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Abstract—In this paper, we study the fundamental limits of

simultaneous lightwave information and power transfer (SLIPT)
systems over channels with path loss and lognormal fading condi-
tions. We consider a system with a single transmitter transferring
information to a photodiode-based receiver as well as transferring
energy to a photovoltaic cell receiver. In particular, we study
the information-energy capacity region and the optimal input
distribution under (a) peak-power and average-power constraints
at the transmitter, and (b) the minimum harvest energy at
the energy harvesting receiver. To this end, an expression for
the transition probability distribution function of the lognormal
channel is derived. By extending Smith’s framework and using
Hermite polynomial bases, we prove that the optimal input
distribution is discrete with a finite number of mass points.
Information-energy capacity region for SLIPT over lognormal
channel conditions is illustrated and compared with the case of
additive white Gaussian noise channel.

Index Terms—Simultaneous lightwave information and power
transfer, optimal input distribution, information-energy capacity
region, lognormal channel.

I. INTRODUCTION

Optical wireless communication (OWC) has been recog-
nized as a promising technology to achieve high speed, low
latency, and highly secure communication. Thanks to the use
of the optical spectrum, OWC overcomes the current spectrum
limitation of radio frequency (RF) technology, and hence
is suitable for many applications in future wireless systems
such as 6G networks. OWC has been categorized into many
technologies depending on the application environment, such
as free-space optical communication, visible light communica-
tion, light-fidelity, underwater optical wireless communication,
and non-terrestrial satellite communication [1]. Light-emitting
diodes (LEDs)/laser diodes (LD) are used as transmitters,
while photodiodes (PD)/photovoltaic (PV) cells are used for
receivers. Moreover, the existing lighting infrastructures can
be easily adapted for simultaneous illumination, information
transfer, and lightwave power transfer [1].

Recently, simultaneous lightwave information and power
transfer (SLIPT) has emerged as a new communication
paradigm that exploits optical signals for the dual purpose
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of information and energy transfer [2], [3]. Specifically,
SLIPT is promising to charge batteries in energy-deprived
devices/sensors efficiently, specifically in applications where
other wireless charging methods are challenging, such as
underwater, inter-satellite, vehicular, and indoor systems [3].
In the foundational analysis of SLIPT in [2], the maximization
of energy transfer is considered while satisfying quality of
service constraints. In [4], the minimum rate maximization and
the transmit power minimization problems have been studied.
Various SLIPT policies, receiver designs, and applications
have been presented in [5]. The rate-power tradeoff in SLIPT
has been studied in [6]. Moreover, SLIPT has been used in
various use cases [7]–[9]. In [7], a beamforming design in a
multi-cell setup has been investigated to maximize the data
rate. In [8], resonant beams have been used to demonstrate
highly efficient energy transfer. Finally, SLIPT has also been
applied to underwater communication systems in [9].

It is well known that closed-form expressions for the exact
capacity of OWC systems are unknown, and thus, several
lower and upper bounds have been derived [10], [11]. Fur-
thermore, the study of the information-energy capacity region
of SLIPT has been limited, with a bound presented in [12].
Most of the aforementioned studies on SLIPT systems focus
on simple additive white Gaussian noise (AWGN) channels
with a static path loss, and therefore the impact of the
channel fading on the optimal input distribution has not been
investigated. However, SLIPT systems undergo fading effects
and several fading models have been used in the literature,
i.e., lognormal, gamma-gamma, generalized gamma, and ex-
ponential gamma [13]. As a widely used fading model, the
lognormal distributions have been used to model the fading in
underwater weak turbulence conditions, over-the-air systems
with fog/weak atmospheric turbulence conditions [13], [14].
Hence, it is crucial to study the exact information-energy
capacity region and the optimal input distribution of SLIPT
systems under lognormal fading conditions for future wireless
system designs.

