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Abstract—Enabling  high mobility in millimeter-wave
(mmWave) systems is crucial for next-generation wireless
communication systems. Challenges arise in applications such
as vehicular communications and wireless virtual/augmented
reality,. MmWave systems grapple with concerns related to
narrow beams, signal vulnerability to obstructions that affect
coverage, and the necessity for frequent handovers. Additionally,
identifying optimal beamforming vectors in large antenna
array mmWave systems involves substantial training overhead,
impacting efficiency. This paper introduces a novel solution
to address challenges in enabling high mobility in mmWave
systems. The approach combines deep learning (DL) and
coordinated beamforming to support applications such as
vehicular communications and wireless virtual/augmented
reality. The solution involves multiple coordinating base stations
(BSs) serving a mobile user, utilizing a single pilot training
sequence. A DL model predicts beamforming vectors based
on received signals, providing reliable coverage, low latency,
and minimal training overhead for highly mobile mmWave
applications. Simulations demonstrate its effectiveness in
high-mobility scenarios, approaching the performance of an
optimal solution, a genie-aided solution that knows the optimal
beamforming vectors without any training overhead.

Index Terms—Millimeter wave, coordinated beamforming,
deep learning, data rates.

I. INTRODUCTION

Millimeter wave (mmWave) spectrum has gained consid-
erable interest in recent years as an enabler of high-data-
rate communications due to the wide bandwidths available
for wireless communications services [1]. The mmWave fre-
quency band spans from 30 GHz to 300 GHz, but the inherent
physical limitations result in shorter transmission distances for
higher frequencies, leading to elevated path loss. Therefore,
problems such as path loss and blockage must be addressed
by using smaller cellular cells for higher frequencies [2].

Massive multiple-input multiple-output (mMIMO) systems
can propagate signals in the same time-frequency resource and

serve numerous users concurrently, employing hundreds of
antennas simultaneously. The highly directional transmissions,
facilitated by the short wavelength of mmWave, allow for
the installation of numerous antennas at the transceiver in
a cellular network, substantially enhancing network capacity.
In scenarios with poor channel estimation, path loss, and
terminal-specific antenna correlation, large-scale antenna sys-
tems significantly increase upload and download rates [3].
Additionally, in environments with rapid propagation changes,
large-scale antenna systems reliably provide high throughput
for both forward and reverse link connections. Using mMIMO
systems can improve the capacity and reliability of wireless
systems, effectively overcoming the challenges of increased
path loss in the mmWave spectrum [3].

This paper uses data-driven approaches to identify optimal
beamforming vectors, utilizing various deep learning (DL)
models. The goal is to achieve reliable coverage and low la-
tency for highly mobile mmWave applications while minimiz-
ing training overhead. The remainder of the paper is organized
as follows. Section II briefly describes the system model and
the simulation setup of the study. Section III presents the
DL models that are used for coordinated beamforming. In
Section IV simulation parameters and results are presented,
while conclusions are drawn in Section V.

II. SYSTEM MODEL

This study adopts the system model described in [4], where
there are N base stations (BS), each equipped with M
antennas. Facilitated by an appropriate infrastructure, these
BSs collaborate to transmit information to a mobile user, with
a single antenna. To mitigate the effects of the frequency-
selective wireless channel between any BS and the user,
orthogonal frequency division multiplexing (OFDM) with m
subcarriers is used. For the m-th subcarrier, the connection

©979-8-3503-1884-5/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on June 03,2024 at 08:58:58 UTC from IEEE Xplore. Restrictions apply.



Ym between input and output to send the symbol s, can be
described as:

N
Ym = Z T;Lmnanfm,nsm + gm (1)

n=1

where 7,,, € C represents the impulse response of the
channel on the m-th subcarrier connecting the n-th BS with
the user u, and a, corresponds to the analog beamformer
utilized by the n-th BS. Furthermore, f,, ,, € C is a precoding
factor provided by the n-th Base Station (BS). It is essential to
emphasize that these precoding factors collectively constitute
the digital precoding vector  f,, € CV*1, constructed col-
laboratively by the participating BSs. Finally, g, implements
an additive white Gaussian noise to the system.

