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Abstract—Grant-free non-orthogonal multiple access (GF-
NOMA) based on multiple-input multiple-output (MIMO) has
attracted much attention as a promising technique to support
massive connectivity and bursty data transmission in massive
machine-type communication. In this paper, we propose two
compressed sensing based multiuser detection (MUD) algorithms
for the MIMO-enabled GF-NOMA system. First, the spatially
enhanced variational Bayesian inference (SE-VBI) algorithm is
developed for MUD by exploiting the Gaussian mixture prior and
diversity combining technique. Then, by applying the covariance-
free (CoFe) strategy to the SE-VBI framework to estimate the
diagonal elements of the posterior covariance, we propose a low-
complexity MUD method named SE-CoFe-VBI. In particular,
the proposed algorithms integrate the multivariate nature of
the transmitted signal, i.e., discreteness, sparsity, and spatial
correlation. Simulation results show that the proposed algorithms
offer improved detection performance over the state-of-the-art
spatially enhanced sparse Bayesian learning method.

Index Terms—Grant-free non-orthogonal multiple access,
multiple-input multiple-output, Gaussian mixture prior, varia-
tional Bayesian inference, covariance-free.

I. INTRODUCTION

With the generational evolution of wireless communication
technologies, massive machine-type communication (mMTC)
has emerged as a powerful backbone for B5G cellular Internet-
of-Things (IoT) [1]. Unfortunately, the current request-grant
based orthogonal multiple access protocols cannot meet the re-
quirements of massive connectivity and sporadic service traffic
in mMTC [2]. To address this challenge, the grant-free non-
orthogonal multiple access (GF-NOMA) solutions have gained
prominence as a preferred alternative to mitigate signaling
cost and round-trip delay [3]. In GF-NOMA, active users
can transmit data to the base station (BS) arbitrarily without
any restrictions on resource allocation and scheduling priority.
However, how to perform effective multiuser detection (MUD)
is the primary task of GF-NOMA. Fortunately, the inherent
bursty nature of user traffic allows the use of compressed
sensing (CS) techniques to solve the sparse detection problem
[4]–[8].

Bayesian-based CS algorithms, such as approximate mes-
sage passing (AMP) [4] and sparse Bayesian learning (SBL)

This work was partially funded by the National Science Foundation of
China Project (No. 62020106001), and in part by the Sichuan Science and
Technology Program (No. 2022NSFSC0910).

[5], have been proposed for MUD by using sparsity-promoting
prior distributions. However, the works in [4] and [5] failed
to explore the impact of degrees of spatial freedom on MUD
performance. Motivated by the above observations, the authors
in [6] investigated the MUD problem in the multiple-input
multiple-output (MIMO) case and proposed a parallel AMP
algorithm for multiple measurement vector formulation. The
block SBL (B-SBL) [7] algorithm, which assigns a structured
prior distribution to the block sparse signal, was developed
to perform MUD. On the other hand, our previous work
[8] proposed a spatially enhanced sparse Bayesian learning
(SE-SBL) algorithm to improve the posterior distribution of
the transmitted signal by incorporating the spatial diversity
property of multi-antenna reception. However, the aforemen-
tioned studies [4]–[8] neglected the potential formats of the
transmitted symbols, i.e., zero paradigm for inactive users and
finite alphabet for active users.

In this paper, we formulate the MUD for MIMO-enabled
GF-NOMA system as a block sparse detection problem and
propose two promising Bayesian CS algorithms. First, the
spatially enhanced variational Bayesian inference (SE-VBI)
method is developed to enable MUD. This algorithm is an
improved version of SE-SBL by integrating the discreteness
and sparsity of the transmitted symbols for both inactive and
active users. Second, we develop a low-cost MUD method by
applying the covariance-free (CoFe) technique [9] to the SE-
VBI framework, i.e., SE-CoFe-VBI. This algorithm uses the
diagonal estimation principle and fundamental matrix theory to
approximate the posterior distribution of the transmitted signal.
Finally, numerical results show that SE-VBI and SE-CoFe-
VBI exhibit similar performance and significantly outperform
the state-of-the-art SE-SBL algorithm.

