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Abstract—Within telecommunications, the accuracy and ef-
ficiency of machine learning models (ML) define their util-
ity, and consequently, the choice of ML mechanisms assumes
paramount importance. This study focuses on the exploration
and comparison of diverse ML and ensemble learning tech-
niques, with a specific emphasis on their significance in crafting
precise and extensive models. To this end, the quality of the
received signal and the optimization and functioning of wireless
communication networks rely heavily on accurately predicting
the received signal strength indicator (RSSI) and path loss
(PL). The studied environment, which is highly complex, spans
2000 km2 of the intricate landscapes of the American River
Hydrologic Observatory (ARHO) networks and is characterized
by a diverse blend of terrain features and vegetation distributions.
Notable independent variables under consideration include path
distance, canopy coverage, terrain variability, and path angle.
The proposed ensemble ML approaches demonstrate remarkable
accuracy and efficiency when it comes to modeling and predicting
the RSSI values in forested environments.

Index Terms—Machine learning, ensemble learning, internet
of things, radio propagation.

I. INTRODUCTION

The Internet of Things (IoT) is increasingly utilized to
manage a wide range of essential processes and infrastructures
in modern societies. This trend is attributed to its remarkable
flexibility, adaptability, and cost-effectiveness. However, due
to the crucial nature of the assets being controlled, and
the services to be delivered, it is imperative to thoroughly
comprehend the deployment environment from a radio prop-
agation standpoint [1]. This understanding underscores the
significance of radio characterization, which seeks to forecast
and enhance the utilization of the radio spectrum in wireless
networks. This becomes particularly critical in the context of
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future IoT implementations, where substantial proliferation of
devices is anticipated, leading to a rapid surge in interference.
Such interference can have a detrimental impact on network
performance [2].

The emergence of the fifth generation (5G) of mobile net-
works has introduced the adoption of a wider spectrum encom-
passing higher-frequency millimeter-wave (mm-wave) bands.
These bands hold the promise of achieving remarkably high
data rates. However, realizing the full potential of microwave
communications is dependent on the development of precise
channel models and accurate predictions of the received signal
strength indicator (RSSI) and path loss (PL). These predictions
play a pivotal role in tasks such as determining cell cover-
age, strategically placing base stations (BS), and fine-tuning
network performance [3]. However, the utilization of higher
frequency bands presents challenges due to increased losses
from factors such as open space, scattering, and diffraction
that arise from the propagation environment. In particular,
within complex environments such as forested areas, diverse
variables such as path distance, canopy coverage, terrain
variability, and path angle can exert a notable impact on RSSI
compared to lower frequency bands characterized by longer
wavelengths. Although it is essential to have dependable and
efficient models for PL estimation in network planning and
optimization, comprehending their applicability in mm-wave
frequencies across diverse propagation scenarios remains an
ongoing pursuit, especially in complex environments [4].

RSSI estimation, which encompasses both the signal’s trans-
mission and its attenuation during propagation, is regarded as a
fundamental factor for evaluating the performance of wireless
communication. This assessment is particularly crucial during
the phases of network planning and optimization [5].The
RSSI estimation and its related counterpart, radio propagation
modeling, primarily concentrate on predicting PL within the
realm of wireless communication and can be framed as a
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supervised regression task. ML techniques can achieve high
precision and effectiveness, with respect to computational
complexity and prediction time, as well as strong suitability
for various applications in wireless networks [6].

The authors in [7] apply a probabilistic neural network
(PNN) to predict a sliding-window pattern of RSSI signals,
in a factory setting, while artificial neural network (ANN) is
utilized in [8] for RSSI estimation in an indoor environment.

In this paper, our objective is to evaluate the utility of the
various ensemble ML methods in creating RSSI prediction
models of complex forested environments for cellular commu-
nications. The models are evaluated in terms of their accuracy
and efficiency. Different ensemble ML methods result in
models of different levels of accuracy and efficiency. The rest
of this paper is structured as follows. Section II describes the
data collection campaign and modeling details. In Section III,
the ensemble ML techniques utilized are explained. Section
IV presents the simulation metrics and outcomes, and Section
V concludes with remarks about the importance of ML in the
derivation of models with high accuracy.