A. Simulation setup

This paper introduces an innovative solution for highly mo-
bile mmWave applications that combine communication and
DL. The proposed coordinated beamforming system serves
a mobile user using deep learning to predict BSs’ beam-
forming vectors. This prediction is based on signals received
at distributed BSs using omni- or quasi-omni-beam patterns,
capturing multipath signatures of user location and surround-
ings. The DL model requires minimal training overhead and
adapts to any environment without pre-deployment training.
Integrated with coordinated beamforming, it inherits coverage
and reliability advantages. This paper aims to contribute an im-
proved integrated DL and coordinated beamforming solution,
reducing coordination overhead for wide-coverage and low-
latency gains to enhance and maximize the system’s effective
achievable rates. The neural networks (NNs) studied in this
work are compared with the DL approach and a baseline model
as described in [4]. The baseline approach, relies on uplink
training for the creation of baseband beamforming vectors,
where BSs initially choose their beamforming vectors from
a predetermined codebook. Subsequently, a central processor
formulates the baseband beamforming to achieve coherent
combining at the user end. This approach though, necessitates
significant training overhead. Furthermore, a comparison is
made between the proposed NNs and a genie-aided solution,
that knows the optimal beamforming vectors without any
training overhead, as presented in [4] is conducted. Finally,
a complexity comparison is made between the proposed NNs
and the DL model in [4], to emphasize not only the higher
achievable rates of the NNs but also the lower complexity (in
terms of parameters) of the proposed methods.

The effectiveness of the NNs will be assessed by comparing
the effective achievable rate with the increasing sizes of the
training dataset. The DeepMIMO dataset [5] is utilized, where
channel configurations are generated using ray-tracing data
from the wireless inSite simulator [6]. Specifically, we focus
on the ”01-60” ray-tracing scenario, involving multiple BSs
concurrently serving a mobile user in the 60 GHz band.

TABLE I
PARAMETER VALUES

Parameter Value

Active BSs 3,4,5,6

Active Users

54300 (Row 1000 to row 1300, 181 users per row)

BSs antennas 256 (T, =1,Ty = 32,T. =8)

Bandwidth 0.5 GHz
OFDM sub-carriers 1024
OFDM sub-carriers limit Kpr =64

III. DEEP LEARNING MODELS

Tabular data are typically organized with each column
representing a distinct feature and each row representing a
unique instance. Traditional models such as support vector ma-
chine (SVM) and tree-based algorithms are commonly used to
analyze tabular data, demonstrating satisfactory performance
with limited data [7]. In contrast, DL models, while gener-
ally outperformed by traditional methods on smaller datasets,
excel on larger datasets because of their capacity to discern
intricate patterns within the data. To address the limitations of
traditional algorithms, there is a focus on developing neural
networks specifically tailored for tabular data [8].

A. WideDeep Learning

WideDeep Learning constitutes a machine learning model
structure that harnesses the strengths of both DL and conven-
tional linear models, creating a hybrid approach. An exposition
of the architecture is presented [9]:

o Wide Component: The wide component adopts a gener-

alized linear model

y:vTu+c )

where y represents the prediction, v denotes the model
parameters, u signifies a vector of features, and c stands
for the bias term. Crucial cross-product transformations
that capture interactions among binary features are de-
fined as:

d
vk(w) = [T wmni 3)
i=1

where 1 (u) represents a boolean variable with a value
of one when the ith feature is included in the k-th
transformation ;; otherwise, it is zero. This accounts
for interactions among binary features, which introduces
nonlinearity to the generalized linear model.

o Deep Component: The deep component, a feed-forward
neural network, converts categorical features into low-
dimensional embedding vectors. The hidden layers per-
form computations as:

04— g(AD,0 L p0) @)

« Joint Training: Integration of the wide and deep compo-
nents involves a joint training approach, where a weighted
sum of their output log odds forms the prediction. This
combined prediction is then subjected to a common
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Fig. 1. WideDeep architecture.

logistic loss function during joint training. The optimiza-
tion process encompasses all parameters simultaneously,
incorporating both the wide and deep segments, as well
as the weights governing their summation. In particular,
the wide segment serves to address the deficiencies of
the deep part with minimal cross-product feature trans-
formations. The joint training of the WideDeep model
involves backpropagating gradients from the output, si-
multaneously impacting both components through mini-
batch stochastic optimization. This process integrates the
predictions of both elements, assigning specific weights
to ensure a proportional influence on the prediction.
Calculating the weighted sum involves multiplying the
output of each component by its assigned weight and
applying the sigmoid function, resulting in a probability-
like value (zero and one). The prediction of the model
for a regression task can be described as follows:

P(Y = 1|u) = U(Wzgide[uﬂ 7/1(11)} + Wc:{;epz(lf) + b) (5)

where Y represents the binary class label, ¢ denotes
the sigmoid function, ¥ (u) stands for the cross-product
transformations of the original features u, and b is the
bias term. The vector wyiq. comprises all the weights
associated with the wide model, and W, refers to the
weights applied to the final activations z(//).

