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Abstract—Millimeter-wave (mm-wave) and terahertz (THz)
communication systems can satisfy the high data rate require-
ments in 5G, 6G, and beyond networks, but still rely on the use of
extensive antenna arrays to guarantee sufficient received signal
strength. Many antennas incur high beam training overhead;
thus, the narrow beams require adjustment to support highly
mobile applications. Deep learning (DL) vision-aided solutions
can potentially forecast the optimal beams, leveraging raw RGB
images captured at the base station. Image filtering techniques
have been widely used in computer vision (CV) to modify and
enhance the quality of an image, based on specific rules. This
work applies different filters to RGB images for accurate mm-
wave/THz beam prediction and feature extraction based on pre-
trained convolutional neural networks (CNNs). The assessment
of the developed framework is conducted on an actual dataset
captured by an unmanned aerial vehicle (UAV) operating in
the millimeter-wave (mm-wave) frequency range. The dataset
comprises RGB images taken at the base station. Ensemble filter-
ing techniques are also studied, enhancing the beam prediction
accuracy of two state-of-the-art (SOTA) DL models.

Index Terms—Millimeter wave, terahertz, deep learning, cam-
era images, image filtering, beam prediction.

I. INTRODUCTION

Vehicle-to-everything (V2X) communication has garnered
significant research attention for both existing 5G and future
6G networks, catering to the needs of drones, unmanned
aerial vehicles (UAVs), and autonomous vehicles [1]. To fulfill
the high data rate demands of forthcoming aerial networks,
unmanned aerial vehicles (UAVs) must be equipped with
millimeter-wave (mm-Wave)/ terahertz (THz) transceivers and
employ extensive antenna arrays. Also, by using narrow beams
at both the transmitters and receivers, they ensure an adequate
receive signal-to-noise ratio (SNR) [2].

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 957406
(TERMINET).

Beam-forming has been recognized as a crucial technique
for mitigating signal attenuation in high-frequency bands,
particularly in mm-Wave and THz communication systems [3].
The selection of optimal beams for large antenna arrays is of-
ten accompanied by a significant training overhead, motivating
alternative research efforts to realize the rapid configuration of
mm-Wave links.

Conventional methods for beam prediction involve the use
of adaptive beam codebooks and the direct estimation of the
beam-forming matrix from the channel matrix [4]. Although
the beam training overhead is reduced, these approaches can
only achieve a reduction in training overhead by approximately
one order of magnitude.

Machine learning (ML) holds immense potential in driving
significant advancements in 5G/B5G technology, offering au-
tomated methods for learning from spectrum data and execut-
ing intricate tasks such as spectrum sensing, classification, and
waveform design. Deep learning (DL) rises as an emerging ML
sub-field technology for 5G/ beyond-5G (B5G) technology, as
it possesses an extraordinary capability to uncover intricate
interconnections that are concealed within vast amounts of
data. [5].

Authors in [6], [7] propose a novel ML approach, which
utilizes supplementary sensory data, including visual and
positional information, to achieve fast and precise beam pre-
diction in mm-Wave/THz communication. For the vision-aided
solution, various raw RGB images, from a real-world multi-
modal UAV communication scenario, are utilized to address
the beam prediction task. By leveraging the user’s location
within the visual scene, the problem can be addressed as a
classification procedure. This approach involves assigning a
beam index from a predefined codebook based on the user’s
position in the visual scene, with the operation frequency at
60 GHz.

In this study, various image filtering techniques are utilized
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to improve the accuracy of beam prediction in two state-of-
the-art (SOTA) deep learning (DL) models, namely Resnet-
18 and VGG-16. As the given dataset is highly imbalanced,
a resampling technique has been utilized to downsample the
quantity of data from the majority classes to match the
minority population, while classes with very few instances
were excluded. Also, while authors in [6] downsample the
beam powers of the 64 beams, to 32 elements to select as the
optimal beam index, in this work all 64 beams are considered
for the power vector that formulates the beam index. As a
result, a corpus of 23 beam indexes with 3420 performances
in total has been created. The main contributions of this work
are summarized as follows:

• A database consisting of 23 beam indexes is generated
using the power vector, which includes 64 beam powers.

• A comparative study of various image filters, is conducted
to examine possible enhancement in SOTA DL models.

• An ensemble of image filters is applied to enhance
accuracy results, with respect to the complexity.

To the best of the authors’ knowledge, it is the first time
that various image filters are applied and studied for a beam
prediction classification problem in 6G networks, utilizing
SOTA DL frameworks.

II. DATA PROCESSING

To enhance the performance of the SOTA DL architectures,
various image pre-processing and filtering are employed to
enhance the quality of the raw RGB images and map an image
to a beam index, to perform this classification task.

A. Data Pre-processing

The initial dataset consists of 23 classes (i.e. beam indexes)
and 3420 performances. To reduce the computational cost,
the images are resized from a 960 × 540 format to a 64
× 64 format, while ensuring the preservation of essential
information. Additionally, to enhance the efficiency of the
computational process, the pixel values of the resized images
are normalized.

