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Abstract—In this work, we implement multiple techniques 

for predicting users viewing directions while watching 360° 

videos. We utilize historical viewing traces to forecast future 

directions based on a real-life head tracking dataset.  We 

compare the performance of linear regression (LR), artificial 

neural networks (ANN), long short-term memory (LSTM), and 

convolutional neural networks (CNN). We assess their efficiency 

in terms of viewing angles prediction errors. We also investigate 

tile viewing prediction in tile-based 360° video transmission 

scenarios. We built two classifiers based on ANN and LSTM to 

predict watched tiles and provide an evaluation of their 

performance in this article.  

Keywords—Virtual Reality (VR), 360° Videos, Viewport 

Prediction, Deep Learning 

I. INTRODUCTION 

 360° videos and virtual reality (VR) applications are 
becoming increasingly popular paving the way toward an 
immersive era. Omnidirectional videos envelop users within 
an interactive form of content, as people equipped with head-
mounted displays (HMDs) can move their heads to navigate 
the spherical scenes. Delivering VR videos at satisfying 
quality, however, requires high transmission rates and is 
subject to stringent latency levels [1]. This created a pressing 
challenge for network operators and service providers. Novel 
streaming paradigms have been developed to alleviate these 
challenges. Viewport-based 360° video streaming suggests 
the transmission of only viewed areas within the spherical 
scenes, rather than sending the entire bulky videos. Tile-based 
streaming has been an effective solution that attempts to 
divide the 360° video into rectangular tiles and only transmit 
tiles which are relevant to the user’s field of view (FoV) [2]. 

Tiling of 360° videos has become a notable strategy in 
360° video transmission. Panoramic videos are typically 
captured using a 360° camera or generated by stretching 
multiple videos captured from multiple cameras. The 
spherical video is then transformed into other 2D formats 
using projection methods. The equi-rectangular projection 
(ERP) scheme stretches the spherical shape and fits it into a 
rectangular shape. The resulting ERP video is then divided 
into independent tiles, where each tile is compressed and 
transmitted separately. Fig. 1 illustrates the projection and 
tiling of a 360° video. 

Although adaptive and tiled 360° video streaming can 
assist in huge bandwidth savings, its practical implementation 
relies on having accurate viewport predictions. VR 
applications have low latency requirements. A motion-to-
photon (MTP) latency of less than 20ms is usually required 
for a smooth watching experience. High delay can result in 
interrupting the video or in presenting empty parts within the 
user’s FoV. In many cases, the low responsivity causes 
distress and headache to the users, as symptoms of 
cybersickness [3]. Typical video streaming frameworks rely 
on transmitting independent segments of the video (2-10 
seconds long), in order to adapt to the network conditions. 
Proactive 360° video streaming, therefore, needs viewport 
prediction models to produce reliable estimations for future 
viewing directions [4], [5]. An extended literature review on 
the topic of optimized mobile 360 video delivery can be found 
in our survey paper [6]. 

The authors in [7] utilized spherical convolutional 
networks to assist the viewport prediction through visual 
feature extraction from 360° videos. In [8], an online learning 
framework has been proposed for predicting users’ viewports 
in 360° video live streaming services. The suggested solution 
leverages saliency maps and implements a convolutional long 
short-term memory (ConvLSTM) network to produce 
accurate viewport predictions. Although such methods have 
good performance, they are complex and can be time 
consuming. Moreover, they require knowledge of the video 
content, which is not always practical. In [9], a trajectory-
based clustering algorithm is developed to predict the viewing 
trajectories for new users. 

 

Fig. 1: Equi-rectangular projection and tiling of 360° videos. 

In our previous work, we performed an evaluation 
comparison of different codecs applied to tiled 360° videos 
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[10]. In this article, we dedicate our work to investigating the 
viewing prediction problem.  We focus on prediction schemes 
that only leverage the user’s historical viewing path. We 
assess and compare the performance of multiple viewport 
prediction techniques. We also study the implication of 
prediction inaccuracies on tile-based 360° video transmission. 
In section II, we provide the necessary context and introduce 
the problem in hand. We present the used VR dataset and 
provide some analysis of users viewing behavior in Section 
III. Section IV discusses the evaluation settings, adopted 
solutions, and simulation results. Finally, we conclude our 
work in section V. 

II. PROBLEM DESCRIPTION 

In this work, we focus on 360° viewing prediction with a 
given viewing historical path. At any given time, the user’s 
viewport is defined by their head orientation, in addition to the 
HMD specifications. The user’s head direction (i.e., the FoV 
center) at time τ can be represented by a yaw and a pitch angle 
pair (θτ, φτ). The yaw and pitch angles represent the horizontal 
and vertical orientation in a 360°x180° space. 

