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Abstract—The objective of this study is to analyze and compare 

different neural network (NN) architectures as multi-class 

classifiers to estimate the direction of arrival (DOA) using a 

uniform linear array (ULA). The study specifically investigates the 

prediction skills of three NNs: feed forward NN (FFNN), 

convolutional NN (CNN), and residual NN (ResNet) when 

estimating incoming signal DOAs in a realistic ULA of (M = 16) 

elements under noisy conditions. The NNs are trained on a 

correlation matrix generated by a ULA to estimate the DOAs. The 

results of the simulations indicate that ResNet performs better 

than FFNN and CNN in accurately estimating incoming signals. 

Keywords— neural network (NN), direction of arrival (DOA), 

uniform linear array (ULA), feed forward NN (FFNN), 

convolutional NN (CNN), and residual NN (ResNet). 

I. INTRODUCTION  

The direction of arrival (DOA) or angle of arrival (AOA) 
estimation is essential in many fields, such as wireless 
communication and radar systems, to accurately identify the 
origin of a signal and allow source localization and 
beamforming. As a result, accurate DOA estimation is critical 
for these systems to operate properly, improve communication 
system coverage, and security. Several DOA estimation 
techniques have been developed, including Capon and Bartlett 
methods [1], as well as subspace techniques such as MUSIC and 
ESPRIT [2], [3]. These techniques, however, may not be 
appropriate for certain applications, such as those with high 
levels of interference and noise, resulting in long response times, 
significant computing complexity when receiving multiple 
signals, and mutual coupling between the elements.  

Deep learning (DL) has acquired significant importance in 
DOA estimation in recent years due to the need for precise 
results in a wide range of applications, where DL algorithms 
have shown promise in addressing complicated issues in DOA 
estimation by leveraging the capacity of  DL networks to 
understand complex correlations between incoming signals and 
DOAs. On the other hand, their ability to be trained end-to-end 
and handle non-linear data resulted in significant improvements 
in effectiveness and precision [4]. DL-based DOA has received 
considerable attention in recent years and has emerged as a 

popular research area. Numerous studies have concentrated on 
investigating various NN models to improve DOA applications 
such as [5], [6], and [7], where convolutional NN (CNN) 
provided high accuracy in DOA estimation in noisy 
environments. Furthermore, [8] researched a CNN-based DOA 
classification technique that reduced complexity while 
considering mutual coupling, while [9], CNN-based sparse array 
models achieved precise multi-source DOA modeling. CNN has 
been also utilized in [10] to estimate DOA based on data that has 
previously been processed using the MUSIC method. 
Combining feedforward NN (FFNN) with an autoencoder in 
[11], resulted in a solution for DOA classification to enhance 
generalization while considering array constraints. residual NN 
(ResNet) on the other hand,  outperformed conventional 
approaches in [12] in predicting DOA from diverse directions, 
while in [13], it addressed mutual coupling by integrating with 
a generative adversarial network (GAN). 

In this paper, we address the topic of estimating DOAs using 
three DL models, respectively FFNN, CNN, and ResNet, all of 
which were developed with PyTorch to estimate the DOA of a 
received signal as a multi-class classification task, with the 
number of classes determined based on the selected resolution, 
which will be explained later in this paper. The model is trained 
using a dataset that contains preprocessed AOA values and their 
corresponding received signals defined by a correlation matrix. 

The content of this paper is organized as follows:  Section  II 
introduces the problem formulation, while Section III describes 
the NNs structures. Section IV contains the simulation results,  
and finally, the conclusion is presented in section V. 

