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Abstract—In this paper, we investigate the application of
hexagonal quadrature amplitude modulation (HQAM) in recon-
figurable intelligent surface (RIS)-assisted networks, specifically
focusing on its efficiency in reducing the number of required
reflecting elements. Specifically, we present analytical expressions
for the average symbol error probability (ASEP) and propose
a new metric for conditioned energy efficiency, which assesses
the network’s energy consumption while ensuring the ASEP
remains below a certain threshold. Additionally, we introduce
an innovative detection algorithm for HQAM constellations,
which demonstrates a substantial reduction in computational
complexity. Finally, our study reveals that HQAM significantly
enhances both the ASEP and energy efficiency compared to
traditional quadrature amplitude modulation (QAM) schemes.

Index Terms—HQAM, Reconfigurable Intelligent Surfaces
(RISs), Energy Efficiency, Average Symbol Error Probability,
Detection Algorithm

I. INTRODUCTION

Motivated by the rise of innovative applications such as
extended reality, smart industries, and autonomous vehicles,
there is a growing demand to enhance the capabilities of
wireless networks [1]. In this direction, a new wireless commu-
nication paradigm has emerged, named programmable wireless
environment (PWE), aiming to transform the wireless propa-
gation phenomenon into a software-defined process [2]. This
transformation necessitates coating propagation environments
with reconfigurable intelligent surfaces (RISs), which are
planar structures capable of modifying the characteristics of
the waves impinging upon them, including their direction and
polarization [3]. In more detail, RISs can be appropriately
configured to improve the quality of the wireless channels,
as well as direct intelligently signal propagation to reduce
power losses which is crucial for the sustainability of future
6G networks [4]. Thus, RISs can ensure seamless connectivity
for demanding futuristic applications but also enhance the
network’s energy efficiency, paving the way for ubiquitous
ultra-reliable green communications.

To reliably perform various RIS functionalities, it is rec-
ognized that a significant number of reflecting elements is
essential. However, considering that each element contributes
to the network’s power consumption through the tuning mech-
anism of their impedance, it becomes imperative to expand
the capabilities of digital communication systems to ensure

reliable performance with as few reflecting elements as pos-
sible. Within this context, hexagonal quadrature amplitude
modulation (HQAM) stands out as a novel modulation scheme,
due to its efficient and compact allocation of symbols on
the 2D plane [5], [6]. Specifically, HQAM represents an
appropriate modulation scheme for applications that prioritize
energy savings, owing to its hexagonal lattice’s ability to
maximize the use of available space, thereby leading to a
reduction in energy consumption. In this direction, by taking
into account the advantages of HQAM, the authors of [5]
provided a comprehensive comparison of HQAM over existing
QAM constellations and justify its supremacy in terms of
symbol error rate and energy efficiency. Furthermore, the
authors of [6] provided a tight closed-form approximation
for the symbol error probability of HQAM, as well as a
detection algorithm for HQAM constellations of O

Ä
log
√
M
ä

complexity. Finally, [7] investigated the effects of outdated
channel state information, pointing errors, and atmospheric
turbulence on the average symbol error probability (ASEP)
for a mixed FSO/RF system that utilizes HQAM. However, to
the best of the authors’ knowledge, there exists no work that
quantifies the effect of HQAM in an RIS-assisted network,
particularly in terms of reducing the number of reflecting
elements.

In this work, we analyze the performance of an RIS-
assisted network that utilizes HQAM scheme, focusing on its
potential to reduce the number of reflecting elements required
for maintaining high-quality communication. Specifically, we
derive analytical expressions for the ASEP and introduce
a novel metric named conditioned energy efficiency, which
evaluates the network energy efficiency while keeping the
ASEP below a predefined threshold. Furthermore, we propose
a novel detection algorithm for HQAM with O (1) complexity,
thereby enhancing the practical applicability of HQAM in fu-
ture wireless communication systems. Finally, our simulation
results reveal that HQAM offers significant improvements in
the ASEP and the energy efficiency of RIS-assisted networks
over traditional QAM schemes.