II. DATA COLLECTION

The training and validation process for all the ML tech-
niques involved utilized real-world data from an extensive
measurement campaign conducted in the California Sierra
Nevada. Measurements were carried out within the American
River Hydrologic Observatory (ARHO) networks [9]. Various
sensors, interconnected through 14 separate low-power wire-
less mesh networks, are utilized to measure snow depth, air
temperature, air relative humidity, soil temperature, soil mois-
ture, and solar radiation. These networks are deployed within
the American River basin, spanning an area of 2,000 km2,
and 2,218 wireless links were utilized. RSSI measurements
were carried out using 2.4 GHz radios, annotated with several
characteristics, including:

• Path ground distance: This numeric value, measured in
meters, signifies the span between the two radios engaged
in communication. It is derived from their respective GPS
positions and elevations.

• Mean percentage of tree canopy cover: Indicating a value
ranging from 0% to 100%, this metric is the average
derived from the National Land Cover Database (NLCD)
vegetation map. It illustrates the typical extent of vege-
tation along the line of sight connecting the two nodes.

• Terrain complexity: Referring to the diversity of elevation
values along the line-of-sight path, it is quantified by
calculating the standard deviation of raster values from
the Digital Elevation Model (DEM).

• Vegetation variability: This aspect is determined by com-
puting the standard deviation of NLCD vegetation map
values along the communication path.

• Path angle: This angle is the inclination between the line-
of-sight path and the horizontal plane.

• Canopy coverage at the source: It involves bilinearly
interpolating the NLCD vegetation map values at both

the source and the receiver locations, resulting in a value
between 0% and 100%.

• Canopy coverage at the receiver: Similarly to the ”Source
canopy coverage” feature, it estimates the vegetation
cover at the receiver’s node using the NLCD map values.

It is worth mentioning that in the given dataset the initial
transmission signal strength is not included. In our work, the
attenuation-related parameters are adequate to estimate the
RSSI values, without the need for the transmission signal
strength as an input parameter. The latter serves as a reference
signal and remains fixed. Thus, including a fixed parameter
would not contribute to the model’s performance and the ab-
sence from the dataset does not effect the prediction accuracy.
For further details, see [9].

III. MACHINE LEARNING MODELS

Over the past years, ML techniques have been proposed for
channel modeling in order to address the challenges posed by
site-specific and complex requirements of deterministic meth-
ods, as well as the limitations arising from the inaccuracies of
stochastic approaches [10]. The ensemble method represents
an ML approach in which multiple models, typically diverse
in nature and often referred to as ”weak learners,” are trained
and their results are merged to enhance the overall prediction.
A prevalent category involves bagging and boosting learners,
where different versions of the same learner (e.g., decision
trees) are combined simultaneously or sequentially [11].

A. Extreme gradient boosting (XGBoost)

XGBoost stands as a distributed and scalable machine learn-
ing framework centered on gradient-boosted decision trees
(GBDT). The concept of gradient boosting involves the amal-
gamation of predictions from multiple simpler models to effec-
tively predict a target variable in a supervised learning context.
XGBoost occupies a prominent position among machine learn-
ing libraries, catering to regression, and classification tasks. It
provides the capability of parallel tree boosting and functions
as a distributed gradient-boosting library designed for high
effectiveness, adaptability, and portability [12].

B. Gradient Boosting Decision Tree (GBDT)

GBDT is a boosting ensemble technique that consists of a
collection of individual decision trees. GBDT training occurs
sequentially, and the combined output of all trees contributes to
the final prediction using the gradient boosting methodology.
The residual error from the preceding decision tree serves as
input for the subsequent decision tree. This subsequent tree is
trained by following the direction of the negative gradient of
the previous decision tree. GBDT has gained popularity for
addressing various challenges in wireless networks due to its
precision, efficiency, and strong interpretability [13].

C. Categorical boosting (Catboost)

CatBoost builds on the principles of gradient boosting and
decision trees. At its core, boosting involves the sequen-
tial integration of multiple weaker models. Through gradient
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boosting, decision trees are sequentially fitted, enabling them
to learn from the errors of preceding trees and mitigate
those errors. This iterative process continues until the chosen
loss function is no longer being minimized, resulting in the
continual inclusion of new functions alongside existing ones.
Catboost can effectively address the issue of prediction bias,
leading to improved accuracy, reduced prediction times, and
notable efficiency, especially in low-latency settings [12].

