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Abstract—Lately a new approach to Extended Reality (XR),
denoted as XR-RF, has been proposed which is realized by
combining Radio Frequency (RF) Imaging and programmable
wireless environments (PWEs). RF Imaging is a technique that
aims to detect geometric and material features of an object
through RF waves. On the other hand, the PWE focuses on the
the conversion of the wireless RF propagation in a controllable,
by software, entity through the utilization of Reconfigurable Intel-
ligent Surfaces (RISs), which can have a controllable interaction
with impinging RF waves. In that sense, this dynamic synergy
leverages the potential of RF Imaging to detect the structure
of an object through RF wavefronts and the PWE’s ability to
selectively replicate those RF wavefronts from one spatial location
to wherever an XR-RF mobile user is presently located. Then the
captured wavefront, through appropriate hardware, is mapped to
the visual representation of the object through machine learning
models. As a key aspect of the XR-RF’s system workflow is the
wavefront copying mechanism, this work introduces a new PWE
configuration algorithm for XR-RF. Moreover, it is shown that
the waveform replication process inevitably yields imprecision
in the replication process. After statistical analysis, based on
simulation results, it is shown that this imprecision can be
effectively modeled by the gamma distribution.

Index Terms—Reconfigurable Intelligent Surfaces (RISs), RF-
Imaging, Programmable Wireless Environments (PWE), Ex-
tended Reality (XR).

I. INTRODUCTION

Recently, an innovative approach has been introduced,

wherein wireless propagation is redefined as a software-

defined phenomenon [1]. This concept referred to as Pro-

grammable Wireless Environments (PWEs) has demonstrated

considerable promise in enhancing wireless communications.

Furthermore, extending beyond the domain of communica-

tions, this paradigm has illustrated the capability to enhance

RF imaging, facilitating the direct generation of graphics that

can compete with existing extended reality (XR) technology.

This emergent synergy of RF imaging and PWEs is denoted

as XR-RF [2].

In order to realize the paradigm of PWE the employment of

the Reconfigurable Intelligent Surfaces (RISs) technology is a

key-enabler factor. Specifically, RISs are specially engineered

planar structures composed of RF resonating elements that can

dynamically manipulate the characteristics of the impinging

upon them RF waves, including their direction, intensity, phase

shift and polarization [3], [4]. Therefore, by coating large

surfaces (e.g., walls) in an environment with RISs, the PWE is

created where the wireless propagation can be transformed into

a controllable process, and thus new applications can emerge.

Such an application is the aforementioned XR-RF concept, in

which an ”RF-illuminated” object scatters an RF wave in a

distinctive manner due to its unique geometry. The scattered

RF wavefront, which incorporates the RF information that

describes the object, is then directed towards the user through

the RISs, and is finally translated into a visual representation

via AI tools [2]. Critical to the XR-RF’s user experience is

the ability of the PWE to adapt to user’s movement through

space. As the users move, the XR-RF service must adapt to

their perspective, ensuring that the displayed objects align with

their changing viewpoints. Addressing this crucial aspect, there

emerges a need for an RF wavefront copy-paste mechanism.

Despite XR-RF’s potential, there is limited research on RIS

capabilities in replicating wavefronts. In more detail, while the

authors in [5] and [6] examine the performance boost achieved

by a single RIS unit in a posture recognition application, they

do not satisfy the requirements of XR-RF, as they do not

devise a methodology for wavefront copying. Moreover, [7]

investigated how RISs enhance XR service reliability through

improved communication channels but did not explore RIS’s

full capabilities for novel XR methods like XR-RF, which

directly manipulates wavefronts for XR. Finally, the authors

in [8] examined the impact of the RIS configuration on a

3D object classification task within an XR-RF scenario. To

this end, to the best of the authors’ knowledge, there exists

no work that develops a ”Copy-Paste” methodology for RF

wavefronts which is essential for realizing the XR-RF concept

within PWEs.