II. SYSTEM MODEL

We consider an uplink communication network that consists
of a single-antenna base station (BS) and a single antenna

2024 European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit): Physical Layer and Fundamentals 
(PHY)

979-8-3503-4499-8/24/$31.00 ©2024 IEEE 434

2024 EuCNC & 6G Summit - PHY 1570997173

1

20
24

 Jo
in

t E
ur

op
ea

n 
C

on
fe

re
nc

e 
on

 N
et

w
or

ks
 a

nd
 C

om
m

un
ic

at
io

ns
 &

am
p;

 6
G

 S
um

m
it 

(E
uC

N
C

/6
G

 S
um

m
it)

 | 
97

9-
8-

35
03

-4
49

9-
8/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

Eu
C

N
C

/6
G

Su
m

m
it6

00
53

.2
02

4.
10

59
70

99

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 23,2024 at 08:29:31 UTC from IEEE Xplore.  Restrictions apply. 



communication node (CN). Due to the harsh wireless propa-
gation environment, it is assumed that there is no direct com-
munication link available to facilitate the connection between
the CN and BS. To enhance the received power at the BS,
we employ a RIS with N reflecting elements which assists
the CN-BS communication by steering the CN transmissions
towards the BS. Therefore, considering the RIS reflection path,
the baseband equivalent of the received symbol at the BS can
be expressed as

y =
√

PtGlp

N∑
i=1

|hi1||hi2|e(ωi+arg{hi1}+arg{hi2})s+ w, (1)

where s is the transmitted symbol from a constellation C with
unitary average enegy, i.e., E[|Es]| = E[|s|2] = 1 where
E[·] denotes the expectation of a random variable (RV), while
|·| and arg{·} denote the magnitude and the argument of a
complex number, respectively. Also, Pt is the transmit power,
G = GtGr denotes the product of the CN and AP antenna
gains, and h1i and h2i are the complex channel coefficients
that correspond to the links between the CN and the i-th
reflecting element and between the i-th reflecting element and
the BS, respectively. More precisely, the RVs |h1i| and |h2i|
are assumed to follow Nakagami-m distribution with shape
parameter m and spread parameter Ω, which can describe
accurately realistic communication scenarios characterized by
severe or light fading. Moreover, w is the complex additive
white Gaussian noise (AWGN) with zero mean and standard
deviation σ2

n = N0, ωi is the phase correction term induced
by the i-th element, and lp is the path loss corresponding
to the CN-RIS-BS link. Specifically, lp can be modeled as
lp = C2

0

(
d0
d1d2

)n
, where n expresses the path loss exponent,

C0 denotes the path loss of CN-RIS and RIS-BS links at the
reference distance d0, while d1 and d2 denote the distances of
the CN-RIS and RIS-BS links, respectively.

To maximize the signal-to-noise ratio (SNR) at the receiver,
the phase shift of the i-th reflecting element ωi is ideally cho-
sen to nullify the combined phase shift arg{hi1}+ arg{hi2}
[3]. However, considering the reflecting elements’ impedance
being controlled by q PIN diodes, there are 2q distinct patterns
of phase shifts for each element. Therefore, the received signal
y can be rewritten as

y =
√

PtGlphs+ w, (2)

where h =
∑N
i=1|h1i||h2i|eϕi , and ϕi is a uniformly dis-

tributed RV over [−2−qπ, 2−qπ] [8]. Finally, by assuming per-
fect channel state information (CSI) knowledge, the received
symbol r can be obtained by performing channel inversion.

III. PERFORMANCE ANALYSIS

In this section, we extract analytical expressions for the
examined network’s ASEP and introduce a new metric named
conditioned energy efficiency, which quantifies the ratio of
the throughput to the network’s energy consumption under the
condition that ASEP remains below a predefined threshold.

The Symbol Error Probability (SEP) stands as one of
the most crucial metrics for assessing the performance of

Amplitude ρ

Ph
as

e
θ

Fig. 1: 64-HQAM constellation

TABLE I: Parameter kc for M -HQAM.

M 16 64 256 1024
k 0.8711505 0.5222431 0.3936315 0.2982858

a modulation scheme. However, due to HQAM hexagonal
lattices as shown in Fig. 1, evaluating the exact SEP is
challenging. Therefore, by approximating the area of the
regular hexagons with a circle as shown in [6], the SEP can
be tightly approximated as

Ps(γr, kc) ≈
2M − b

2M
e−γrB +

b

M
Q (

√
γrA) , (3)

where Q(x) = 1√
2π

∫∞
x

exp
Ä
−u

2

2

ä
du is the Gaussian Q-

function, γr is the received SNR, B =
d2mink

2
c

3Es
+
d2minkc(1−kc)√

3Es
+

d2min(1−kc)
2

4Es
and A =

√
2d2mink

2
c

3Es
+
√

d2min(1−kc)2
2Es

, respectively.
Moreover, dmin denotes the nearest-neighbour distance and is
expressed as

dmin =

 
12Es

7M − 4
, (4)

and b denotes the number of the constellation’s external
symbols [6]. Finally, by taking into account the constellation
order M , the values of kc is given in Table I. However,
considering the existence of fading channels in the examined
scenario, it is imperative to derive the probability density
function (PDF) f|h|(·) of |h|, to derive the ASEP of the
considered RIS-assisted network. To this end, we provide a
closed-form expression that tightly approximates the PDF of
the considered channel h.

