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Abstract—Optical wireless communication (OWC) systems with
multiple light-emitting diodes (LEDs) have recently been explored
to support energy-limited devices via simultaneous lightwave in-
formation and power transfer (SLIPT). The energy consumption,
however, becomes considerable by increasing the number of
incorporated LEDs. This paper proposes a joint dimming (JD)
scheme that lowers the consumed power of a SLIPT-enabled OWC
system by controlling the number of active LEDs. We further
enhance the data rate of this system by utilizing rate splitting
multiple access (RSMA). More specifically, we formulate a data
rate maximization problem to optimize the beamforming design,
LED selection and RSMA rate adaptation that guarantees the
power budget of the OWC transmitter, as well as the quality-
of-service (QoS) and an energy harvesting level for users. We
propose a dynamic resource allocation solution based on proximal
policy optimization (PPO) reinforcement learning. In simulations,
the optimal dimming level is determined to initiate a trade-off
between the data rate and power consumption. It is also verified
that RSMA significantly improves the data rate.

Index Terms—Optical wireless communication (OWC), simul-
taneous lightwave information and power transfer (SLIPT), joint
dimming (JD), rate splitting multiple access (RSMA), proximal
policy optimization (PPO).

I. INTRODUCTION

Benefiting from illumination and communication at the same
time, optical wireless communication (OWC) systems are en-
visioned to be a promising technology to compensate for the
shortcomings of conventional radio-frequency (RF) communi-
cation systems. This technology requires a light-emitting diode
(LED) for signal transmission at the transmitter and photo-
diode (PD) for signal decoding at the receiver [1]–[4]. So far,
advanced optical wireless techniques have been investigated to
unleash the potentials of OWC systems, such as multi-LED
transmitters [5], joint dimming (JD) [6], as well as simul-
taneously lightwave information and power transfer (SLIPT)
[7]–[9]. In the former case, multiple LEDs are incorporated
in an LED array, commonly known as a spatial multiplexing
OWC system. This extension brings about remarkable data rate
and extended coverage over the OWC systems compared to

the single LED. The second case, as a multi-domain control
scheme, relies on both analog dimming (AD) and spatial
dimming (SD).
Introduced first in [6], JD control jointly optimizes the direct-
current (DC) bias level (in AD), as well as the number of glared
LEDs (in SD) to satisfy a required dimming level [10], [11].
The latter case, i.e., the SLIPT technology, is a promising solu-
tion for low-battery devices [7], which enables OWC receivers
to simultaneously obtain illumination, information, and energy
harvesting (EH) via a PD, a solar panel, or both.
The concept of wireless information and power transfer has
been throughly investigated in the literature [12]–[16]. How-
ever, the coexistence of alternating current (AC) and DC signals
in the photo-current of LEDs has encouraged the researchers to
study the SLIPT technology [17]. Previously, the performance
of an OWC system with multi-LED transmitter and SLIPT
technology was considered in [18] and [19] to minimize the
energy consumption and maximize the data rate, respectively.
These techniques consume significant energy. Furthermore,
they were proposed under the assumption of orthogonal re-
source allocation which limits the data rate. In this paper,
we study the performance of [18] and [19] by exploring rate
splitting multiple access (RSMA) [20]–[23], which employs
non-orthogonality of resources to enable higher data rate and
massive access. Additionally, we adopt an efficient JD control
scheme, where the number of active LEDs are controlled,
thereby reducing the energy consumption of [18] and [19].
To analyze the performance of this system, a data rate max-
imization problem is formulated by jointly optimizing the
transmit beamforming, LED selection, and RSMA rate adap-
tation. This problem ensures the power budget of the multi-
LED transmitter, as well as receivers’ quality-of-service (QoS),
dimming level and EH level. More specifically, we transform
the problem into a Markov decision process (MDP) and propose
a real-time dynamic solution methodology, based on proximal
policy optimization (PPO) reinforcement learning. Through
numerical simulations, we compute the optimal dimming level
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Fig. 1: An OWC system with an LED array, serving K single-PD users for
illumination, communication and EH.

for a trade-off between the data rate and power consumption.
Additionally, leveraging RSMA enhances the data rate of
this system, compared to the non-orthogonal multiple access
(NOMA).
The remainder of this paper is organized as follows. The system
model of the proposed downlink SLIPT-assited JD multi-LED
OWC network with RSMA is introduced in Section II, while
Section III evaluates the performance of the proposed DRL-
based approach in detail by employing PPO reinforcement
learning. In Section IV, the effectiveness of the proposed OWC
system is verified by simulation results. Finally, Section V
concludes the paper.