On the other hand, OWC transmitters are subjected to peak-
power (PP) and average-power (AP) constraints. To avoid the
non-linear distortions in the transmit signals, LED/LD needs
to be operated in the linear operation range. This imposes a PP
constraint on the transmit signal [10], [11]. Moreover, an AP
constraint is required due to safety reasons (eye safety) and
practical implementation limitations [11]. In SLIPT systems,
the energy harvesting (EH) receiver is required to harvest a
certain average harvest energy level in order to maintain the
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Fig. 1. A SLIPT system over a lognormal-fading channel with an LED/LD
transmitter, a PD-based information decoder, and a PV cell EH receiver.

battery charging or to device operations, which impose an
EH constraint [4]. Despite the use of the linear EH model
in the literature [4], some papers focus on a nonlinear EH
model [9], [12] that fit well with hardware requirements. To
the best of the authors’ knowledge, this is the first work that
studies the information-energy capacity region and optimal
input distribution of SLIPT systems with PP, AP, and EH
constraints and nonlinear EH model over lognormal-fading
channels from an information-theoretic standpoint.

This paper studies the information-energy capacity region
for SLIPT systems over lognormal-fading channels. Specifi-
cally, a system that transmits data to an information receiver
and lightwave power to an EH receiver using a single trans-
mitter is considered. We consider a lognormal-fading channel
with a path loss and consider PP, AP, and EH constraints. An
expression for the transition probability distribution of the log-
normal channel is derived. By using Smith’s framework [15],
a Hermite polynomial base, and the transition probability of
the channel, we show that the optimal input distribution is
discrete with a finite number of mass points. The information-
energy capacity region of the considered system is illustrated
and compared with the conventional AWGN channel.

II. SYSTEM MODEL

We consider a SLIPT system over a lognormal channel,
wherein the transmitter is comprised of a single, narrow-beam
LED/LD. A PD receiver is used for information reception and
a PV cell receiver is used for lightwave EH, as detailed in
previous works [2], [3], [5]. The transmitter uses intensity
modulation (IM), and hence, the instantaneous output optical
power is proportional to the driving current signal. At the
receiver, direct detection (DD) is used, and hence, a current
is generated through the PD/PV cell that is proportional to
the incident optical power. The generated current signals from
the PD and the PV cell are separately sent for information
decoding and EH. The harvested energy from the PV cell
receiver can be used to charge a battery while the received
signal from the PD is first sent through a trans-impedance
amplifier to convert it to a voltage signal and then goes through
the decoding stage [4]. A system diagram of this model is
depicted in Fig. 1.

A. Channel Model
The channel gain from the LED/LD to the PD can be

modeled using h1 = h1,lhT , where h1,l is the path loss,
and hT is the lognormal distributed turbulence-induced fading.
h1,l is deterministic and depends on the transmitter-receiver
geometry. It can be expressed as [16]

h1,l = ηtηre
−c(λ)l
cos θPD

APD cos θPD

2πl2(1− cos θ0)
, (1)

where ηt and ηr are the optical efficiencies of the transmitter
and receiver, respectively, c(λ) is the extinction coefficient of
the channel, λ is the optical wavelength, l is the perpendicular
distance between the transmitter plane and the receiver plane,
θ0 is the transmitter beam divergence angle, θPD is the angle
between the perpendicular axis to the receiver plane and the
transmitter-PD trajectory, and APD is the PD aperture area.

The lognormal distribution is used to model the fading
coefficient hT in weak turbulence conditions in OWC, (i.e.,
weak oceanic turbulence and weak atmospheric turbulence).
Its probability density function (pdf) is given by [13], [17]

phT
(hT ) =

1

2hT

√
2πσ2

Xl

exp

(
− (lnhT − 2µXl

)2

8σ2
Xl

)
. (2)

The fading coefficient in the above takes the form hT = e2Xl ,
where Xl is the fading log-amplitude, which is Gaussian
distributed with mean µXl

and variance σ2
Xl

. Normalizing the
fading coefficient to ensure that fading does not affect the
average power leads to µXl