D. Light Gradient Boosting Machine (LGBM)

LightGBM represents a form of gradient boosting methodol-
ogy, which originated as a successor to its precursor, XGBoost.
LGBM is engineered to excel in training larger datasets
within a significantly reduced timeframe while achieving
similar levels of accuracy compared to XGBoost. This effi-
ciency is enabled through a technique called Gradient-based
one-sided sampling (GOSS), which strategically extracts the
most valuable information by intentionally excluding samples
with lesser information (small gradients) within the dataset.
Additionally, LightGBM introduces an innovation known as
exclusive feature bundling (EFB) to curtail model complexity.
This is achieved by merging akin features in a nearly lossless
manner. LGBM boasts enhanced accuracy, increased com-
putational speed, and reduced utilization of system memory,
compared to many other gradient boosting frameworks [14].

IV. MACHINE LEARNING MODEL EVALUATION

A. Evaluation metrics

Regression models can be evaluated based on their (i)
accuracy, (ii) efficiency, and (iii) coverage or extension. Ac-
curacy measures how close the model’s predictions are to
the actual values based on error metrics, while efficiency
concerns computational resources required to train and use
the model, and is essential because regression models are
often used in real-time or resource-constrained applications.
Finally, coverage addresses the prediction uncertainty through
prediction intervals. It is typically expressed as prediction
intervals, which capture the uncertainty associated with the
model’s predictions.

The most extensive criterion for regression models is their
accuracy, which, as defined earlier, refers to how well the
model’s predictions match the actual numerical values in
the data set. This assessment of predictive performance is
numerically quantified using metrics such as the mean absolute
error (MAE), the mean absolute percentage error (MAPE), the
Mean Squared Error (MSE), and the Root Mean Squared Error
(RMSE). These metrics measure the accuracy of the model’s
predictions in terms of the magnitude of the errors and are
mathematically defined in the subsequent equations.

[15]:

MAE =
1

N

N∑
i=1

|RSSIi −RSSIi| (1)

MSE =
1

N

N∑
i=1

(RSSIi −RSSIi)
2 (2)

RMSE =

√√√√(
1

N
)

N∑
i=1

(RSSIi −RSSIi)2 (3)

MAPE =
1

N

N∑
i=1

|RSSIi −RSSIi
RSSIi

| × 100% (4)

where N denotes the test set number of input records, RSSI
represents the actual RSSI value, and RSSI the predicted one
for the i-th sample.

The MAE represents the mean of the absolute discrepancies
between the actual and predicted values. On the contrary, the
RMSE places greater emphasis on significant errors by squar-
ing the differences before extracting the square root. A reduced
RMSE signifies increased predictive accuracy, reflecting closer
alignment between predicted and actual values. The MSE
is frequently employed to gauge the efficacy of regression
models, determining the average squared divergence between
observed and projected outcomes. Meanwhile, MAPE, ex-
pressed as a percentage, facilitates comparisons of predictive
accuracy across various models or methods for estimating
RSSI values. Lower values of MAE, RMSE, or MAPE indicate
higher accuracy.

Among the metrics, MAPE is the perfect candidate to
measure the precision and possibly coverage of RSSI pre-
diction models in forest environments for several reasons.
First, it quantifies the relative error between the predicted and
actual RSSI values as a percentage. In forest environments,
where the absolute RSSI values can vary significantly due
to factors like tree density, terrain, and interference, using
a relative measure like MAPE can provide a clearer picture
of the prediction accuracy. Second, unlike MAE or RMSE,
which focus solely on the magnitude, MAPE displays both the
magnitude and tendency of errors. This is valuable in scenarios
where both overestimations and underestimations of RSSI can
have similar operational implications. While MAPE primarily
measures prediction accuracy, it indirectly provides insights
into prediction coverage. If MAPE is consistently high across
different parts of the dataset, it can suggest that the model is
struggling to accurately predict RSSI values across a range of
scenarios or conditions, indicating potential limitations in its
coverage. In a complementary analysis, coverage is typically
expressed in terms of confidence intervals of a prediction, as,
for example, depicted in residual box plots. However, despite
its advantages, it is vital to recognize that the MAPE has
certain limitations, such as sensitivity to extreme values and
its potential undefined status when actual values are zero.
Therefore, it is commonly paired with other metrics to provide
a comprehensive assessment of prediction performance [14].