Notation: The vectors and matrices are specified by boldface
lower-case and upper-case letters, respectively, while diag(.)
represents the diagonalization operation. The absolute value
of scalar a, the transpose, and the Hermitian transpose of the
vector a are denoted by |a|, aT , and aH , respectively. Finally,
the expectation operator and the set of real numbers are denoted
by E(.) and R, respectively, while [.] represents the round off
operation.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider the downlink transmis-
sion of an OWC network, in which the transmitter is equipped
with an LED array, including a set N = {1, 2, ..., N} of
N LEDs and communicates with a set K = {1, 2, ...,K} of
K single-PD users. The users are supposed to be distributed
randomly, whereas the LEDs are independently modulated via
separate drivers, yet all are connected to a central controller that
collects channel feedback and performs resource management.

A. Signal Model

We adopt RSMA as the state-of-the-art multiple access
scheme. On this basis, the transmit lightweight data stream
for each user has a two-fold structure, including a common
message in addition to a private message. The former, i.e.,
the common message of the transmit lightweight data stream
has the same content for all users, whereas the latter, i.e.,
the private message is exclusively encoded for each user. In
other words, one common lightweight transmit data stream, as
well as K private ones, form a superimposed transmit signal,
carrying K + 1 messages. Let s(c) and s(p)

k ,∀k ∈ K, denote
the common message shared among all users and the private
message of the k-th user, respectively, such that E{|s(c)|2} = 1
and E{|s(p)

k |2} = 1, ∀k ∈ K. We devise a linear precoding
scheme [5] prior to signal transmission, to handle the inter-
user interference. Next, a DC bias iDC = [iDC, ..., iDC]N×1 is
added to the precoded signal before transmission. This bias
regulates the brightness of the LEDs and guarantees that the
amplitude of the transmitted signal has a real non-negative
value. Accordingly, the lightweight transmit data stream of all
LEDs, denoted by x = [x1, x2, ..., xN ]

T , can be expressed as

x = w(c)s(c) +

K∑
k=1

w(p)
k s

(p)
k + iDC, (1)

where w(c) =
[
w(c)

1 , w
(c)
2 , ..., w

(c)
N

]T
∈ RN×1 and w(p)

k =[
w(p)
k,1, w

(p)
k,2, ..., w

(p)
k,N

]T
∈ RN×1, ∀k ∈ K specify the common

transmit beamforming for s(c) and the k-th private transmit
beamforming for s(p)

k , respectively. Note that iDC has the same
value for all LEDs, because of uniformity of illumination in
indoor environments [5]. The dynamic range of the LEDs is
constraint to avoid signal clipping [27]. In other words,

∣∣w(c)
n

∣∣+

K∑
k=1

∣∣∣w(p)
k,n

∣∣∣ ≤ Ξ, ∀n ∈ N , (2)

where Ξ = min(iDC − Il, Ih − iDC), and the notations Il and
Ih indicate the minimum and maximum permissible currents
of all LEDs, respectively.

B. Channel Model

In this paper, we only consider the line of sight (LoS) links
[6]- [11]. The optical channel gain between the n-th LED and
the k-th user, denoted by hk,n ∈ R, can be modelled as

hk,n=

{
(m+1)AOWC

2πd2k,n
GOWC(ψk,n)ZOWC,

0,

0≤ψk,n≤Ψc,
ψk,n > Ψc,

(3)

where ZOWC = cosm(φk,n)cos(ψk,n), while AOWC and dk,n
denote the physical area of the PD for each user and the distance
between the n-th LED and the k-th user, respectively. Moreover,
m = − ln 2

ln(cos Φ1/2) specifies the Lambertian emission order with
Φ1/2 being the semi-angle at half-power of the LED. Besides,
the angles of incidence and irradiance are respectively given by
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ψk,n and φk,n, while the receiver field of vision (FOV) semi-
angle is denoted by Ψc. Finally, GOWC(ψk,n) indicates the gain
of the optical concentrator which is defined as follows

GOWC(ψk,n) =

{
n2
R

sin2(Ψc)

0,

0 ≤ ψk,n ≤ Ψc,
ψk,n > Ψc,

(4)

with nR ≥ 0 being the internal refractive index. Given
(xk, yk, zk) and (xn, yn, zn) as the coordinates of the k-th user
and n-th LED, respectively, the distance between them can be
modeled as dk,n =

√
(xn − xk)2 + (yn − yk)2 + (zn − zk)2.