= −σ2
Xl

. We assume that the
channel gain between the LED/LD to the PV is static, and
hence, it can be modeled as h2 = h2,l, where h2,l is the
geometric path loss from the LED/PD transmitter to the PV
cell receiver. It can be obtained by replacing APD and θPV

in (1) with APV and θPV , respectively, where APV is the
effective area of the PV cell and θPV is the angle between the
perpendicular axis to the receiver plane and the transmitter-PV
cell trajectory.
B. Information Transfer

We consider a memoryless discrete-time lognormal chan-
nel [18]. Let x ∈ R+ be the transmit signal. For a given
A > 0, and ε > 0, its PP and AP constraints are 0 ≤ x ≤ A,
and E{x} ≤ ε [11]. The received electrical signal at the
information receiver is expressed as

y = aRPh1x+ n, (3)

where a is the electrical-to-optical conversion efficiency at the
LED/LD, RP is the responsivity of the PD, and n is the real
AWGN with zero mean and variance σ2

g , i.e., n ∼ N (0, σ2
g).

C. Power Transfer

To perform EH, the PV receiver generates a current from
incident optical power and stores charges in a battery. The
received current signal at the PV receiver is expressed as

y′ = aREh2x, (4)

where RE is the responsivity of the PV cell. The effect of the
noise can be neglected in PV cell receivers1. The harvested
energy at the EH receiver for the time duration T is expressed
as [2], [9]

EH = fETIsVoc, (5)

where fE is the fill factor of the PV cell, Is is the shunt
current, and Voc is the open circuit voltage. Within our

1In practical systems, the noise power at the PV receiver is negligible
compared to the signal power [5].
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mathematical framework, Is is expressed as aREh2x, i.e.,
the received current signal at the PV receiver, and Voc is
vt ln

(
1 + aREh2x

I0

)
, where vt is the thermal voltage, and I0 is

the dark saturation current [2]. Combining these expressions
and taking the expectation, the average harvest energy can be
expressed as

ĒH = E
{
fEvtTaREh2x ln

(
1 +

aREh2x

I0

)}
. (6)

To satisfy the EH requirement at the receiver, ĒH needs to be
greater than the given threshold value, Eth, i.e., Eth ≤ ĒH .

D. Problem Formulation

We form an optimization problem to maximize the mutual
information between the channel input X and the channel
output Y subject to PP and AP constraints at the transmitter,
and a minimum harvested energy constraint at the EH receiver.
The optimization problem is expressed as

max
F ∈ FA

I(F ) =

∫ A

0

∫
y

p(y|x) log2
p(y|x)
p(y;F )

dydF (x) (7a)

s.t. E{X} ≤ ε, (7b)
E {bX ln (1 + cX)} ≥ Eth, (7c)

where b = fEvtTaREh2 and c = aREh2/I0 are constants,
FA is the set of all input distributions that satisfy the PP
constraint, i.e., FA =

{
F ∈ F ,

∫ A

0
dF (x) = 1

}
, and F is the

set of all possible input distributions. The mutual information
between random variables X and Y of input and output, re-
spectively, can be written as a function of the input distribution
F ,

I(F )
△
=

∫ A

0

i(x;F )dF (x), (8)

where i(x;F ) =
∫
y
p(y|x) log2

p(y|x)
p(y;F )dy is the marginal

information density. Denote by gj : F → R with j ∈ {1, 2}
the following functions

g1(F )
△
=

∫ A

0

xdF (x)− ε, (9)

g2(F )
△
= Eth −

∫ A

0

bx ln(1 + cx)dF (x), (10)

and, let Ω be the set of all input distributions, such that

Ω =

{
F ∈ F ;

∫ A

0

dF (x) = 1; gj(F ) ≤ 0; j ∈ {1, 2}

}
. (11)

Hence, the optimization problem in (7) could be written in the
compact form as C = sup

F∈Ω
I(F ).