II. PROBLEM FORMULATION 

A Uniform Linear Array (ULA) comprises M elements 
uniformly spaced apart by a distance of (d = λ/2), where λ 
represents the wavelength of the signals. In Fig 1, N 

monochromatic signals (�����, � = 1, … , �� are transmitted by 

sources located at angles ������, � = 1, … , �� . The M x M 

correlation matrix �� , which represents the input of the NN, 
can be formulated using the following equation: 
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                         �� = � �� �� � ��                                   (1)  
where 

                 � =  ������ ����� … ������                                (2) 
and  

     ���� =  ������ !"�#$��% … ����� !"&#$��%'(
             (3)   

 
are respectively, the total steering matrix M * N generated by 
the steering vectors relating to the AoAs of all the incoming 
signals, and the array steering vector corresponding to the angle 

�. !is the wavenumber in free space �! = 2*/λ�, superscript 
T denotes the transpose operation, and H indicates the 
Hermitian transpose operation. 
Assume there is no correlation between any of the incoming 
signals and any of the noise signals.  The noise and signal 

correlation matrices -��  and -��  respectively can be defined 
as follows:  

                    -�� = .� /�&∗&�                                                  (4) 

 
                    -�� =  .� /��∗��                                                    (5) 

 

where .�  and .�  are the noise and signal mean power 

respectively, while  /�&∗&� and /��∗�� are the M * M and N * N 

identity matrices respectively. 

As a result, the M * M correlation matrix ��  , which 
represents the input of the NN, can be formulated using the 
following equation: 
 

                   �� = � .� /��∗�� �� � .� /�&∗&�                         (6) 

 

 
Fig. 1. The structure of the uniform linear array. 
 
To model the correlation matrix, we used data from N incoming 
signals, each with a distinct AOA and a minimum difference of 
(Δ θ > 6). We separated the correlation matrix into real and 
imaginary parts before feeding it into the NN given that it's a 
complex combination, and NNs are supposed to operate with 
real-valued inputs. Therefore, the resulting input size is 
2*M*M. 

III. NEURAL NETWORKS OVERVIEW 

The effectiveness of three NN architectures of four layers used 
as multi-class classifiers for predicting the AOAs of incoming 
signals is investigated in this study. 

a) Feed-forward NN (FFNN)  

A traditional NN, also known as a fully connected NN  in which 
information flows only in one direction, from input to output. 
Although FFNNs are widely used in many applications, they 
are potentially vulnerable to overfitting and poor performance. 
Each layer in our FFNN is followed by a dropout layer with a 
rate of 0.5 and rectified linear unit activation function (ReLU). 
Given the dimension of the input data is 2*M*M, where M = 
16, the input layer utilizes 512 neurons. The sizes of the hidden 
layers are 1024 and 2048, respectively. Finally, the number of 
neurons in the output layer corresponds to the number of 
classes. We set the batch size and learning rate to 100 and 
0.0001, respectively, to improve performance and handle the 
small number of parameters. 

b) Convolutional l NN (CNN)  

A type of NN that utilizes convolutional layers to classify 
complex patterns in images, making it particularly effective for 
classification tasks and object detection. Our CNN architecture 
consisted of three 2D convolutional layers and one fully 
connected layer at the output. The ReLU activation function 
was used in the hidden layers, while max pooling layers were 
used to reduce the spatial size of the feature maps. The output 
layer used a SoftMax activation function to classify the input 
images. The input layer of the CNN comprises 512 neurons, 
while the hidden layers contain 256 and 128 neurons, 
respectively. The number of neurons in the output layer is equal 
to the number of classes. During the training of the CNN, we 
used a batch size of 1024 and a learning rate of 0.001. 

c) Residual NN (ResNet) 

One of the most efficient NN in this field since it learns the 
mapping through residual connections rather than learning it 
directly from input to output. Furthermore, by utilizing the skip 
connection, it can avoid overfitting. Our ResNet is comprised 
of an input convolutional layer, batch normalization, ReLU 
activation, max pooling, two residual layers, and a fully 
connected layer that generates the final output. We adopt a 
similar architecture to the CNN, where we start with 512 
neurons at the input, then 256 and 128 neurons utilized by the 
hidden layers, and finally the number of neurons in the output 
layer is equal to the number of classes. During ResNet training, 
we followed the same batch size and learning rate of CNN. 