C. JD Control

Regarding the LED array with multiple LEDs and the incor-
poration of power transfer capability, its energy consumption
becomes considerable. In this paper we invoke an efficient JD
scheme to control the energy consumption [10]. To this purpose,
let A denote a binary LED selection matrix, where A =
diag(a) ∈ {0, 1}N×N , and a = [a1, . . . , aN ]T ∈ {0, 1}N×1,
i.e.,

an =

{
1,
0,

if the LED n is active,
otherwise. (5)

By this definition, we can declare the number of active LEDs

as Na =
N∑
n=1

an.

The JD control scheme includes both AD and SD at the same
time, such that the number of glared LEDs in SD, as well as the
uniform DC-bias level of AD are jointly optimized. To achieve
this, a predetermined target dimming level η is considered,
based on which we can round-off the number of glared LEDs
as follows [24]

Na =
[
ηN
]
. (6)

Accordingly, the uniform DC-bias level iDC is given by [11]

iDC =
ηN(I0 − Il)

Na
+ Il, (7)

wherein I0 =
Il + Ih

2
specifies the original DC-bias that

corresponds to AD with all-glared LEDs and a dimming level
of η = 100%. Although Na determines the number of glared
LEDs, it does not specify the index of active LEDs at the
LED array. Hence, it is required to formulate a network-wide
resource allocation problem, so as to optimize the binary LED
selection matrix A.

D. Data Rate

At the receiver side, all users first decode the common
received lightweight data stream by considering all private
streams as noise. Then, the private received lightweight data
stream will be decoded by treating other private streams as
noise [23]. On this basis, the common and private lightweight
received data rate for the k-th user can be expressed as

R
(c)
k = log2

(
1 +

|hH
k Aw(c)|2∑K

j=1 |hH
k Aw(p)

j |2 + σ2
k

)
, ∀k ∈ K, (8)

and

R
(p)
k = log2

(
1 +

|hH
k Aw(p)

k |2∑K
j=1,j 6=k |hH

k Aw(p)
j |2 + σ2

k

)
, ∀k ∈ K, (9)

respectively, where hk = [hk,1, hk,2, ..., hk,N ]
T denotes the

channel gain vector of user k. To ensure that the common
stream is successfully decoded, the data rates for common data
should satisfy a rate adaptation r∗k, such that

min
k
R

(c)
k ≥

K∑
k=1

r∗k, ∀k ∈ K. (10)

Then, the aggregate system lightweight received data rate can
be expressed as

RAgg(w(c), {w(p)
k }k∈K,A, r

∗) =

K∑
j=1

(r∗k +R
(p)
k ), (11)

where r∗ = [r∗1 , r
∗
2 , ..., r

∗
K ]T ∈ RK×1.

E. Energy Harvesting

The coexistence of AC and DC signals in the photo-current of
LEDs, enable users to harvest energy from the DC component,
which is blocked by a capacitor. The total harvested energy at
the k-th user from the DC signal of all active LEDs can be
expressed as [25]

PHar
k =

N∑
n=1

τanVthk,niDC ln

(
1 +

∑N
n=1 hk,niDC

Is

)
, (12)

where Vt, τ , and Is are the thermal voltage, the fill factor, and
the dark saturation, respectively. Accordingly, the total optical
power consumption of the system can be computed as [26]

P tot(w(c), {w(p)
k }k∈K,A) =ζ

N∑
n=1

an

(
w(c)
n +

K∑
k=1

w(p)
k,n

)

+ PDC −
K∑
k=1

PHar
k , (13)

where PDC = ϕNaiDC. Moreover, ζ ≥ 1 specifies the power
for the amplifier efficiency factor, whereas ϕ denotes the
conversion factor.