B. Numerical Results

For the RSSI estimation in complex forested environments,
a dataset comprising 4,157,324 measurements collected from
2,218 wireless connections within the ARHO networks, is
utilized [11]. The complete set of RSSI values, accompanied
by their corresponding feature sets, was randomly split into
two groups: 80% of the data was employed for training,
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TABLE I
ERROR MEASUREMENT METRICS FOR PATH LOSS PREDICTION

ML Model MAE
(dBm)

MSE
(dBm)

RMSE
(dBm)

MAPE
(%)

XGBoost 2.884 20.006 4.472 3.738
LGBM 3.03 20.463 4.523 3.915
CatBoost 3.139 21.492 4.635 4.062
GBDT 4.075 29.888 5.467 5.267

while the remaining 20% was designated for testing. The
80/20 division is a commonly applied empirical guideline in
various scenarios. To assess our models, we employ the Scikit-
Learn open-source ML library, which is implemented using the
Python programming language. The parameters of each model
were tuned using the Optuna framework, as described in [16],
to exhibit their optimal performance, and were evaluated based
on the metrics related in Section III-D. For our experiments,
we exploit the capabilities of an NVIDIA GeForce RTX 3080
GPU with 8704 cores and 10GB of memory. The experiments
are executed in a workstation with a 12th Gen Intel(R)
Core(TM) i9-12900K CPU and 32 GB RAM.

The error evaluation performance of the suggested ensemble
ML models is depicted in Table I. XGBoost demonstrates
superior performance compared to the other algorithms con-
cerning the accuracy of RSSI predictions. It has consistently
outperformed all other methods in the performance metrics
mentioned earlier. XGBoost achieved an MAE of 2.884 dBm,
an MSE of 20.006 dBm, an RMSE of 4.472 dBm, and a
MAPE of 3.738%. Both LGBM and CatBoost models closely
approach the XGBoost performance, with MAPE values of
3.915% and 4.0621%, respectively. This suggests that LGBM
and CatBoost could serve as viable alternatives for the RSSI
prediction task, yet GBDT yields the least favorable outcome
with a MAPE value of 5.267%. On the basis of the metrics,
boosting ensemble methods seem to accurately estimate the
RSSI values even in a complex forested environment. In
general, the ensemble ML algorithms in this study are proven
superior in terms of accuracy in RSSI estimation, scoring
better results than most of the methods studied in [9]. The
evidence of this statement is shown in the comparison, in terms
of MAE, with the methods used in [9], that utilize the same
dataset, and is presented in Table II.

Fig. 1 is a scatter plot that illustrates the relationship

TABLE II
MAE COMPARISON

ML Model Contributing study MAE (dBm)
XGBoost [This study] 2.884
LGBM [This study] 3.030
CatBoost [This study] 3.139
GBDT [This study] 4.075
Random Forest [9] 3.720
k-nearest neighbors [9] 5.100
Neural Network [9] 5.150
Adaptive Boosting [9] 5.550

Fig. 1. Estimated versus real measurement values.

between the recorded values where the black line corresponds
to the optimal prediction scenario) and the predicted val-
ues generated by the best-performing ML technique, namely
XGBoost (shown as orange dots). The effectiveness of the
prediction model is reflected in the proximity of the prediction
dots to the line representing the actual measured test values.
The correlation visually indicates a minimal disparity between
the actual and forecast values, owing to the low MAPE values
in estimating RSSI.

Fig. 2 displays the comparative results of all techniques
in predicting RSSI values in a forested environment. As
illustrated, XGBoost outperforms the other methods, while
the worst performance is measured for the GBDT learner.
The suggested ensemble ML methods exhibit high precision
characteristics with respect to computation time.

To conclude on the coverage of the accuracy of our pre-
dictions we further compare our proposed models by means

Fig. 2. Comparative results of MAPE (%).
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Fig. 3. Box plot for predictions and true values residuals

of a residual box plot for the predicted and measured values
in Fig. 3. As expected, both biases and variances of XGBoost
are smaller than all other methods, suggesting that the residual
between true and predicted values is smaller, achieving greater
accuracy results. All the residual values are near zero when
compared to the magnitude of the response variable with the
number of outliers in all approaches being rather small.