Proposition 1: The PDF of |h| for the considered RIS-
assisted network can be tightly approximated as

f|h|(x) ≈
2mt

mt

Γ(mt)Ωt
mt

x2mt−1e
−mtx

2

Ωt , (5)

where Γ(·) is the gamma function, mt =
I21

I2−I21
, Ωt = I21 and

I1, I2 are given by (6) and (7) at the top of the next page,
respectively.

Proof: Considering that N is large, by applying the
moment-matching technique [9], |h|2 can be approximated as
a gamma-distributed RV with scale parameter kt =

I21
I2−I21

and

shape parameter θt =
I2−I21
I1

, where I1 and I2 are the first and
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I1 = N

(
Ω2 + (N − 1)

Ç
2qΩsin

(
π
2q

)
Γ
(
m+ 1

2

)
mπΓ (m)

å2
)

(6)

I2 =N(N − 1)(N − 2)(N − 3)

Ç
Γ
(
m+ 1

2

)
Γ(m)

å8
Ω4

m4

24q

π4
sin4

( π

2q

)
+ 4N(N − 1)

Ç
Γ
(
m+ 3

2

)
Γ(m)

å2
Ω3

m3

4q

π2
sin2

( π

2q

)
+N(N − 1)(N − 2)Ω2

Ç
Γ(m+ 1

2
)

Γ(m)

å4
Ω2

m2

Å
22q+1

π2
sin2

( π

2q

)
+ 4

Å
1

2
+

2q−2

π
sin
( π

2q−1

)ã 4q

π2
sin2

( π

2q

)ã
+N

Å
Γ(m+ 2)

Γ(m)

ã2 Ω4

m4
+N(N − 1)

Å
Ω4 +Ω4

Å
1 +

22q−2

π2
sin2

( π

2q−1

)ãã (7)

the second moment of |h|2, hence |h| can be approximated
as a Nakagami-m RV with shape parameter mt = kt and
scale parameter Ωt = ktθt. Therefore, to tightly approximate
f|h|(x), we need to calculate I1 and I2, which are equal to
E[|h|2], and E[|h|4], respectively. Initially, after some algebraic
manipulations, |h|2 and |h|4 can be expressed respectively as

|h|2 =

N∑
i=1

N∑
j=1

|h1i||h2i||h1j ||h2j |cos(ϕi − ϕj), (8)

and

|h|4 =

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

|h1i||h2i||h1j ||h2j ||h1k||h2k|

×|h1l||h2l|cos(ϕi − ϕj)cos(ϕk − ϕl).

(9)

By observing (8) and (9), it becomes evident that I1 and I2
will consist of N2 and N4 terms, respectively. In more detail,
considering that E[·] is a linear operator, E[|h|2] and E[|h|4]
are equal to the sum of the mean values of each term of the
summation. To this end, by identifying the expression of each
term and calculating its mean value, we can obtain I1 and I2.
In this direction, for the case of I1, the summation terms are
the following:

• N2 −N terms: |h1i||h2i||h1j ||h2j |cos(ϕi − ϕj), if i ̸= j,
• N terms: |h1i|2|h2i|2, if i = j.

Therefore, I1 can be expressed as

I1 =
Ä
N2 −N

ä
E
[
|h1i||h2i||h1j ||h2j |cos(ϕi − ϕj)

]
+NE

[
|h1i|2|h2i|2

]
.

(10)

By taking into account that |h1i|, |h2i|, |h1j |, |h2j |, and
cos(ϕi − ϕj) are independent RVs with each other, I1 can
be rewritten as

I1 =
Ä
N2 −N

ä
E
[
|h1i|

]
E
[
|h2i|

]
E
[
|h1j |

]
× E

[
|h2j |

]
E
[
cos(ϕi − ϕj)

]
+NE

[
|h1i|2

]
E
[
|h2i|2

]
.