F. Problem Formulation

Compared to [18] and [19], this paper explores the potentials
of RSMA and JD control scheme to increase the data rate
and control the power consumption, respectively. Particularly,
we optimize the aggregate system lightweight received data
rate, the beamforming design, LED selection and RSMA rate
adaptation, such that the power budget of the LED array,
as well as the QoS and EH thresholds are preserved for
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all users. Mathematically, the abovementioned network-wide
optimization problem is formulated as follows

P1 : max
w(c),{w(p)

k }k∈K,A,r∗
RAgg(w(c), {w(p)

k }k∈K,A, r
∗)

s.t. C1 : min
k
R

(c)
k ≥

K∑
k=1

r∗k, ∀k ∈ K,

C2 : r∗k +R
(p)
k ≥ QoS, ∀k ∈ K,

C3 : P tot ≤ Pmax,

C4 : PHar
k ≥ PHar

min , ∀k ∈ K,
C5 : an ∈ {0, 1}, ∀n ∈ N ,

C6 : η =
Na(iDC − Il)
N(I0 − Il)

× 100%,

C7 :
∣∣w(c)
n

∣∣+

K∑
k=1

∣∣∣w(p)
k,n

∣∣∣ ≤ Ξ, ∀n ∈ N , (14)

where Pmax, PHar
min , and QoS represent the power budget of the

LED array, the minimum homogeneous EH requirement and
the minimum homogeneous QoS for all users, respectively.
More specifically, C1 assures the successful signal decoding
at all users; C2 satisfies the QoS for all users; C3 respects the
power budget of the LED array; C4 specifies the minimum EH
requirement for all users; C5 confines each LED to be either
active or inactive; C6 defines a target required dimming level
η to be satisfied; Finally, C7 respects the dynamic range of all
LEDs.
Concerning the complex domain of w(c) and {w(p)

k }k∈K, the
binary domain of A, and the continuous domain of r∗, one
can clearly claim that this problem is non-convex in the form of
mixed integer non-linear programming (MINLP) and belongs to
the class of non-deterministic polynomial (NP)-hard problems.
The straightforward brute-force method, i.e., the exhaustive
search for attaining its globally optimal solution is implausi-
ble, considering the coupling and scalability of the problem.
Moreover, the classical convex optimization-based solutions
mostly rely on time consuming and computationally expensive
convex transformations, whereas the wireless environment is
quietly dynamic and real-time resource allocation mechanisms
are preferred. Instead, we propose a real-time dynamic solution
to this problem based on reinforcement learning.

III. PROPOSED DRL-BASED APPROACH

In this section, the non-convex problem P1 with both discrete
and continuous variables is firstly reformulated into a model-
free MDP, and then a DRL algorithm based on the PPO
framework is designed to solve the problem P1 [20], [28], [29].

A. MDP formulation

A 4-tuple (st,at, r(st,at), st+1) is constructed by the MDP
formulation, where the current state, the action, the reward
function, and the next state are denoted by st, at, rt, and
st+1, respectively. The PPO approach enables the agent to
interact with the environment (i.e., the OWC-assisted network),

to observe the current state st from the state space S and
to select the action at from the action space A according to
the specific policy with the ultimate aim of maximizing the
clipping surrogate objective function LCLIP(·) that is defined
latter. Moreover, based on the formulation of problem P1, the
state, the action, and the reward function are elaborated in the
following.

1) State: The current state st ∈ S at time step t constitutes
of the main environmental information related to problem P1

in such a way that allows the policy to enhance and to adapt
itself to the dynamic environment. More specifically, the state
st of the considered system is the set of the common and
private rates, the harvested energy, the common and private
beamforming vectors as follows

st = (15){
{R(c)

k }k∈K, {R
(p)
k }k∈K, {P

Har
k }k∈K,w(c), {w(p)

k }k∈K
}
.

2) Action: In the proposed PPO approach, action at ∈ A at
time step t refers to the decisions that an agent takes via an
interaction with the considered environment. Furthermore, the
action at time step t in problem P1 consists of both discrete
and continuous variables.

at =
{
w(c), {w(p)

k }k∈K,A, r
∗
}
. (16)

3) Reward Function: In particular, the PPO approach is
a reinforcement learning method which trains the agents to
take suitable decisions in order to maximize the defined clip-
ping surrogate objective function LCLIP(·), which contains the
reward function r(st,at). In the optimization problem P1,
the reward function takes both the objective function, i.e.,
RAgg(w(c), {w(p)

k }k∈K,A, r∗), as well as the constraints of P1

into account which can be expressed as

r(st,at) = RAgg(w(c), {w(p)
k }k∈K,A, r

∗) +

7∑
j=1

lCj
, (17)

where lCj
= χjR

Agg(w(c), {w(p)
k }k∈K,A, r∗), and the index j

corresponds to all constraints, i.e., ∀j ∈ {1, 2, ..., 7}. Besides,
χj = 1, if the Cj-th constraint is satisfied and χj = 0,
otherwise.