RSSI is one crucial metric that is essential for various
processes and functionalities in mobile communication net-
works. RSSI is used to determine the strength of signals
from neighboring base stations and make informed decisions
regarding which base station to connect to and when to initiate
a handover between cells as the user moves. Furthermore,
Radio Resource Management (RRM) algorithms use RSSI to
manage radio resources efficiently, including user scheduling
algorithms. Such algorithms operate at millisecond timescales
on a per-user basis to ensure that each user receives an
adequate signal strength for reliable communication while
optimizing spectrum utilization. To this end, the efficiency of
an ML method is a critical consideration, particularly in real-
time resource-constrained deployments.

To understand the impact of the ensemble ML methods on
the computational performance, we evaluate efficiency based
on the average inference times recorded during testing. From
the results, which are depicted in Fig. 4, one can realize that all
models achieve relatively small inference times. Nonetheless,
the inference times exhibit a notable disparity among the
ensemble ML methods. XGBoost demonstrates the highest
inference time of , signifying a comparatively (more than
twenty times up) longer time for prediction tasks. On the
the other hand, LightGBM, CatBoost, and GBDT exhibit

significantly lower inference times, with CatBoost and LGBM
registering the shortest average inference time at 1.4 ms and
1.7 ms respectively. The results highlight that LightGBM and
CatBoost are the most efficient methods in terms of inference
times, followed closely by GBDT. XGBoost, while a powerful
ML method, exhibits comparatively higher inference times,
suggesting a potential trade-off between model complexity
and computational efficiency. The results also demonstrate the
close relation between accuracy and complexity.

Normalizing ML performance metrics like MAPE by in-
ference time can provide valuable insights into the trade-off

Fig. 4. Average inference time comparison results.
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TABLE III
PREDICTION AND ACCURACY NORMALIZATION

ML Model Prediction normalization Accuracy normalization
(%/ms) (ms/%)

XGBoost 0.1083 9.2295
LGBM 2.3029 0.4342
CatBoost 2.3894 0.4185
GBDT 1.1206 0.8923

between prediction accuracy and computational efficiency.
For illustrative purposes, Table III presents the trade-offs

for each algorithm in two columns: A prediction normalization
(PN) column, where the relative error distance per millisecond
is calculated, and an accuracy normalization column, where
the inference time in milliseconds per percentage of relative
error is given. Higher PN values suggest better efficiency,
while higher AN values offer better accuracy for the com-
putational resources used. CatBoost and LGBM exhibit the
highest PN value and stand out as the most efficient in this
aspect. While GBDT has relatively lower PN value, suggesting
a slower prediction error per unit of time, XGBoost is by far
the most inefficient. However, while CatBoost has the highest
PN value, it has the next lowest AN value. This implies that
while it is computationally efficient, it may sacrifice a bit of
accuracy compared to XGBoost and LGBM. XGBoost has the
highest AN value, which clearly indicates that it offers better
accuracy albeit at the expense of longer inference times.

V. CONCLUSION

In this study, we have introduced an ensemble-based pro-
cedure for ML modeling to estimate RSSI values within
intricate forested surroundings. We compared the effective-
ness of predicting RSSI using four distinct methods: GBDT,
XGBoost, LGBM, and Catboost. The results were promising,
showing that all the boosting ensemble methods achieved
substantial accuracy in estimation, exceeding the less effective
GBDT learner. In particular, XGBoost emerged as the superior
performer among the methods. This indicates that ensemble
ML techniques hold promise for addressing RSSI prediction
challenges and aiding future wireless network planning en-
deavors. In addition, results also show the computational effi-
ciency of the four methods in predicting RSSI values. Shorter
inference times, as demonstrated by LGBM and CatBoost,
enhance the suitability of these methods for applications where
low-latency predictions are essential. There remain potential
future tasks, such as extending and validating this framework
across various data frequencies, developing efficient feature
selection approaches, exploring different Deep Learning (DL)
techniques, and evaluating the framework’s performance in
diverse intricate environments.
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[1] S. Güzelgöz, H. Arslan, A. Islam, and A. Domijan, “A review of wireless
and plc propagation channel characteristics for smart grid environments,”
Journal of Electrical and Computer Engineering, vol. 2011, pp. 15–15,
2011.