(11)

Moreover, considering that |h1i| and |h2i| are Nakagami-
m distributed RVs and that ϕ is a uniformly distributed
RV over [−2−qπ, 2−qπ], after some algebraic manipulations,
we derive that E

[
|h1i|

]
= E

[
|h2i|

]
= Γ(m+1/2)

Γ(m)

(
Ω
m

) 1
2 ,

E
[
|h1j |2

]
= E

[
|h2j |2

]
= Γ(m+1)

Γ(m)

(
Ω
m

)
and E

[
cos(ϕi −

ϕj)
]

= 4q

π sin2
(
π
2q

)
, thus we can calculate I1 as in (6).

Similarly, by identifying the different terms of (9), we can
obtain (7), thus enabling the calculation of mt and Ωt, which
concludes the proof.

Next, we provide the ASEP for the considered RIS-assisted
network for the case where s belongs to an M -ary HQAM
constellation.

Proposition 2: For the case where s belongs to an M -ary
HQAM, the ASEP of the considered RIS-assisted network can
be tightly approximated as

Pa ≈ 2M − b

2M

Å
m̃t

m̃t +
B
Ωt

γ̄

ãm̃t

+
b

M
P1, (12)

where γ̄ =
PtGlp
σ2
n

, m̃t = ⌊mt⌉, where ⌊·⌉ is the round function,
and P1 is given as

P1 =
1

2
− 1

2

mt−1∑
z=0

mt
z
√

A2γ̄(2z)!

(4Ωt)z
»

A2γ̄ + mt
Ωt

(A
2γ̄
2

+ mt
Ωt

)zz!
. (13)

Proof: The ASEP for the considered RIS-assisted network
for the case where M -HQAM is utilized is written as

Pa =

∫ ∞

0

Ps(x
2γ̄, k)fx(x) dx. (14)

By substituting (3) and (5) in (14), we obtain that

Pa =
(2M − b)mt

mt

MΓ(mt)Ωt
mt

∫ ∞

0

e
−x2(γ̄B+

mt
Ωt

)
x2mt−1 dx,

+
2bmt

mt

MΓ(mt)Ωt
mt

∫ ∞

0

Q
(
x
√
γ̄A
)
x2mt−1e

−mtx
2

Ωt dx.

(15)

By utilizing the equation Q(x) = 1
2 −

1
2erf(

x√
2
), where erf(·)

is the error function, and approximating mt with ⌊mt⌉ the
integrals in (15) can be calculated as in [10, (3.461/3)] and
[11, (2.6.2/1)], which concludes the proof.

Next, we define the conditioned energy efficiency metric,
which quantifies the network’s energy efficiency under the
condition that ASEP remains below a predefined threshold.

Definition 1: The conditioned energy efficiency of a wireless
communication system that utilizes an M -ary constellation
is defined as the ratio of the network’s throughput to the
network’s energy consumption, under the condition that ASEP
remains below a predefined threshold, and can be expressed
as

Ec = U(Pf − Pv)
(1− Pf )Blog2 (M)

Pc
, (16)
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where U(·) is the unit step function defined as U (x) = 1, if
x ≥ 0 and U (x) = 0, otherwise, Pf and B are the network’s
ASEP and bandwidth, respectively, Pv is the ASEP threshold,
and Pc is the network’s power consumption.

Considering the above definition, by substituting (12) in
(16), the conditioned energy efficiency for the examined
communication scenario is given as

Ec = U(Pa − Pv)
(1− Pa)Blog2 (M)

Pt + Pctr + qNPPIN
, (17)

where Pctr is the power consumption of the RIS controller,
and PPIN is the power consumption of each PIN diode.

IV. DETECTION SCHEME

Incorporating HQAM into communication systems can
significantly boost the system’s energy efficiency. However,
current research highlights that the detection algorithms for
HQAM are more complex compared to those for traditional
constellations (e.g., QAM), leading to a less favorable perfor-
mance of HQAM in real-world applications. To address this
issue, in this section, we introduce an innovative detection
algorithm tailored for HQAM constellations that achieves a
computational complexity of O(1), while maintaining perfor-
mance levels comparable to the optimal maximum likelihood
detection (MLD).