III. OPTIMAL INPUT DISTRIBUTION

We study the properties of the capacity-achieving distribu-
tion of the SLIPT system, the solution to the optimization
problem in (7). To this end, the mathematical framework
proposed in [15] is extended to the lognormal channel with a
EH receiver. Firstly, Theorem 1 establishes the existence and

the uniqueness of the optimal input distribution. Secondly, by
using the Lagrangian Theorem, the dual equivalent problem
is given by Corollary 1. Thirdly, we provide necessary and
sufficient conditions for the optimal input distribution in
Theorem 2 and extend to a more useful set in Corollary 2.
Finally, we show that the capacity-achieving input distribution
is discrete in Theorem 3.

Theorem 1. The capacity C is achieved by a unique input
distribution F ∗, i.e.,

C = sup
F∈Ω

I(F ) = I(F ∗). (12)

Proof. The proof follows a similar approach as in [18].

Corollary 1. The strong duality holds for the optimization
problem in (12). i.e., there are constants, λj ≥ 0, for j ∈
{1, 2} such that

C = sup
F∈Ω

I(F )−
2∑

j=1

λjgj(F ). (13)

Proof. The proof follows a similar approach as in [18].

Theorem 2. F ∗ is the capacity-achieving input distribution,
if and only if, ∀F ∈ Ω there exist λj > 0, for j ∈ {1, 2} such
that ∫ A

0

{i(x;F ∗)− λ1x+ λ2bx ln(1 + cx)} dF (x)

≤ C − λ1ε+ λ2Eth. (14)

Proof. The proof follows a similar approach as in [19].

Corollary 2. Let Supp(F ∗) be the points of support of a
distribution F ∗. Then, F ∗ is the optimal input distribution,
if there exist λ1 ≥ 0, and λ2 ≥ 0, such that

λ1(x− ε)− λ2(bx ln(1 + cx)− Eth) + C

−
∫
y

p(y|x) log2
p(y|x)
p(y;F ∗)

dy ≥ 0, (15)

for all x, with equality if x ∈ Supp(F ∗).

Proof. The proof follows a similar approach as in [19]. Due
to the space limitations, we do not provide it here.

In the following, we will show that the equality in Corollary
2 can not be satisfied in a set that has an accumulation point,
hence the support of F ∗ must be discrete. The discretness
property of the optimal input distribution is given by the
following theorem,

Theorem 3. The optimal input distribution that achieves the
capacity in (7) is discrete with a finite number of mass points.

Proof. The proof is presented in Appendix A.
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Fig. 2. Information-energy capacity region with different PP constraints; P =
30 dB.
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Fig. 3. Effect of the channel on the information-energy capacity region;
A = 7, P = 30 dB.

IV. NUMERICAL RESULTS AND DISCUSSION

We characterized the optimal input distribution for a log-
normal channel with AP, PP, and EH constraints. Now, we
numerically evaluate the information-energy capacity region
by using a numerical solver such as CVX [20]. Unless stated
otherwise, the parameter values are set to, a = 20 W/A,
RP = 0.5 A/W, RE = 0.75 A/W, fE = 0.5, T = 1 s,
vt = 25 mV, I0 = 10−9 A, ηt = ηr = 1, c(λ) = 0.03 m−1,
l = 10 m, θ0 = 10◦, θPD = 0◦, θPV = 5◦, APD = 0.001
m2, APV = 0.01 m2, Eth = 1 mJ, σ2

g = 10−12, and
σ2
Xt

= 0.1 [2], [4], [9].
Fig. 2 shows the information-energy capacity region for

different PP constraints. The region corresponding to this sce-
nario is determined through the resolution of the optimization
problem presented in (7). A notable trade-off emerges between
the information rate sent to the information decoder and the
energy rate to the EH receiver. This trade-off becomes apparent
as higher EH constraints lead the transmitter to choose a
symbol with greater amplitude, consequently reducing the
performance of information transfer. It is noteworthy that, for
lower amplitude constraints, there is no trade-off between the
two objectives. In this regime, the optimal input distribution
is binary, maximizing both information and energy transfer
simultaneously.