The rest of the paper is organized as follows. Section II
introduces the system model for grant-free MIMO-NOMA.
Sections III and IV present the SE-VBI and SE-CoFe-VBI
algorithms for MUD, respectively. Section V describes the
experimental results, and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a MIMO-enabled GF-NOMA system that
includes a BS with M antennas and K single-antenna users, as
shown in Fig. 1(a). It is assumed that only a few active users
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Fig. 1. (a) A typical uplink GF-NOMA system with multi-antenna
reception; (b) spatial structure of user sparsity level; (c) block-wise
SMV model.

transmit data to the BS, corresponding to the sparse nature
of the data frame structure in mMTC. Specifically, the active
user k chooses a symbol xk from the finite alphabet ℵ for data
transmission, and conversely, if the k-th user is inactive, the
transmitted symbol is equivalent to xk = 0. Thus, the aug-
mented alphabet set for all users can be represented by ℵ0 =
{ℵ , 0}. Due to the low power consumption of massive IoT
applications, the binary phase shift keying (BPSK) modulation
is adopted for symbol transmission, i.e., ℵ0 = {−1, 0, 1}.
Furthermore, each user k spreads its transmitted symbol xk
over a non-orthogonal sequence δk = (δ1k, δ2k, · · ·, δNk)

T

of length N . Without loss of generality, we assume that the
channel estimation and frame synchronization are completed
before [5], [8]. Thus, the observed signal at the m-th antenna
can be written as

rm =
K∑
k=1

(ϕmk � δk)xk + nm = Amx+ nm, (1)

where ϕmk = (ϕm1k, ϕ
m
2k, · · ·, ϕmNk)T represents the channel

fading coefficients between user k and the m-th antenna,
nm is the complex Gaussian noise with zero mean and σ2I
covariance, Am = (ϕm1 � δ1,ϕ

m
2 � δ2, · · ·,ϕmK � δK) is the

equivalent measurement matrix, x = (x1, x2, · · ·, xK)T is the
transmitted symbol for all users, and � is the element-wise
product.

Although the channel gains from each user to the BS are
distinct, the sparse patterns of user activity are identical over
multiple receiving antennas, as shown in Fig. 1(b). Based on
this structured sparsity properties, (1) is extended into the
block sparse single measurement vector (SMV) model for the
MIMO case,

r = As + n, (2)

where r = vec(r1, r2, · · ·, rM ) is the linear received signal,

A = diag(A1,A2, · · ·,AM ) is the block sensing matrix, s =
vec(x,x, · · ·,x) is the block sparse signal, n = vec(n1,n2, · ·
·,nM ) is the linear Gaussian noise, and vec(·) is the column-
wise vectorization.

The first priority of this paper is joint user activity and data
detection, i.e., recovering the transmitted symbol x from the
block sparse vector s using the block CS theory. s is composed
of M sparse vectors in which the non-zero elements have the
same sparse location, as depicted in Fig. 1(c). However, this
block sparse structure enables further improvement of MUD
accuracy.

III. SE-VBI FOR MUD
SE-SBL is a robust sparse reconstruction algorithm for

grant-free MIMO-NOMA systems that exploits both the s-
patial correlation and the sparsity of user activity. However,
the SE-SBL algorithm ignores the finite alphabet constraint,
i.e., all symbols transmitted by users are discrete random
variables from the augmented alphabet ℵ0. To this end, we
introduce a Gaussian mixture model (GMM) [10] to capture
the discreteness and sparsity of the transmitted signal, and
use the variational Bayesian inference (VBI) method [11] to
approximate the posterior probability distributions of the hid-
den variables. The proposed MUD algorithm, named spatially
enhanced VBI (SE-VBI), is also available for MIMO-enabled
GF-NOMA system by exploiting the diversity combining
technique.

SE-VBI adopts a three-layer hierarchical prior model with
sparsity promotion and finite alphabet constraint. Specifically,
in the first layer, a multivariate Gaussian mixing prior is
imposed on s, i.e.,

p(s ;α, z) =
M∏
m=1

K∏
k=1

CN (smk | −1 , α−1
mk,1)zmk,1

× CN (smk | 0 , α−1
mk,2)zmk,2CN (smk | 1 , α−1

mk,3)zmk,3 ,

(3)

where smk is the mk-th element of the sparse vector s, and
{−1, 0, 1}, {α−1

mk,1, α
−1
mk,2, α

−1
mk,3}, and {zmk,1, zmk,2, zmk,3}

are the mean, variance, and indicator factor for all Gaus-
sian probability density components, respectively. Here, α =
{α1,α2,α3} with αl = (α11,l, · · ·, αmk,l, · · ·, αMK,l)