The key idea of our algorithm lies in identifying po-
tential constellation symbols close to the received symbol
r = xr + jyr, thereby reducing the necessary number of
computed Euclidean distances between r and the constellation
symbols. Within this framework, we etch a circle centered on
r with a radius of Rm = dmin and then define the regions
R1 = [X1, X2] and R2 = [Y1, Y2], where X1, X2, Y1, and Y2

are the tangent lines of the circle which are parallel to the axes,
as illustrated in Fig. 2. The detection process is completed by
obtaining the symbol ŝ ∈ G = R1 ∩ R2 with the minimum
Euclidean distance from r. To accomplish this, it becomes
evident that we need to identify the constellation symbols that
are contained within the region G. In this direction, we store
all the real values xi of the constellation symbols in ascending
order within set Sx. Afterwards, we construct Axi , a two-
column adjacent matrix for xi, which is sorted in ascending
order with respect to the values of its second column. In more
detail, the first column enlists the constellation symbols with
a real part equal to xi, and the second column denotes their
corresponding imaginary parts, and it is described as

Axi =

si,1 Im(si,1)
...

...
si,p Im(si,p)

 , (18)

where p denotes the number of symbols that their real part
equals to xi.

To design an O(1) detection algorithm tailored for HQAM
constellations, it is essential to exploit their structure and the
arrays Sx and Ax. In this direction, by noting that for an
HQAM constellation the values in Sx and the values in the
second column of Ax increase with a constant rate, we can

formulate a linear interpolation function f(·) that returns the
position of its input in the arrays, and thus, find the constella-
tion symbols within G in O(1) time complexity. In particular,
when the input value u of f matches one of the array elements,
f returns an integer value representing the position of u in the
array. Conversely, if u is not an array element, f yields a non-
integer value, where rounding this value results in the position
of Sx with the closest corresponding value to u. Therefore,
given that the elements of Sx are equispaced by dmin

2 due to
the HQAM geometry, we can define the linear interpolation
function fχ : R→ R, which is given by

fχ(u) =
2

dmin
u+ 1− 2x1

dmin
, (19)

where x1 is the first element of Sx. To this end, by utilizing
(19), we can obtain the positions of the different xi ∈ Sx that
satisfy X1 ≤ xi ≤ X2, which are given as

⌈fχ(X1)⌉ ≤ i ≤ ⌊fχ(X2)⌋, (20)

where ⌈·⌉ and ⌊·⌋ are the ceil and floor functions, respectively.
In a similar manner, given that the elements of Axi

are
equispaced by

√
3dmin

2 due to the HQAM geometry, we can
also define the linear interpolation function fψ,i : R → R,
which is given by

fψ,i(v) =
2√

3dmin

v + 1− 2Axi(1, 2)√
3dmin

, (21)

where Axi
(1, 2) is the first element of the second column

of the 2D matrix. Therefore, the j-th element of the second
column of Axi that satisfies Y1 ≤ Im(si,j) ≤ Y2 can be
obtained as

⌈fψ,i(Y1)⌉ ≤ j ≤ ⌊fψ,i(Y2)⌋. (22)

Consequently, we can obtain the set Sc that contains the
symbols within G which can be expressed as

Sc = {s : s = Axi(j, 1)}, (23)

where Axi
(j, 1) is the j-th element of the first column of Axi

.
Finally, the symbol that the proposed detector determines is
obtained by

ŝ = arg min
s∈Sc

|r − s|2. (24)

It should be highlighted that |S| ≤ 6 for any M -ary HQAM
constellation, thus, instead of comparing M symbols, as the
conventional MLD describes, we only need to calculate 6
Euclidean distances at most for any HQAM constellation.

To ensure that the aforementioned algorithm operates prop-
erly the region G must contain at least one symbol. However,
under low-SNR conditions, it becomes quite possible that the
received symbol is located far away from any other constella-
tion symbol, thus, resulting in an empty region G. To tackle
this, we initialize arrays Qe, e = {1, 2, 3, 4}, with the external
symbols of the constellation. These symbols are chosen such
that at least a portion of their infinite decision region falls
within the e-th quadrant of the 2D plane. Subsequently, when
the received symbol r is situated in the e-th quadrant, we
make a decision by selecting the symbol z from array Qe with
the smallest Euclidean distance to r. The time complexity of
linearly traversing array Qe to locate symbol z is O(

√
M).
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Rm

r

Y1

Y2

X1

X2

Fig. 2: Detection scheme of HQAM

Algorithm 1 Detection algorithm

Input: Coordinates of the received symbol r
Output: Detected symbol

1: Etch a circle with center r and radius Rm.
2: Calculate points Y1, Y2.
3: Calculate points X1, X2 .
4: ŝ← null
5: Sc ← null
6: Qe are initialized
7: x = fχ(Sx, X1, X2)
8: for xi in x do
9: si,c = Axi