Fig. 3 highlights the impact of the channel on the

information-energy capacity region. The comparison reveals a
noticeable gap between the two regions, and this discrepancy
is primarily attributed to the adverse effects introduced by
the lognormal channel. Specifically, we observed that the
information energy capacity region of the Gaussian channel
outperforms that of the lognormal channel. This gap in per-
formance can be attributed to the inherent characteristics of
the lognormal channel, which introduces challenges such as
signal attenuation and fluctuations.

V. CONCLUSION

In this paper, we studied the information-energy capacity
region of a SLIPT system over a lognormal-fading channel
with nonlinear EH, where the PP, AP, and EH constraints
were considered. An expression for the transition probability
distribution of the lognormal channel was derived. By using
Smith’s framework and introducing appropriate Hermite poly-
nomial bases, we proved that the optimal input distribution is
discrete with a finite number of mass points. Numerical results
of the information-energy capacity region were presented and
compared it with AWGN channel conditions. Results show that
under low PP constraints the optimal distribution is binary and
no trade-off between the information rate and the EH. Further,
lognormal fading results in degradation of the information-
energy capacity region as compared with AWGN channel
conditions.

APPENDIX A
PROOF OF THEOREM 3

We show that the equality in (15) can not be satisfied on a
set of points that has an accumulation point, which indicates
that the set Supp(F ∗) must be discrete and the optimal input X
must be a discrete random variable. We start with the necessary
and sufficient conditions for the optimality of F ∗. Extending
the necessary and sufficient conditions of Corollary 2 to the
complex domain, the left-hand side (LHS) of (15) reduces to

s(z) = λ1(z − ε)− λ2(bz ln(1 + cz)− Eth) + C

−
∫

p(y|z) log2
p(y|z)
p(y;F ∗)

dy, z ∈ D, (16)

where the domain D is defined by ℜ(z) > 0. The function
s(z) is analytic over the complex domain, since the linear
function, and the logarithmic function are all analytic. The
necessary condition for the optimal input distribution F ∗ is
that s(z) must be zero ∀z ∈ Supp(F ∗). However, from the
identity theorem, if the set Supp(F ∗) has an accumulation
point and the analytic function s(z) = 0,∀z ∈ D, then s(z)
is necessarily zero over the whole D, and hence, from (16)∫

p(y|z) log2 p(y;F ∗)dy = −C − λ1(z − ε)

+ λ2(bz ln(1 + cz)− Eth) +

∫
p(y|z) log2 p(y|z)dy. (17)

A. Conditional Probability of the Channel

The conditional probability pY |X(y|x) of the lognormal
channel is not present in the literature. Hence, we derive
pY |X(y|x), which will be used to derive the properties of
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the optimal input distribution. According to (3), the random
variable Y of the channel output can be represented as Y =
X1 + N , where X1 = aRPh1,lHTX , HT is the lognormal
fading, X is the channel input, and N is the AWGN. By using
the basic properties of pdfs, the pdf of Y is the convolution
of pdfs of X1 and N . Hence, for a given input X ,

pY |X(y|x) =
∫ +∞

0

pX1|X(t|x)pN (y − t)dt, (18)

where pX1|X(t|x) is the pdf of X1 for a given input X , and
pN (t) is the pdf of N , respectively. By using the variable
transformation from HT to X1 in (2), pX1|X(x1|x) can be
deduced, and hence, the conditional probability in (18) is
written as

pY |X(y|x) = 1

4πσgσXl

∫ +∞

0

1

t
(19)

× exp

−

(
ln
(

t
aRPh1,lx

)
− 2µXl

)2
8σ2

Xl

 exp

(
− (y − t)2

2σ2
g

)
dt.