B. Convolutional neural network (CNN)

CNNs represent prominent models in DL, proficient at
discerning patterns in data without the need for manual feature
extraction. Their adaptability to retraining in new recognition
tasks makes them particularly suitable for DL challenges
involving large data sets. The schematic overview of a compre-
hensive CNN architecture is illustrated in Fig. 2, encompassing
the following layer types [10]:

o Input Layer: This initial layer introduces the input data in

a format conducive to subsequent processing, facilitating
the extraction of high-level features through a series of
hidden layers.

o Convolution Layers: This segment computes the convo-
lution of the data parameters using multiple filters of
uniform shape compared to the input layer but with
smaller dimensions. The process results in a feature map
of the data after convolution across the entire input.

o Pooling Layers: These layers reduce the dimensions of
subsequent layers by executing downsampling through

Max-pooling Max-pooling
. _layer layer Flatten
- — layer

§ §

Output
layer

C lutional layer C
+RelU

| layer
+ RelU

Fig. 2. CNN architecture.

max or average pooling. This reduction improves com-
putational efficiency and reduces complexity.
o Output Layer: In this final layer, CNN generates outputs.

Also, a non-linear activation function is applied to each
element in the feature space. The rectified linear unit (ReL.U)
activation function, often chosen in the CNN literature, is
mathematically defined as f(z) = max(0, x).

IV. SIMULATION RESULTS

In this study, two neural networks, namely WideDeep learn-
ing and CNN are evaluated in comparison to a DL approach,
a baseline, and an optimal genie-aided approach where the
implementations outlined in [4] are used.

The WideDeep model integrates both wide (linear) and deep
(non-linear) components. The wide component is a generalized
linear model that comprises 64 units and processes spatial
features, capturing linear relationships in the data. In our case,
the nonlinearity in the wide network is not introduced from a
cross-product transformation, but utilizing a single dense layer
with 64 neurons and the ReLU activation function. The deep
component, an MLP, processes spatial characteristics through
two dense layers, each with 256 neurons, ReLU activation,
and a dropout rate of 0.1 . The output of both components
is concatenated, forming a unified representation. The output
layer, comprising 512 neurons, predicts optimal beamforming
using ReLU activation. Model compilation employs Mean
Squared Error loss and the Adam optimizer, while training
involves iterations with a batch size of 100 over 10 epochs.

The proposed CNN model uses spatial characteristics and
consists of four convolutional layers with eight filters each, a
kernel size of three, ReLU activation, and max pooling. The
flattened output is connected to four dense layers, each with
256 neurons, ReLU activation, and a dropout rate of 0.02 . The
output layer comprises 512 neurons representing the number of
beams activated with the ReLU function. The model is trained
using the Adam optimizer with a batch size of 128 for 10
epochs, and Mean Squared Error loss function.

Both models were tested on datasets with increasing DL size
ratios, demonstrating flexibility and efficacy in various beam
prediction scenarios for mmWave communication systems.
The training set is generated using a maximum of 80% of the
total available data, while the remaining data are reserved for
testing. The performance of neural networks will be evaluated
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Fig. 3. Simulation results

based on the effective achievable rate relative to the size of
the training data set, as shown in Fig. 3.

Surpassing the performance of the previously presented
models [4], the proposed DL approaches achieve optimal
performance with a reduced amount of data. Importantly,
this performance improvement is achieved with a complexity
reduction, as detailed in Table II. WideDeep approach achieves
better effective achievable rates for the DL model, up to
4.81% for 2500 samples. Additionally, the proposed CNN
architecture outperforms all models and offers rates close to
the optimal genie-aided solution, with an improvement of up
to 17.43% for the same data size and better rates for all sizes.

TABLE II
COMPARISON OF NETWORKS PARAMETERS

Model Number of Parameters | Parameters Size (MB)
DL model [4] 460.544 1.78 MB
WideDeep model 312.384 1.19 MB
CNN model 335.728 1.28 MB

V. CONCLUSION

This paper investigates neural network architectures to ad-
dress the coordinated beamforming problem while minimizing
the necessary dataset size for training. Using the DeepMIMO
dataset, improvements have been showcased in terms of
achievable rates and complexity reduction. Future research
endeavors aim to explore the problem within a multi-user
context while utilizing multiple antennas. Furthermore, the
study will include the examination of hybrid architectures for
transceivers and the exploration of higher frequency bands.
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