[2] R. M. Sandoval, A.-J. Garcia-Sanchez, and J. Garcia-Haro, “Improving
rssi-based path-loss models accuracy for critical infrastructures: A smart
grid substation case-study,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 5, pp. 2230–2240, 2018.

[3] C. Phillips, D. Sicker, and D. Grunwald, “A survey of wireless path
loss prediction and coverage mapping methods,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 1, pp. 255–270, 2013.

[4] A. Gupta, J. Du, D. Chizhik, R. A. Valenzuela, and M. Sellathurai,
“Machine learning-based urban canyon path loss prediction using 28
ghz manhattan measurements,” IEEE Transactions on Antennas and
Propagation, vol. 70, no. 6, pp. 4096–4111, 2022.

[5] Y. Liu, J. Dong, W. Huangfu, J. Liu, and K. Long, “3.5 ghz outdoor
radio signal strength prediction with machine learning based on low-cost
geographic features,” IEEE Transactions on Antennas and Propagation,
vol. 70, no. 6, pp. 4155–4170, 2022.

[6] N. Moraitis, L. Tsipi, and D. Vouyioukas, “Machine learning-based
methods for path loss prediction in urban environment for LTE net-
works,” in 2020 16th international conference on wireless and mobile
computing, networking and communications (WiMob), 2020, pp. 1–6.

[7] J. Webber, N. Suga, S. Ano, Y. Hou, A. Mehbodniya, T. Higashimori,
K. Yano, and Y. Suzuki, “Machine learning-based rssi prediction in
factory environments,” in 2019 25th Asia-Pacific Conference on Com-
munications (APCC), 2019, pp. 195–200.

[8] N. Raj, “Indoor rssi prediction using machine learning for wireless net-
works,” in 2021 International Conference on COMmunication Systems
& NETworkS (COMSNETS), 2021, pp. 372–374.

[9] C. A. Oroza, Z. Zhang, T. Watteyne, and S. D. Glaser, “A machine-
learning-based connectivity model for complex terrain large-scale low-
power wireless deployments,” IEEE Transactions on Cognitive Commu-
nications and Networking, vol. 3, no. 4, pp. 576–584, 2017.

[10] A. Tahat, T. A. Edwan, M.-B. Dababseh, M. Nidal, M. Rumman,
and A. Arabiat, “A versatile machine learning-based vehicle-to-vehicle
connectivity model,” in 2023 19th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob),
2023, pp. 243–248.

[11] N. Moraitis, L. Tsipi, D. Vouyioukas, A. Gkioni, and S. Louvros, “On
the assessment of ensemble models for propagation loss forecasts in
rural environments,” IEEE Wireless Communications Letters, vol. 11,
no. 5, pp. 1097–1101, 2022.

[12] P. W. Khan and Y. C. Byun, “Optimized dissolved oxygen prediction
using genetic algorithm and bagging ensemble learning for smart fish
farm,” IEEE Sensors Journal, vol. 23, no. 13, pp. 15 153–15 164, 2023.

[13] W. Wang, X. Peng, Y. Yang, C. Xiao, S. Yang, M. Wang, L. Wang,
Y. Wang, L. Li, and X. Chang, “Self-training enabled efficient classifi-
cation algorithm: An application to charging pile risk assessment,” IEEE
Access, vol. 10, pp. 86 953–86 961, 2022.

[14] K. Raina, T. Alladi, V. Chamola, and F. R. Yu, “Detecting uav presence
using convolution feature vectors in light gradient boosting machine,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 4332–
4341, 2023.

[15] M. Jaffar, S. Shafiq, N. Shahzadi, N. Alrajeh, M. Jamil, and N. Javaid,
“Efficient deep learning models for predicting super-utilizers in smart
hospitals,” IEEE Access, vol. 11, pp. 87 676–87 693, 2023.

[16] S. S. Prasad, R. C. Deo, N. Downs, D. Igoe, A. V. Parisi, and J. Soar,
“Cloud affected solar uv prediction with three-phase wavelet hybrid con-
volutional long short-term memory network multi-step forecast system,”
IEEE Access, vol. 10, pp. 24 704–24 720, 2022.

2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN)

404
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 23,2024 at 08:00:54 UTC from IEEE Xplore.  Restrictions apply. 