By apply the variable transformation k = ln
(

t
aRPh1,lx

)
and

after several manipulations, we obtain

pY |X(y|x) = e
− y2

2σ2
g

4πσgσXl

∫ +∞

−∞
exp

(
− (k − 2µXl

)
2

8σ2
Xl

)
(20)

× exp

(
aRPh1,lxe

k

σg

y

σg
−
(
aRPh1,lxe

k

σg

)2
)
dk.

It can be identified that the second exponential term inside
the integration is in the form of the generating function of
the Hermite polynomial which is ext−

t2

2 =
∑∞

n=0 Hen(x)
tn

n! ,
where Hen(x) is the Hermite polynomial of n-th kind [21].
Applying this relation, interchanging the order of summation
with integration, and with some rearrangements, (20) can be
written as

pY |X(y|x) = e
− y2

2σ2
g

4πσgσXl

∞∑
n=0

1

n!
Hen

(
y

σg

)(
aRPh1,lx

σg

)n

×
∫ +∞

−∞
exp

(
− (k − 2µXl

)
2

8σ2
Xl

+ nk

)
dk. (21)

The integration in (21) can be identified as a standard
result of the integration

∫∞
−∞ exp (−ak2 + bk − c)dk =√

π
a exp

(
b2

4a − c
)

where a = 1
8σ2

Xl

, b =
µXl

+2nσ2
Xl

2σ2
Xl

, and

c =
µ2
Xl

2σ2
Xl

. With simplifications, the final expression can be
expressed as

pY |X(y|x) = e
− y2

2σ2
g√

2πσ2
g

∞∑
n=0

1

n!
Hen

(
y

σg

)
Kn

nx
n, (22)

where Kn = aRPh1,le
2(nσ2

Xl
+µXl

). Similar to [21], we set
σ2
g = 1 to simplify the proof without the loss of generality.

Now, log (p(y;F ∗)) in (17) is a continuous function of y
and is a square integrable with respect to e−y2/2. As such, it
can be written in terms of the Hermite polynomials as

log (p(y;F ∗)) =

∞∑
m=0

cmHem(y). (23)

Next, using (22), (23), and the orthogonality property of the
Hermite polynomials with respect to e−y2/2, i.e.,∫ ∞

−∞
e−y2/2Hem(y)Hen(y) = m!

√
2π (24)

if m = n and zero otherwise [19],
∫
p(y|z) log p(y;F ∗)dy is

expressed as∫
p(y|z) log p(y;F ∗)dy =

∞∑
m=0

cm(Kmz)m. (25)

Let Vn = f (n)[bx log(1+ cx)](0). Then, the Taylor expansion
of bz log(1 + cz) is given by

bz log(1 + cz) =

∞∑
m=0

Vmzm. (26)

Similarly, log (p(y|z)) is a continuous function of y and is a
square integrable with respect to e−y2/2, and hence, it can be
written in terms of the Hermite polynomials as

log (p(y|z)) =
∞∑

m=0

amHem(y). (27)

Hence, with the use of (22), (27), and the orthogonal property
of Hermite polynomial, the term

∫
p(y|z) log p(y|z)dy is

written as∫
p(y|z) log p(y|z)dy =

∞∑
m=0

am(Kmz)m. (28)

With the use of (25), (26), and (28), Eq. (16) is reduced to
∞∑

m=0

cm(Kmz)m = λ2

( ∞∑
m=0

Vmzm − Eth

)
− λ1 (z − ϵ)

− C +

∞∑
m=0

am(Kmz)m. (29)

Equating the coefficients of zm, we have

c0=λ2 (V0 − Eth) + λ1ϵ− C + a0,

c1=
λ2V1 − λ1 + a1K1

K1
,

cm=
λ2Vm + amKm

m

Km
m

, for all m > 1. (30)

By inserting (30) into (23), the following holds

p(y;F ∗) = eln(2)
∑∞

m=0 cmHem (y). (31)

Next, by following similar steps as [19], it can be shown
that p(y;F ∗) can not be a valid output distribution. Hence,
Supp(F ∗) can not have an accumulation point and X∗ must
be a discrete random variable. This completes the proof.
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