B. The PPO-Based Analysis

In this paper, the PPO algorithm is applied to select actions
from both discrete and continuous action spaces, thus solving
the non-convex problem (14). In particular, the PPO is an actor-
critic on-policy gradient method which is used to simplify the
complex calculation of earlier policy gradient methods, e.g.,
trust region policy optimization (TRPO). The detailed process
of the proposed PPO-based approach is explained as follows.
The main goal in the reinforcement learning is to maximize
the expected cumulative reward by considering a long-term
process. Therefore, the cumulative reward at time step t is
denoted as Rt =

∑∞
t=0 λ

tr(st,at), where λ ∈ [0, 1) represents
the discount factor. More specifically, both actor and critic
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networks are applied to represent the parameterized stochastic
policy of action selection denoted as πθ(at|st) and the state-
value function Vφ(st), respectively, where θ and φ represent
the parameters of the actor and critic networks, respectively.
Then, a surrogate objective function based on PPO approach
can be expressed as follows

L (θ, st,at) = E [βt(θ)Ω(st,at)] , (18)

where the probability ratio of the current policy and the old one
is represented by βt(θ) = πθ(at|st)/πθold(at|st), while θold

denotes the parameter for the old policy in the actor network.
Moreover, the advantage function is given by

Ω(st,at) = r(st,at) + λVφold(st+1)− Vφold(st), (19)

where φold represents the critic network parameter for the
old state-value estimation function. To ensure that the updated
πθ(at|st) satisfies the trust region constraint, a clipping surro-
gate objective function can be expressed as

LCLIP (θ, st,at) = (20)

E
[

min
{
βt(θ)Ω(st,at), clip

(
βt(θ), 1− ε, 1 + ε

)
Ω(st,at)

} ]
,

where the clip function is denoted by clip(·, ·, ·), while ε
represents a hyper-parameter to restraint βt(θ) to lie in
[1− ε, 1 + ε]. More specifically, the clipping surrogate objec-
tive function is iteratively maximized in the proposed PPO
approach instead of (18). Then, a mini-batch stochastic gradient
decent (SGD) method updates the corresponding θ over Q
transitions denoted as (sqt ,a

q
t , r(s

q
t ,a

q
t ), s

q
t+1) sampled from an

experience pool, which is given by

θ = θold − δA
1

Q

Q∑
q=1

∇θL̃
CLIP
q (θ, sqt ,a

q
t ) , (21)

where δA is the learning rate and L̃CLIP
q (θ, sqt ,a

q
t ) is the real-

ization of LCLIP (θ, st,at) with the q-th transition, respectively.
The mini-batch SGD for updating φ uses the MSE loss function
between Vφ(st) and R̂(st,at) as follows

φ = φold − δC
1

Q

Q∑
q=1

∇φ
(
Vφ(sqt )− R̂(sqt ,a

q
t )
)2
, (22)

where the learning rate is represented by δC . Moreover, the
target state-value function denoted by R̂(st,at) is given by

R̂(st,at) = r(st,at) + λVφold(st+1). (23)

The details of the proposed PPO-based approach are sum-
marized in Algorithm (1). More specifically, the action at is
generated based on the specific policy in the current state st
in which the reward r(st,at) is obtained. Furthermore, the
transition (st,at, r(st,at), st+1) is stored in the experience
pool such that Q number of transitions from the experience pool
are sampled. In the next step, the advantage function Ω(st,at)
in (19) is computed. Finally, the corresponding actor and critic

parameters are updated by employing mini-batch SGD. It is
worth pointing out that the clipping surrogate objective function
in the proposed PPO-based approach ensures that the updated
policy satisfies the trust region constraint, thus avoiding the
performance collapse.

IV. SIMULATION RESULTS

In this section, simulation results are presented to assess
the performance of the discussed system, within an indoor
room of size 8 × 8 × 3 m3. The random distribution of users
should ensure that the coordinates of each user are within the
room’s dimensions, specifically 0 ≤ xk ≤ 8, 0 ≤ yk ≤ 8,
and 0 ≤ zk ≤ 1. In this system, N = 6 number of LEDs
are uniformly distributed on a LED array plane, in which the
distance between any two adjacent LEDs sharing the same
y-coordinate is set to 2 m, while the distance is set to 4 m
between any two adjacent LEDs with the same x-coordinate.
The simulation parameters are summarized in Table I, unless
otherwise stated.
Fig. 2 displays the convergence behaviour of the proposed
solution for both RSMA and NOMA schemes. Notably, more
average reward is observed for lower number of users, mainly
due to lower imposed inter-user interference. This figure
also illustrates that RSMA outperforms NOMA for various