T ,
z = {z1, z2, z3} with zl = (z11,l, · · ·, zmk,l, · · ·, zMK,l)

T ,
and l = 1, 2, 3. Furthermore, we impose some restrictions on
the indicator hyperparameters, i.e.,

zmk,1 + zmk,2 + zmk,3 = 1, (4)

and

{zmk,1, zmk,2, zmk,3} =


{1, 0, 0}, smk → −1,

{0, 1, 0}, smk → 0,

{0, 0, 1}, smk → 1.

(5)

The second layer assigns a multivariate Gamma prior to the
hyperparameters α,

p(α) =
M∏
m=1

K∏
k=1

Gamma(αmk,1 | a , b)

×Gamma(αmk,2 | a , b)Gamma(αmk,3 | a , b),
(6)
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where a and b are informative parameters used to promote the
sparsity of the transmitted signal s. Meanwhile, in the second
layer, the hyperparameters z are formulated as a multivariate
polynomial distribution as follows

p(z ;ρ) =
M∏
m=1

K∏
k=1

ρ
zmk,1

mk,1 , ρ
zmk,2

mk,2 , ρ
zmk,3

mk,3 , (7)

where {ρmk,1, ρmk,2, ρmk,3} are the percentage coefficients of
the GMM components, ρ = {ρ1,ρ2,ρ3} with ρl = (ρ11,l, · ·
·, ρmk,l, · · ·, ρMK,l)

T , and l = 1, 2, 3.
The third level specifies a multivariate Dirichlet prior to the

hyperparameters ρ,

p(ρ) =
M∏
m=1

K∏
k=1

ρθ1−1
mk,1ρ

θ2−1
mk,2ρ

θ3−1
mk,3, (8)

where {θ1, θ2, θ3} are constant parameters and the percentage
hyperparameters satisfy

ρmk,1 + ρmk,2 + ρmk,3 = 1, ρmk,l ∈ (0, 1). (9)

For simplicity, γ = 1/σ2 is defined as the noise precision
and the noise vector is formulated as a multivariate Gaussian
distribution, i.e., p(n) = CN (n | 0 , γ−1I). Furthermore, γ is
interpreted as a hyperprior p(γ) = Gamma(γ | c , d), where
c and d are non-informative parameters. Thus, the likelihood
distribution of the observed signal r is given by

p(r | s ; γ) = CN (r | As , γ−1I). (10)

In the following, we focus on the estimation problem of the
hidden variables Θ = {s,α, z,ρ, γ}. Based on the three-layer
hierarchical prior model, the complete likelihood distribution
can be expressed as

p(r ; Θ) = p(r | s ; γ)p(s ;α, z)p(α)p(z ;ρ)p(ρ)p(γ). (11)

The solution of Θ can be obtained by calculating the
maximum a posteriori (MAP) estimation of p(Θ | r), which
depends on the marginalized integration

∫
p(r ; Θ)dΘ. Thus,

the direct calculation of MAP is extremely complicated and
it is also difficult to optimize it. For this purpose, we employ
the VBI method to approximate the true posterior distribution
instead of computing the MAP explicitly. The joint posterior
probability can be approximated and factorized as

p(Θ | r) ≈ q(Θ)

= q(s)q(α)q(z)q(ρ)q(γ),
(12)

where q(α) = q(α1)q(α2)q(α3), q(z) = q(z1)q(z2)q(z3),
and q(ρ) = q(ρ1)q(ρ2)q(ρ3).

According to [11], the optimal solution of (12) can be given
by the following equation

ln q(Θi) =〈ln p(r ; Θ)〉∏
j 6=i q(Θj) + const,

i, j = 1, 2, 3, 4, 5,
(13)

where Θi denotes the i-th hidden variable in Θ and
〈p(r ; Θ)〉∏

j 6=i q(Θj) represents the expectation for all variables

except Θi. More precisely, the elaborated update steps are
provided as follows.