B. Image Filtering

Image filtering is a technique employed to enhance the
quality of an image by either removing specific features or
accentuating other features present in the image [8]. In this
work, a comparative study of image filtering techniques is
conducted to evaluate the performance of Resnet-18 and VGG-
16 for the classification and feature extraction task.

1) Gaussian Filtering: The Gaussian filtering method is
based on peak detection and aims to treat peaks as impulses
within the image. This filter effectively modifies both the
spectral coefficient of interest and all the amplitude spectrum
coefficients within its window. It acts as a linear low-pass filter,
emphasizing pixels close to the edges, resulting in a reduction
of edge blurring. The level of smoothing can be adjusted as
desired and is computationally efficient [9].

2) Adaptive median filter: The median filter is a type
of spatial filter that operates in a non-linear manner. By
employing a designated window size, the median filter re-
places the value of each pixel with the median value of
the neighboring pixels in its vicinity. This filter effectively
eliminates impulse noise from an image without causing any
shifts in boundaries or reducing the overall contrast. However,
the median filter impacts all pixels in the image, irrespective
of their noise content. To address this limitation, adaptive
median filters dynamically adjust the window size during the
filtering process. The adaptive median filter operates on each
pixel individually. It computes the median value using the
standard median filtering process and then compares it with a
predetermined threshold. Based on this comparison, the filter
determines whether to replace the pixel, keep it unchanged, or
increase the neighborhood size and recalculate. This method
selectively applies the filter solely to image pixels that possess
noise content, ensuring that the pixels unaffected by noise are
preserved without any alterations [9].

3) Sharpening filter: Sharpening filters are employed to
emphasize intricate details within an image, particularly the
edges. Various spatial filters, such as the Laplacian, Laplacian
of Gaussian, high-boost, and unsharp masking filters, along
with their advanced variations, utilize linear convolution ker-
nels to enhance image sharpness. Convolution is employed to
alter the spatial properties of an image, manipulating the visual
characteristics of the image through mathematical operations,
leading to various outcomes such as smoothing, sharpening,
enhancement, or emphasizing edges [10].

4) Box filter: The Box Filter is a type of low-pass filter
used to smooth an image by uniformly averaging all samples
within a square region of the image, removing details, noise,
and edges from the image. The Box Filter operates by moving
a window of a fixed (often square) size across the image.
At each position, the filter determines the mean value of the
pixel luminance or intensity within the window and replaces
the central pixel with this computed average value. The
dimensions of the window determine the level of smoothing
or blurring that is applied to the image [11].

5) Non-local means (NLM) filter: The denoising of a pixel
using the NLM filter involves calculating a weighted mean by
considering all the pixels in the noisy image. These weights
are determined based on the similarity of gray-level intensities
between the local neighborhoods of the pixel being examined
and the surrounding pixels that contribute to the mean. Essen-
tially, the weights are directly proportional to the similarity
between the two neighborhoods. When the neighborhoods are
more alike, the corresponding weight is larger, resulting in a
greater impact on the final denoised value [12].

6) Ensemble of filters: In this work, an ensemble filtering
approach, combining box and sharpening filters, is proposed.
Ensemble filtering is a strategy that involves merging various
filters to amplify an image’s quality by capitalizing on the
distinct properties of each filter. Each filter contributes its
unique features and capabilities to ultimately improve the
output image. Ensemble models can train multiple models on
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varied subsets of the data. This approach helps to enhance
generalization and reduce the risk of overfitting. This diversity
in training helps to improve the generalization capability of the
ensemble, leading to more robust and reliable predictions.

By utilizing an ensemble of the box and sharpening filters,
a more comprehensive image enhancement is achieved. By
initially applying a box filter to effectively reduce noise and
smooth the image, the subsequent application of a sharpening
filter enhances edges and details, improving the prediction
accuracy of the SOTA DL models.

III. PERFORMANCE EVALUATION

This section presents the different experiments for the
classification task of the beam indexes based on raw and
filtered RGB images. First, the performance results of the
SOTA pre-trained models are provided. Then, an analysis of
the results for the proposed DL models, which are trained
and validated on the dataset described in [6], is conducted. To
study the generalization capability of the pre-trained CNNs,
5-fold cross-validation is utilized.

A. Performance metrics

ML and DL algorithms can be assessed based on their per-
formance and ability to generalize using various performance
and statistical metrics. When working within a supervised
learning setup, various performance metrics can be utilized for
multi-class classification tasks. The beam classification task is
primarily evaluated using the accuracy metric. Accuracy can
be defined as the portion or percentage of correct predictions
out of the total predictions made, and can be mathematically
expressed as:

Accuracy =
1

N

N−1∑
n=N

F(x̂n = xn) (1)

N is the number of test classes, x̂n denotes the ML model
class predicted label, xn is the true class label, and F(x)
represents the indicator function.