The user’s historical viewing path over H samples VH = 
[(θ-H, φH), …, (θ-h, φ-h), …, (θ0, φ0)] is assumed to be given as 
a vector of pitch and yaw angle pairs. It is thus used for 
forecasting the future viewing path over F time stamps V* = 
[(θ*

+1, φ*
+1), …, (θ*

f, φ*
f), …, (θ*

+F, φ*
+F)]  in an attempt to 

match the true one VF = [(θ+1, φ+1), …, (θf, φf), …, (θ+F, φ+F)]. 
Fig. 2 demonstrates the viewport prediction problem in hand, 
showing the aforementioned viewing paths. In practice 
viewing direction information can be obtained from the HMD, 
as HMDs are typically equipped with head and eye gaze 
tracking mechanisms. The specifications of the HMD describe 
the sampling rate of the collected viewing information. 

 

Fig. 2: Illustration of viewport prediction and viewing paths. 

III. DATASET ANALYSIS 

In this section, we first introduce the VR viewing dataset 
which we utilize for carrying out our experiments. We also 
provide relevant analysis of the tracking records. We 
investigate the user behavior while watching 360° videos in 
terms of attention regions and head movement rates. 

A. Dataset 

For our analysis, we use the large-scale public dataset in 
[11]. The dataset in [11] contains the viewing information of 
27 users watching 100 videos that belong to different 
categories. The data sequences, which include head and eye 
gaze tracking data, are captured at 120Hz sampling rate using 
the VIVE Pro Eye VR headset. We use the head viewing 

positions given as two-dimensional points (x,y) and convert 
them to the corresponding yaw and pitch angles (θ, φ). 

B. Viewing behavior analysis 

Before jumping to the viewing prediction part, it is 
important to study the viewing data and highlight the patterns 
within the users’ viewing trajectories. We analyze the head 
movement information found in the dataset. We convert the 
given two-dimensional points into yaw and pitch pairs. Based 
on this data, we examine the areas where users focus their 
attention the most, and the speed at which the users move their 
heads. 

Engaging parts within 360° videos are usually found along 
the equator, i.e., the center of the vertical axis. The upper and 
lower parts usually contain still and uninteresting content such 
as an empty sky or an idle ground. Thus, it is common for VR 
users to focus their attention toward central areas and move 
their heads around the horizontal axis, following or looking 
for relevant objects. We investigate this behavior by analyzing 
the available tracking records. Fig. 3 shows a heat map that 
features the center of attention for users. This figure entails the 
watching data from all 27 videos in the dataset across their 
entire lengths. It is clear that most of the time users in this 
dataset focused on central regions within the videos, with 
some navigation across the horizontal axis. This observation 
can be regarded as a general case for different video types, 
regardless of the genre they belong to. 

 

Fig. 3: Users viewing heatmap. 

Another important aspect of users’ viewing behavior is the 
pace at which they move their viewing directions. The 
prediction horizon of future viewing paths is limited by the 
change rate in yaw and pitch angles. In general, VR users 
move their heads at steady paces, where sudden and fast 
changes in their FoV positions do not frequently occur. As 
explorations in the horizontal and vertical directions are 
independent of each other, we analyze these changes in yaw 
and pitch angles separately. We find the maximum angle 
changes within 1, 2, and 3 second time windows for both yaw 
and pitch angles. 

Fig. 4 depicts the distribution of the maximum changes 
within these time windows. Short viewing windows exhibit 
small changes in both directions, as the majority of one-
second windows have changes in the yaw and pitch angles of 
only a few degrees. This enables the development of accurate 
viewing prediction models for short timeframes. However, 
when the length of the observation window increases (up to 3 
seconds, in Fig. 4), high angle changes become more frequent. 
Intuitively, this makes the prediction task more challenging as 
the prediction window increases. 
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Fig. 4: Changes in yaw and pitch angles within 1, 2, and 3 second time 

windows. 

IV. EVALUATION 

In this section, we discuss the simulated prediction 
methods and provide the evaluation results. We carried out our 
experiments in two parts. First, we implemented four 
regression models to predict future yaw and pitch angles based 
on historical paths. In the second part, we study tile viewing 
prediction. We show how prediction inaccuracies in viewing 
angles translate as suboptimal tile coverage in tile-based 360° 
transmission. Therefore, we developed two binary 
classification models that directly predict which tiles are 
watched by the users and compare their performance to the 
regression-based solutions. 

We compare the performance of the different techniques 
in terms of the resulting prediction errors. Then we study how 
prediction inaccuracies in viewing angles translate as 
suboptimal tile coverage in tile-based 360° transmission.  

A. Evaluation of viewing direction prediction 

In this part, we introduce the four regression models that 
we use to predict future yaw and pitch angles V*. These 
solutions rely only on historical viewing paths VH. To account 
for the spherical nature of 360° videos, we use the sine and 
cosine values of the angles. This avoids prediction errors 
across the video edges. For instance, a yaw angle of 0° and 
another of 359° should be regarded as adjacent to one another. 
After the prediction of the trigonometric values, the predicted 
angles are obtained (in degrees) using the inverse tangent 
function. 