Algorithm 1: The Proposed PPO-Based Algorithm

1 Input:{
{R(c)

k }k∈K, {R
(p)
k }k∈K, {PHar

k }k∈K,w(c), {w(p)
k }k∈K

}
,

2 Output:
{
w(c), {w(p)

k }k∈K,A, r∗
}

,
3 Initialization: Initialize the maximum episode E and time

step T as well as the parameters of actor and critic
networks, i.e., θ, φ, ε, δA, and δC .

4 Set θold = θ and φold = φ,
5 for episode=1 to E do
6 Initialize state st,
7 for time step = 1 to T do
8 Generate action at according to πθ(at|st) in state

st, obtain reward r(st,at) and then observe the
new state st+1,

9 Store (st,at, r(st,at), st+1) in the experience
pool,

10 Calculate the advantage function Ω(st,at) in (19)
11 for q = 1, 2, 3, ..., Q do
12 Calculate ∇θL̃

CLIP
q (θ, sqt ,a

q
t ) in (21),

13 Calculate ∇φ
(
Vφ(sqt )− R̂(sqt ,a

q
t )
)2

in (22),
14 Calculate R̂(st,at) in (23),
15 end for
16 Update θ and φ in (21) and (22), respectively.

Update θold = θ and φold = φ.
17 end for
18 end for
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Fig. 3: System EE versus dimming level under Pmax = 20 Watts and QoS =
3 bits/sec.

number of users at the convergence point, due to more efficient
superposition and decoding methodology [20].
Fig. 3 plots the system energy efficiency (EE) versus
various dimming levels. The system EE can be defined
as RAgg(w(c), {w(p)

k }k∈K,A, r∗)/P tot(w(c), {w(p)
k }k∈K,A).

Through this figure, we evaluate the system performance for
different number of users as well as varying the minimum EH
requirement for each user. It is evident that the system EE is
maximized around the dimming level of 0.66, representing
the optimal trade-off between the data rate and energy
consumption of the system. Additionally, for the same number
of users, a lower system EE is observed when the minimum
EH requirement is higher. For instance, for K = 2, the baseline
related to PHar

min = 10−5 Watts achieves lower system EE,
compared to the baseline corresponding to PHar

min = 10−8 Watts.
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Fig. 4: Average system data rate versus the minimum QoS of users, under
Pmax = 20 Watts, K = 4, and PHar

min = 10−8 Watts.

TABLE I: Simulation Parameters

Parameter Value Parameter Value

Ψc 60◦ nR 1.5

φ1/2 60◦ AOWC 1 cm2

Ih 10 mA Il 0 A
I0 5 mA Is 10−9 A
Vt 25 mA ζ 1.2
ϕ 1 τ 0.75
N 6 Pmax 20 W

This is due to the more stringent constraint C4, leading to a
more limited feasible set for problem P1.
Additionally, Fig. 4 evaluates the average system data rate
for various minimum QoS for users. The baselines constitute
either RSMA or NOMA, with various dimming levels. We can
observe that our proposed scheme with RSMA outperforms
the baseline with NOMA. It is evident that increasing the
minimum QoS leads to a reduction in the average system data
rate for both RSMA and NOMA baseline schemes, under the
same justification stated for Fig. 3.
Furthermore, Fig. 5 illustrates the average system data
rate versus the minimum EH requirement, where baselines
constitute either RSMA and NOMA with different dimming
levels. As can be seen, a higher dimming level achieves
more average system data rate, regardless of multiple access
scheme (i.e., RSMA or NOMA). Thus, RSMA consistently
outperforms NOMA in achieving a higher average system data
rate for a specific minimum EH requirement.

V. CONCLUSION

In this paper, the performance of a multi-LED OWC system
with SLIPT technology is investigated, where a JD control
scheme is proposed to reduce its energy consumption, and
RSMA technology is explored to increase its data rate. We for-
mulated a resource allocation problem and proposed a dynamic
real-time solution based on reinforcement learning. We numeri-
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Fig. 5: Average system data rate versus the minimum EH requirement under
Pmax = 20 Watts, K = 4, and QoS = 3 bits/sec.

cally found the optimal dimming level in this system to achieve
a trade-off between the data rate and energy consumption.
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