B. Experiments and Results

In this section, the performance results of the two SOTA
pre-trained models are presented, along with a short analysis
of the results.

1) DL Models: For the training of the models, the cross-
entropy loss function is employed in conjunction with the
Adam optimizer. The cross-entropy loss function is defined
as:

L = −
N∑
i=1

yi log(pi) (2)

L represents the cross-entropy loss function, N is the number
of test classes, yi denotes the true label for the ith sample,
and pi the predicted probability of the ith sample belonging
to the corresponding class.

Each model is trained over 20 epochs, utilizing a mini-batch
size of 4, whereas the learning rate is set to 3e-5. To avoid

overfitting, the dropout technique is utilized, and the learning
rate decay of the optimizer is set to 1e-4. Table I includes the
hyperparameters that were utilized to fine-tune both models,
through the GridSearchCV technique:

TABLE I
TRAINING HYPER-PARAMETERS

Hyper-parameter tuning
Parameters ResNet-18 Code VGG-16
Batch Size 4 4

Learning Rate 3e-5 3e-5
Decay 1e-4 1e-4

Dropout 0.4 0.4
Total Epochs 20 20

2) Numerical results: Various filters are applied to raw
RGB images for accurate mm-Wave/THz beam prediction to
study the effect on the accuracy of the DL models. Tables
II, III depict the train, validation, and test accuracies of
the proposed vision-aided solution for the two pre-trained
SOTA DL models, based on the different filters analyzed in
Section II-B.

TABLE II
FILTER PERFORMANCE FOR RESNET-18

Filter ResNet-18 Accuracy %
Train Validation Test

Raw Images 80.87% 77.78% 76.70%
Gaussian Filter 79.11% 75.24% 77.29%

Adaptive Median Filter 74.68% 75.80% 69.42%
Sharpening Filter 73.87% 74.18% 73.88%

Box Filter 81.04% 79.51% 77.78%
Non-local Means Filter 75.36% 71.93% 75.61%

Ensemble of filters 81.29% 79.94% 80.48%

The proposed approach achieves satisfactory results in terms
of accuracy for both DL models. Various filters are applied to
study the impact on the performance, with the box filter and
the ensemble of filters (i.e., box and sharpening filters) outper-
forming the scenario of raw RGB images. Both models offer
satisfactory results for the raw and filtered images for accurate
mm-wave/THz beam, which are presented in Tables II,III.
However, both Resnet-18 and VGG-16 require large amounts
of computational resources and are susceptible to overfitting.

TABLE III
FILTER PERFORMANCE FOR VGG-16

Filter VGG-16 Accuracy %
Train Validation Test

Raw Images 83.96% 82.35% 81.04%
Gaussian Filter 83.80% 80.85% 82.02%

Adaptive Median Filter 82.12% 80.63% 81.35%
Sharpening Filter 80.92% 78.36% 77.78%

Box Filter 83.55% 83.32% 81.21%
Non-local Means Filter 80.83% 78.92% 78.36%

Ensemble of filters 86.10% 83.12% 82.78%

For the proposed vision-aided solution in beam classifica-
tion, a comprehensive evaluation is performed to assess various
filters, and their influence on beam prediction accuracy is
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thoroughly analyzed. In all different image modalities, VGG-
16 outperforms Resnet-18, at the cost of more computation
time and complexity, but for all the applied filters, the two
models offer satisfactory results. When applying the ensemble
of filters, the accuracy of both DL models is enhanced com-
pared with the raw RGB images. The training and validation
loss and accuracy are shown in Figs 1,2 for the pre-trained
ResNet-18 and VGG-16 models.

(a) Accuracy

(b) Loss

Fig. 1. ResNet-18 performance: (a) Accuracy, (b) Loss

IV. CONCLUSION

In this paper, a comparative study of various filters for
beam classification and feature extraction in 6G networks
was conducted, offering a vision-aided method to improve the
classification accuracy for mm-wave/THz applications. The
accuracy of our results rises to above 86% when applying
an ensemble of filters in the pre-trained VGG-16 model,
enhancing the performance of vision-aided solutions for beam
selection and feature extraction in 6G networks. This outcome
can be achieved with relatively low complexity by utilizing
pre-trained SOTA DL models. However, it is important to
acknowledge certain limitations in our work. First, much data
pre-processing is required to create the database of 23 beam
indexes. Also, the process of applying different filters to train

(a) Accuracy

(b) Loss

Fig. 2. VGG-16 performance: (a) Accuracy, (b) Loss

the models is time-consuming. Third, the models utilized for
the beam prediction are pre-trained SOTA models, and various
custom CNNs could provide enhanced accuracy results. Future
work involves utilizing custom DL models and incorporating
supplementary data such as global positioning system (GPS)
or light detection and ranging (LiDAR) data.
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