In this paper, we present a novel methodology for RF

wavefront copying within a PWE, utilizing the available RIS

units to replicate the desired RF wavefront at the receiver’s

antennas. Specifically, we detail a system model within a two-

room PWE setup, to recreate the exact RF wavefront at the
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receiver’s location, overcoming the absence of line of sight

(LoS) between the transmitter and the receiver. Furthermore,

acknowledging the discrete operational modes of RISs due to

the available functionalities codebook, we develop a routing

algorithm that minimizes replication errors under practical

PWE constraints. Moreover, it is shown that the spatial charac-

teristics of an environment can lead to discrepancies between

the original and the replicated wavefronts. Specifically, the

location of RIS units in a space can affect the intended direc-

tion of arrival of rays across the replicated wavefront. Thus,

the paper studies this effect and contributes a statistical model

for its quantification. The study is concluded by systematically

evaluating the impact of PWE characteristics, such as RIS size

and the number of receiver antennas, on wavefront replication

accuracy, supported by appropriate simulation results.

The remainder of this paper is organized as follows. The

system model is described in Section II. The performance

analysis of the considered network is presented in Section III

and the numerical results are presented in Section IV. Finally,

Section V concludes the paper.

II. PRELIMINARIES & SYSTEM MODEL

A. Preliminaries

In the context of PWEs applied to XR, the XR-RF concept

emerges as a key innovation, merging RF-imaging technolo-

gies with the dynamic capabilities of PWEs. Specifically, the

XR-RF takes place in an indoor scenario where a transmitter

antenna targets a 3D object within a PWE setup. This system

utilizes an array of RIS to facilitate the XR-RF mechanism,

where users, through headsets equipped with MIMO antennas

and appropriate AI software, receive RF wavefronts that are

transformed into graphical outputs. The essence of XR-RF

lies in capturing an RF footprint that accurately embodies

the object’s geometry, aiming to replicate this footprint for a

user positioned elsewhere within the PWE environment. This

approach ensures the geometrical details of the object are

precisely captured and conveyed through the RF wavefronts

directed towards a receiver antenna, which are then translated

into visual graphics by neural networks.

While existing studies have examined various PWE config-

urations to optimize object detection in XR-RF, they reveal

a significant research gap in the ”copy-paste” mechanism of

wavefront replication necessary for XR-RF. This challenge,

centered on replicating the desired wavefront at any user loca-

tion within the PWE, is affected by the complex optimization

required for RIS to perform multiple RF functionalities, essen-

tial for maintaining the low latency critical to XR-RF experi-

ences. In this direction, a predefined set of RIS configurations

called codebook, is typically employed, aiming to balance

efficiency with the constraints of practical implementation.

However, this approach, while mitigating time complexity

issues, introduces variability in the received RF wavefront,

potentially compromising XR-RF experience. Consequently,

there is a clear need for a method that not only enables efficient

RF wavefront copying within a PWE but also aligns with the

practical constraints, ensuring that users experience consistent

and immersive visuals irrespective of their location within the

PWE. Developing such a system is crucial for advancing XR-

RF services, as it directly addresses the unexplored challenge

of achieving precise wavefront replication within the oper-

ational realities of PWEs, thereby enhancing the immersive

quality and accessibility of XR technologies.

B. System Model

Fig. 1 illustrates a two-room PWE, where the first room

contains a transmitter, an object, and an RIS equipped with

sensing capabilities [9], while the second room contains an

XR-RF user who will receive a specifically tailored RF

wavefront corresponding to the object from the first room.

Moreover, the RIS units within this PWE are capable of

executing a set of RF functionalities according to the assumed

codebook, which includes i) Diffusion: the RISs are set in

a random configuration to reflect impinging waves in various

directions, ii) Beam steering: enabling the RISs to direct the

incident wave towards another RIS or one of the receiver’s

antennas, necessitating a line of sight (LoS) connection with

that RIS or antenna, and iii) Absorption: where the RISs are

tuned to absorb the RF waves that impinge upon them.

Within the examined PWE, the XR-RF service is realized

through a carefully orchestrated two-phase process. Initially,

the system is activated by the transmission of a single tone

from the transmitter, while setting the RIS units in the first

room to adopt diffusion mode, to generate a wide range

of reflections from the object, thereby producing a unique

wavefront that is captured by the sensing RIS and accurately

represents the object’s geometrical details [8]. Afterwards, the

XR-RF procedure advances to the second phase, where the

transmitter emits another single tone and the RISs aim to recre-

ate the wavefront precisely towards the XR-RF user via their

beam steering functionality. Finally, it should be mentioned,

that the RIS units that do not contribute to the wavefront rout-

ing procedure are configured to absorption mode, to eliminate

unnecessary RF waves from the transmission path and ensure

reliable RF wavefront copying to the XR-RF user.

