{0, 1, 2, 3, 4}

Number of time-
frequency RBs F

4 Number of slots in
a subframe Nslot

8

TABLE II: Learning Hyperparameters

Hyperparameters Value Hyperparameters Value
Learning rate
λRMS

0.0001 Minimum explo-
ration rate ϵ

0.1

Discount rate γ 0.5 Minibatch size 32
Replay Memory 10000 Target Q-network

update frequency
1000
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Fig. 2: (a) Average number of served UEs (b) Average number of idle CTUs (c) Average number of collision CTUs

of multiple CG configurations in MCG-GF-NOMA system.
Throughout epoch, each UE has a bursty traffic profile (i.e.,
the time limited Beta profile defined in [14, Section 6.1.1] with
parameters (3, 4)) that has a peak around the 400th subframe.

Fig. 2 (a) compares the number of successfully served
UEs in MCG-GF-NOMA and SCG-GF-NOMA systems with
both high traffic and low traffic scenarios, respectively. Unless
otherwise stated, we consider NCG = 5 for the MCG-
GF-NOMA system. It is obvious that the MCG-GF-NOMA
can increase the successfully served UEs compared with
the SCG-GF-NOMA, especially for the high traffic scenario
(i.e., massive access simultaneously). Particularly, at the peak
traffic, the number of successfully served UEs in the MCG-
GF-NOMA system is circa four times more than that in the
SCG-GF-NOMA system. However, in low traffic scenario, this
advantage of MCG is not obvious. This indicates that the MCG
solution can ensure the massive access performance of GF-
NOMA in a massive URLLC scenario.

Fig. 2 (b) and (c) compare the average number of idle
and collision CTUs in MCG-GF-NOMA and SCG-GF-NOMA
systems with both high traffic and low traffic scenarios,
respectively. We observe that the multiple CGs solution can
obtain better reliability performance of MCG-GF-NOMA only
by using smaller CTU resources than the SCG-GF-NOMA,
especially for the high traffic scenario. This is due to the fact
that the MCG solution mitigates the heavy traffic backlog in
the SCG-GF-NOMA system, where multiple UEs are active
after the starting slot offset of one CG will wait for the next
CG period to transmit the packet. Consequently, the collision
events are mitigated in the MCG-GF-NOMA system.

VI. CONCLUSION

In this paper, we proposed a novel MCG-GF-NOMA learn-
ing framework for attaining the long-term successfully served
UEs under the latency constraint in mURLLC service, where
bursty traffic of UEs was considered. We first designed and
modeled the MCG-GF-NOMA system, where we characterize
each CG using the parameters including the number of CTUs,
the starting slot of each CG within a subframe, and the
number of repetitions of each CG. We then formulated the
MCG-GF-NOMA resources configuration problem taking into

account three constraints. Finally, we proposed a CMA-DDQN
algorithm to balance the allocations of resources among MCGs
so as to maximize the number of successful transmissions
under the latency constraint, which breaks down the selection
of high-dimensional parameters into multiple parallel sub-
tasks with a number of DDQN agents cooperatively being
trained to produce each parameter. Our results have shown
that the MCG-GF-NOMA framework can improve the real-
ibity performances for mURLLC. In detail, the number of
successfully served UEs in the MCG-GF-NOMA system is
circa four times more than that in the SCG-GF-NOMA system.
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