The four regression models used in this part are 
summarized as follows: 

• ANN: An artificial neural network (ANN) 
containing two layers that output the 

trigonometric values (i.e., sine and cosine) of the 
predicted angles across all future samples. 

• Conv1D: A 1D convolutional neural network 
(CNN) that takes as input two sequences, 
containing the historical sine and cosine values to 
be processed through two different convolution 
paths. The convolution outputs of the two 
sequences are then merged using an output dense 
layer. 

• LSTM: A long short-term memory (LSTM) 
model. The implemented LSTM network follows 
a similar hierarchy to the Conv1D network. Each 
of the two sequences go through two LSTM 
layers to be merged using an output dense layer. 

• LR: a simple linear regression (LR) model that 
fits the data to form a linear relationship between 
the historical and future angles. The 
trigonometric values of the angles are also used 
in this model, where the actual angle values are 
retrieved afterwards. 

To assess the viewing direction prediction, we calculate 
the absolute error in angle values and average all the 
observation samples (S) found at each timestamp. The 
following formula shows the error calculation for yaw angle 
prediction at future timestamp f, where the same formula is 
used for calculating prediction errors in yaw angles. 

𝐸𝑟𝑟𝑜𝑟(𝜃𝑓) =
1

𝑆
∑|𝜃𝑓,𝑠 − 𝜃𝑓,𝑠

∗ |

𝑆

 

The yaw and pitch prediction errors resulting from the four 
regression models are depicted in Fig. 5. The figure shows the 
prediction errors over time within a three-second window. The 
average estimation error increases over time to reach 30° for 
yaw angles and around 10° for pitch angles at 3 seconds 
estimation period. All four prediction methods achieve 
comparable performance, while LSTM slightly outperforms 
the other models when considering both yaw and pitch 
prediction results. However, LSTM needs a long training time 
compared to the other models. 

B. Evaluation of viewing tile prediction 

As tile-based transmission is becoming the norm in 360° 
videos streaming, we develop two classifiers for tile viewing 
prediction. We also use the regression models from the 
precious subsection for finding their performance in tiled 
based streaming settings. At any given time, the user’s 
viewport corresponds to a set of tiles that need to be presented, 
entirely or partially, to the user. However, unreliable viewport 
predictions can result in losing some of these tiles due to 
inaccurate mapping. We evaluate the described regression 
models in terms of tile coverage and compare their 
performance to two tile classification-based models. 

With tile classification, we can directly predict which tiles 
will be watched by the user. We implemented two tile 
classification models to perform this task, which are described 
as follows: 

• ANN-tile: A two-layer ANN model that uses 
historical trigonometric values of yaw and pitch 
angles to perform binary classification on future tiles. 
The binary cross-entropy model is used as the loss 
function in the output layer. Watched tiles are 
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predicted at each timestamp within the prediction 
window. 

• LSTM-tile: A LSTM model that takes four 
sequences comprised of the sine and cosine angles of 
yaw and pitch angles. An output dense layer merges 
the output of the four paths and uses the sigmoid 
activation function. 

 

 

Fig. 5: Prediction error for yaw and pitch angles as a function of prediction 

time. 

Table 1: Evaluation metrics of tile viewing prediction models. 

Model Accuracy Precision Recall F1 

ANN 0.853 0.604 0.621 0.613 

CNN 0.850 0.596 0.612 0.604 

LSTM 0.858 0.617 0.626 0.622 

LR 0.855 0.613 0.609 0.611 

ANN-tile 0.931 0.793 0.832 0.812 

LSTM-tile 0.928 0.782 0.826 0.803 

 

We investigated the performance of all six techniques 
when applied for tile coverage prediction. We assume an 8x8 
tiling scheme and classify the tiles at each timestamp into 
watched and unwatched tiles. To assess the performance of the 
simulated schemes, we calculate their accuracy, precision, 
recall, and the F1 score. Table 1 shows the evaluation of the 
different tile viewing prediction models. ANN-tile and 

LSTM-tile produce the best scores over all evaluation metrics. 
These results demonstrate the advantages of direct tile 
classification over mapping them from regression-based angle 
viewing predictions. 

V. CONCLUSION 

In this paper, we motivated the need to accurately predict 
user viewing directions to improve performance of 360° video 
streaming applications. We formally introduced the problem 
of viewing direction prediction, and we analyzed the viewing 
behavior based on a rich large-scale public dataset. To tackle 
the viewing prediction problem, we compared four different 
regression models. In addition, we developed two binary 
classification models that directly predict which tiles are 
watched by the users and compare their performance to the 
regression-based solutions. Our evaluation results show that 
all four regression models achieve comparable performance. 
However, the results also show that classification models are 
more appropriate for tile-based streaming settings. 
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