III. WAVEFRONT COPYING

This section introduces our approach to RF wavefront

copying within a PWE, focusing on the precise manipulation

of RF wavefronts using RIS. Our method optimizes the

replication process by ensuring minimal Direction of Arrival

(DoA) deviations and employing the fewest possible RIS units

for directing the wavefront. In the following subsections, we

present the routing algorithm that minimizes DoA deviations

and the number of utilized RIS in the wavefront directing

process. Additionally, we perform statistical modeling of the

deviations between the received wavefront and the desired

one to deduce the effect of the PWE characteristics on the

wavefront copying performance.

A. Wavefront Routing Methodology

A PWE can effectively be modeled as a graph G(V,E),
offering a structured approach to configuring its components
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Fig. 1: Overview of the RF wavefront replication process within a two-room PWE.

for optimized XR-RF processes [10]. In this graph model, each

element of the PWE, including XR-RF devices, transmitter,

and RIS units, is represented as vertices (v ∈ V ). Furthermore,

an edge (e ∈ E) connects two vertices if there is a direct LoS

link between them, facilitating a clear depiction of potential

communication paths within the PWE. In this direction, by

defining the subsets Eu ⊂ E and Et ⊂ E that outline the

connections from users to RIS units and from the transmitter

to RIS units, we can address the wavefront copying challenge

as a path-finding problem, while taking into account the PWE

characteristics.

Algorithm 1 Wavefront Routing Algorithm

0: procedure GETROUTES(RISs, DoAs, ant)

1: routes← null
2: for i in length(ant) do

3: for j in length(walls) do

4: d←
(p0j−ant(i))·nj

DoAs(i)·nj

5: p← ant(i) + d ·DoAs(i)
6: if p ∈ walls then

7: point← p

8: break

9: else

10: continue

11: end if

12: end for

13: lastRIS ← argminr∈RISs ||r − point||
14: REMOVE(RISs, lastRIS)

15: path← breadth first search(lastRIS)
16: APPEND(routes, path)

17: end for

18: return routes

18: end procedure=0

The establishment of the path-finding framework in a PWE

is inherently dependent on the precise identification of the

last RIS units which will steer the RF waves, ensuring their

successful arrival at receiver antennas with specific Directions

of Arrival (DoAs) that correspond to the desired RF wavefront.

This necessity arises from the steering limitations imposed by

the RIS units’ codebook capabilities, which constrict the RF

wavefront’s directionality, making the acquisition of the RIS

units that minimize DoA deviation a pivotal task. To address

this challenge, we introduce the ”getRoutes” algorithm, de-

signed to select RIS units that can direct the wavefront towards

the receiver antennas with the least deviation from the desired

DoAs. Initially, the algorithm assigns to each receiver antenna

a distinct DoA that needs replication, which is achieved by

defining ”DoAs” as the target unit vectors denoting the exact

DoAs expected at the receiver antennas. Furthermore, to detect

the RIS units that will be utilized as the last RISs in the routing

process for each of the receiver’s antennas, i.e., lastRISs, we

identify a point p belonging to one of the indoor environment’s

walls, which is determined by the intersection of the wall

planes with the line equation determined by the DoA unit

vector and the antenna position, and is given as

p = ant (i) + d ·DoAs (i) , (1)

where ant is an array containing the positions of the receiver

antennas, DoAs is an array containing the desired DoA

direction vectors for each antenna, and d is the scaling factor

of the line equation given by

d =
(p0j − ant(i)) · nj

DoAs(i) · nj

, (2)

where p0j and nj are the describing parameters of each wall

plane equation defined as (p− p0j) ·nj . Thus, by utilizing p

and the positions of the RIS centers with which the receiver

RIS Units

RIS Units

User in room 2

RIS unit with sensing
capabilities

Wavefront copying from room 1
to room 2
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antennas share a LoS connection, we can select the RISs with

the least Euclidean distance to p, which corresponds to the

RIS that will invoke the smallest DoA deviation. Finally, after

determining the lastRISs, they are used as reference vertices

for the path-finding challenge, which is approached through

a breadth-first search to determine the shortest paths that also

reduce the number of RIS units involved, hence, presenting an

appropriate strategy for enhanced wavefront replication in an

XR-RF setup.