IV. SIMULATION RESULTS 

Our research concerns the use of a ULA with M = 16 elements 
to receive incoming signals from a number of sources (N = 3) 
in a noisy environment with SNR = 0 dB, implying that the 
power of the noise is equal to the power of the signal. The 
AOAs of the signals are recorded with a minimum divergence 
of (Δ θ > 6°). We use MATLAB to generate 1.1 million records, 
which we then use to generate a correlation matrix, which 
represents the input of the NN according to equation (6). 80% 
of the records are used to train the NN, with the remaining 20% 
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used for validation. We evaluate the performance of NNs in this 
work at a resolution of 0.25, which means that the data being 
evaluated is partitioned into 0.25-degree, with a total of 481 
classes defined within a range of arrival angles of [30°-150°]. 
Therefore, the predicted angles are in the form of [30°, 30.25°, 
30.50°,...., 149.75°, 150°]. The simulation results are obtained 
using two performance metrics: the mean absolute error (MAE) 
metric, which calculates the absolute differences between 
predicted and actual values using the following formula:  
 

MAE =  �
�

�
1 2 3 45678 − 57841

8:�
�

7:�
                                      (7) 

where n is the number of training and validation samples, and 
m is the number of signals. The predicted angles are represented 

by 5678, while the actual angles are represented by 578 . 

On the other hand, the second metric is the F1 score, which is a 
common measure to assess classification model performance. 
It is defined as the harmonic mean of precision and recall, with 
values ranging from 0 to 1 and the highest score indicating the 
best performance. In multi-class classification, the F1 score is 
calculated as the weighted average of the F1 scores for each 
class.  
As mentioned earlier, our study aims to compare the accuracy 
of three classifiers, FFNN, CNN, and ResNet by testing their 
performance at a resolution of 0.25. To evaluate the 
performance, we conduct training and validation for each of the 
three NNs classifiers, and the results are based on the two 
mentioned metrics after 100 epochs. The outcomes of our 
investigation are presented in Table I, along with Figs 2, 3, and 
4. 

 
Fig. 2. Training MAE comparison of the three investigated architectures. 
 

Figs 2, and 3 provide a visual representation of how the 
classifiers performed concerning the MAE metric during the 
training and validation.  ResNet outperformed the other two 
classifiers based on these representations and what is shown in 
Table I. The MAE for ResNet was the lowest with 0.063 during 
training and 0.069 during validation. The CNN classifier 
performed second best with a training MAE of 0.089 and a 
validation MAE of 0.094. FFNN exhibited the highest MAE 
values, with 0.14 during training and 0.15 during validation. 

The MAE results indicate that ResNet and CNN were better 
able to minimize the difference between the predicted and 
actual values, indicating higher accuracy, while FFNN 
performed the worst. These findings suggest that ResNet and 
CNN may be more suitable for applications where high 
accuracy is critical, while FFNN may be used in applications 
where lower accuracy is acceptable. 
The F1 score results in Fig 4, and Table I,  also support the 
finding that ResNet outperformed the other two classifiers in 
terms of accuracy. The F1 score for ResNet was the highest 
with 0.989, followed by CNN with 0.985, and FFNN with 
0.976. The higher F1 score for ResNet and CNN indicates that 
they achieved better accuracy in terms of precision and recall, 
which is desirable in most applications. 

 
Fig. 3. Validation MAE comparison of the three investigated architectures. 
 

TABLE I.  
Performance comparison of the three NN architectures after 100 epochs with 

0.25 resolution. 

NN No of neurons per layer 
MAE 

Training/validation 
F1 

FFNN 512/21024/2048/481 0.14/0.15 0.976 

CNN 512/256/128/481 0.089/0.094 0.985 

ResNet 512/256/128/481 0.063/0.069 0.989 

 
Fig. 4 .F1 score of three investigated architectures at 0.25 resolution. 
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V. CONCLUSION 

In terms of accuracy, this study compared the performance of 
various NN architectures for estimating the DOA of incoming 
signals in a realistic ULA in noisy environment. The 
investigation compared the performance of FFNN, CNN, and 
ResNet, as multi-class classifiers based on their prediction 
skills. The study found that ResNet outperformed the other two 
classifiers in terms of predictive performance, as demonstrated 
by lower MAE values and a higher F1 score. Therefore, when 
taking into account prediction accuracy, ResNet emerges as the 
most efficient multi-class classifier for our specific task. 
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