(fψ,i(Ai(:, 2), Y1, Y2), 2)
10: APPEND(Sc, si,c)
11: end for
12: if Sc is not null then
13: ŝ = argmins∈Sc

|r − s|2
14: end if
15: if Sc is null then
16: e← quadrant of r
17: ŝ = argmins∈Qe |r − s|2
18: end if
19: return ŝ

V. NUMERICAL RESULTS

In this section, we provide numerical results for the consid-
ered network and validate the derived analytical expressions
via Monte Carlo simulations with 106 realizations. Specifi-
cally, we assume that the transmit power Pt = 10−3 dB, the
reference distance d0 is set at 1 m, while C0 and σ2

n are set
equal to −30 dB and −140 dB, respectively. Moreover, we
assume that both BS and CN antennas are omnidirectional,
i.e., Gt = Gr = 1, the path loss exponent n equals to 2.5,
while the distances d1 and d2 are equal to 20 m and 60 m. In
addition, both CN-RIS and RIS-BS links are assumed to be
affected by Nakagami-m fading with shape parameter m = 3
and scale parameter Ω = 1, respectively, whereas Pctr and
PPIN are given equal to 50 mW and 1 mW.

In Figs. 3a and 3b, we present the ASEP of HQAM and
QAM constellations for M = 64 and M = 1024, respectively.
As it can be observed, the simulation results validate the
tightness of the proposed ASEP approximation of an HQAM

constellation, demonstrating the precision of our analysis.
Moreover, it can be seen that the adoption of HQAM leads
to a reduction in the number of required RIS elements, N ,
in comparison to conventional QAM, which enhances the
cost-effectiveness of the system, as fewer reflecting elements
are required. Additionally, as M increases, the superiority
of HQAM compared to QAM becomes increasingly evident,
attributed to the denser symbol allocation on the IQ plane,
which enhances spatial efficiency. Furthermore, an increase in
the quantization level, q, results in a decrease in the ASEP
for both modulation schemes, indicating that a higher quanti-
zation level can improve network performance. However, the
transition from q = 1 to q = 2 showcases a more significant
performance gain than the progression from q = 2 to q = 3
for both M = 64 and M = 1024. Therefore, it becomes clear
that increasing q beyond 2 is not a practical approach, as it
fails to offer significant performance improvements and results
in higher power consumption, highlighting the necessity for a
cautious selection of q to enhance system performance and
efficiency.

Fig. 4 illustrates the constrained energy efficiency Ec nor-
malized to the network’s bandwidth of HQAM and QAM
constellations across varying q, considering a targeted ASEP
of Pu = 10−5. Notably, for all the examined q values,
HQAM consistently requires a reduced number of reflecting
elements to achieve the desired Pu, thus highlighting HQAM’s
contribution to energy efficiency enhancement. Furthermore,
despite q = 1 showing the highest ASEP value for both
HQAM and QAM, it is identified as the most favorable option
in terms of Ec compared to q = 2 and q = 3, attributed to
the significant rise in energy consumption that accompanies
increasing q. Therefore, Fig. 4 underlines the importance of
appropriate selection of q to not only meet performance criteria
but also to minimize energy consumption, thus emphasizing
the pivotal role of HQAM in achieving enhanced energy
efficiency.

Finally, in Fig. 5, we show the detection accuracy of the pro-
posed detection algorithm in comparison to the conventional
MLD. Notably, the error rates in detection for the proposed
approach are similar to those of MLD, thus our detection
algorithm provides the same level of accuracy as MLD, while
significantly reducing time complexity from O(M) to O(1).
Consequently, our algorithm can assist in cases of large M ,
where the complexity of conventional MLD increases linearly
with M , whereas the complexity of our algorithm remains
constant regardless of the value of M .

VI. CONCLUSIONS

In this work, we explored the application of HQAM in
RIS-assisted networks, focusing on its potential to minimize
the number of reflecting elements. Specifically, we developed
analytical expressions for the ASEP and introduced a novel
metric for conditioned energy efficiency, assessing the net-
work’s energy efficiency while maintaining ASEP below a
threshold value. Our findings, validated through Monte Carlo
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Fig. 3: ASEP versus number of elements

simulations, highlighted HQAM’s superiority in energy effi-
ciency and ASEP over traditional QAM, offering significant
insights for future wireless systems.
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