B. Wavefront Deviation Modeling

Achieving perfect wavefront routing within a PWE is chal-

lenged by deviations from the intended DoAs, primarily due

to the predefined capabilities of RIS described by the available

codebook. Specifically, as it can be seen in Fig. 1, these

deviations arise since the available RIS units cannot steer

impinging waves towards the receiver antennas perfectly due

to their position and the codebook guidelines. Furthermore,

when the optimal RIS unit for steering the wavefront towards

a specific receiver antenna is already engaged, alternative RIS

units must be employed, which may not offer the same level

of directional precision. To that end, it becomes imperative

to statistically model the wavefront deviations, to effectively

characterize the impact of PWE characteristics on the DoA

deviations. In this direction, based on various PWE parameters

such as the number of receiver antennas and the RIS sizes, we

create datasets containing the angle differences between the

desired and the actual DoA, i.e., ˆDoAs, allowing the analysis

of data histograms. In more detail, the aforementioned angle

difference can be modeled through an appropriate distribution

that best captures the observed data form. Therefore, based on

the data patterns evident in the histograms in Fig.2, we select

to examine the Gamma and Rayleigh distributions whose

probability density functions (PDFs) are given respectively as

f(x; k, θ) =
1

Γ(k)θk
xk−1e−

x

θ , ∀x ≥ 0, (3)

where Γ (·) is the gamma function, while k and θ correspond

to the Gamma distribution scale and shape parameters, respec-

tively, and

f(x;σ) =
x

σ2
e−

x
2

2σ2 , ∀x ≥ 0, (4)

where σ corresponds to the scale parameter of Rayleigh

distribution. To be more precise, the parameter k of the

Gamma distribution can describe the frequency of smaller

versus larger deviations, while θ can indicate the spread of

deviations. Similarly, the Rayleigh distribution, through its

scale parameter σ, can quantify the extent of DoA deviation

from the targeted DoA, where an increase in σ denotes a

greater average deviation, thereby offering a comprehensive

view of φ. Thus, the Gamma and Rayleigh distributions allow

for a clear understanding of φ while offering a solid foundation

for assessing the effect of the PWE characteristics on the

wavefront copying accuracy.

To acquire the parameters that best fit the data for the

selected distributions, we can utilize the Maximum Likelihood

Estimation technique in which we calculate the parameter

vector λ that maximizes the function ln(L(λ)), where L(λ)
is equal to

L(λ) =

N∏
i=1

f(xi;λ), (5)

where xi is the i-th sample of the dataset Xd, and N equals

to the number of the dataset samples. Thus, considering that

the parameter vector λ = [k, θ] for the Gamma distribution,

we can obtain k̂ and θ̂, which are the estimate values of k

and θ, respectively, that optimize the data fitting procedure.

Specifically, k̂ can be calculated numerically as the root of

g(·), which is given as

g(k̂) = ln (k̂)− lnψ(k̂)− ln (Xd) + ln (Xd), (6)

where ψ(·) is the digamma function, Xd denotes the mean

value of Xd values, and ln (Xd) is the mean value of the

dataset ln(Xd), whereas θ̂ can be calculated as

θ̂ =
Xd

k̂
. (7)

Similarly for the Rayleigh distribution, considering that λ =
σ, we can calculate σ̂ which is given as

σ̂ =

Ã

1

2N

N∑
i=1

x2
i
. (8)

Finally, to evaluate the accuracy of the derived deviation mod-

els, we can compare the relative entropy of the original data

and random samples generated from the derived distributions

through the Kullback-Leibler Divergence (KLD) which is a

measure of how much the random samples are different from

the original ones, and is expressed as

DKL(P ||Q) =

∫
∞

−∞

p(x) log
p(x)

q(x)
dx, (9)

where p(x) is the empirical distribution of the original data

and q(x) is the distribution of the random samples.

IV. SIMULATION RESULTS

In this section, we present simulation results for the scenario

illustrated in Fig. 1 where a single-antenna transmitter is

located in the left room of a PWE consisting of RISs with

dimensions equal to dr × dr where dr equals to the length

of each RIS side, while an XR-RF user with M antennas is

located within the right room. Specifically, given dr and M ,

by applying the proposed wavefront routing methodology, we

obtain the angle difference for each of the receiver antennas

between ˆDoAs and the DoAs for 100 different wavefront

cases.

In Fig. 3, we illustrate the effect of dr on the values of

the estimated parameters k̂, θ̂, and σ̂ for various number of

receiver antennas M . Initially, it can be seen in Fig. 3a that

as dr increases, the value of k̂ generally decreases, indicating

a relatively high probability of small φ deviations, but also

a non-negligible probability of larger φ deviations. However,
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Fig. 2: Deviations of φ for a) dr = 0.40m and various M

values b) M = 4× 4 and various dr values

for smaller M values, the decrease rate of k̂ is smaller, as

it is easier to find appropriate RISs that will induce small

deviations even with larger dimensions because the M is

small. Furthermore, we can see in Fig. 3b and in Fig. 3c that

for larger RIS sizes, the values of both θ̂ and σ̂ increase for all

the examined M values, illustrating that if the PWE consists

of fewer and larger RISs, the average difference between the

desired and actual DoA increases. In addition, considering that

an increase of θ and σ leads to wider PDFs for the Gamma and

Rayleigh distributions, respectively, it also suggests a greater

variance in the observed φ deviations, since fewer RIS units

result in poorer DoA matching resolution. This effect is more

severe for larger M values, where the increase rate of both

θ̂ and σ̂ becomes larger, indicating that as the number of

antennas increases, the induced deviations for increased RIS

size also escalate. In conclusion, Fig. 3 underscores the critical

balance between the size and number of RIS units within a

PWE and the number of receiver antennas being served.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

1.5

2

2.5

dr (m)

k̂

M = 4 × 4

M = 6 × 6

M = 8 × 8

M = 10 × 10

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

2

4

6

8

10

12

dr (m)

θ̂

M = 4 × 4

M = 6 × 6

M = 8 × 8

M = 10 × 10

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

2

4

6

8

10

12

dr (m)

σ̂

M = 4 × 4

M = 6 × 6

M = 8 × 8

M = 10 × 10

Fig. 3: Estimated Distribution Parameters versus dr for differ-

ent M values

Fig. 4 shows the KLD between the empirical PDF with

the examined distribution models for various RIS sizes and
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Fig. 4: KLD for a) Gamma Distribution b) Rayleigh Distribu-

tion

number of receiver antennas. As it can be observed, for smaller

RIS dimensions and fewer receiver antennas, both the Gamma

and Rayleigh distributions closely approximate the empirical

data, indicating a robust model fit under these conditions.

Conversely, as dr and M values increase, the modeling per-

formance degrades. This degradation can be attributed to the

increased variance in angle of arrival deviation for larger M

and dr values, a phenomenon that complicates the accurate

description of empirical data by the examined distributions.

Finally, the Gamma distribution consistently outperforms the

Rayleigh distribution in data fitting, evidenced by its signifi-

cantly lower KLD values across all explored combinations of

dr and M , underscoring the Gamma distribution’s enhanced

adaptability in capturing the empirical data’s characteristics.

In conclusion, while both distributions offer valuable insights,

the Gamma distribution’s notably lower KLD values across

diverse dr and M settings highlight its efficiency in reflecting

the empirical data, marking its significance in the analysis of

DoA deviations within a PWE.

V. CONCLUSIONS

In this paper, we examined the novel methodology for

RF wavefront copying within PWEs, aimed at advancing

XR services through accurate RF wavefront replication at

the receiver’s antennas. Specifically, we proposed a routing

algorithm that minimizes replication errors within the practical

constraints of RIS codebooks. Furthermore, our detailed noise

modeling and simulation results illustrate how PWE character-

istics, such as RIS size and the number of receiver antennas,

influence wavefront replication accuracy. Finally, our analysis

comparing the Gamma and Rayleigh distribution models with

empirical data underlines the Gamma distribution’s superior

performance, demonstrating its effectiveness in describing

the data across different RIS sizes and number of receiver

antennas.
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