1) Update of q(s):

ln q(s)

= 〈ln p(r ; Θ)〉q(α)q(z)q(ρ)q(γ) + const

= −〈γ〉‖r−As‖22 −
M∑
m=1

K∑
k=1

[〈zmk,1〉〈αmk,1〉

× (smk + 1)2 + 〈zmk,2〉〈αmk,2〉s2
mk

+ 〈zmk,3〉〈αmk,3〉(smk − 1)2] + const

= −sH [〈γ〉AHA + Γ1 + Γ2 + Γ3]s

+ 2(〈γ〉rHA−Λ1 + Λ3)s + const,

(14)

where

Γ1 = diag(〈z11,1〉〈α11,1〉, · · ·, 〈zMK,1〉〈αMK,1〉),
Γ2 = diag(〈z11,2〉〈α11,2〉, · · ·, 〈zMK,2〉〈αMK,2〉),
Γ3 = diag(〈z11,3〉〈α11,3〉, · · ·, 〈zMK,3〉〈αMK,3〉),

(15)

and

Λ1 = (〈z11,1〉〈α11,1〉, · · ·, 〈zMK,1〉〈αMK,1〉),
Λ3 = (〈z11,3〉〈α11,3〉, · · ·, 〈zMK,3〉〈αMK,3〉).

(16)

It is evident from (14) that q(s) satisfies a Gaussian distri-
bution, i.e.,

q(s) = CN (s | µ ,Σ), (17)

where the posterior mean and covariance can be formulated
as

sVBI = µ = Σ(〈γ〉rHA−Λ1 + Λ3)H , (18)

and
Σ = (〈γ〉AHA + Γ1 + Γ2 + Γ3)−1. (19)

The mean is treated as the minimum mean square error
(MMSE) estimation of the block sparse vector. Then, we can
obtain M observed samples of the transmitted signal x by the
inverse vectorization,

S = (S1,S2, · · ·,SM ) = vec−1(sVBI ,M). (20)

Given the space diversity of multi-antenna reception and the
block sparsity of user activity, the multiple observed signals
are combined as follows

x̂ =
M∑
m=1

ηmSm, (21)

where ηm is the diversity gain of the m-th antenna. For
simplicity, the equal gain combining (EGC) technique [12]
is adopted for multiple observed samples, i.e., η = 1/M .
Furthermore, we extend the combined signal into a block
pattern to improve the posterior mean of s,

sSE−VBI = µ̂ = vec(x̂, x̂, · · ·, x̂). (22)

Next, the remaining hidden variables are updated using the
improved posterior distribution q(s) = CN (s | µ̂ ,Σ).
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2) Update of q(α):

ln q(α)

= 〈ln p(r ; Θ)〉q(s)q(z)q(ρ)q(γ) + const

=
M∑
m=1

K∑
k=1

[〈zmk,1〉lnαmk,1 − 〈(smk + 1)2〉〈zmk,1〉αmk,1

+ 〈zmk,2〉lnαmk,2 − 〈s2
mk〉〈zmk,2〉αmk,2

+ 〈zmk,3〉lnαmk,3 − 〈(smk − 1)2〉〈zmk,3〉αmk,3]

+
M∑
m=1

K∑
k=1

[(a− 1)lnαmk,1 − bαmk,1 + (a− 1)lnαmk,2

− bαmk,2 + (a− 1)lnαmk,3 − bαmk,3] + const.
(23)

Since ln q(α) =
∑3
l=1 ln q(αl), we have

ln q(α1) =
M∑
m=1

K∑
k=1

[〈zmk,1〉lnαmk,1 − 〈(smk + 1)2〉〈zmk,1〉

× αmk,1 + (a− 1)lnαmk,1 − bαmk,1] + const.
(24)

Each term in (24) can be written as

ln q(αmk,1) =(a+ 〈zmk,1〉 − 1)lnαmk,1

− (b+ 〈(smk + 1)2〉〈zmk,1〉)αmk,1 + const.
(25)

Hence, q(αmk,1) obeys a parameterized Gamma distribu-
tion, i.e.,

q(αmk,1) = Gamma(αmk,1 | âmk,1 , b̂mk,1), (26)

where the parameters âmk,1 and b̂mk,1 are as follows

âmk,1 = a+ 〈zmk,1〉,
b̂mk,1 = b+ 〈(smk + 1)2〉〈zmk,1〉.

(27)

Analogously, q(αmk,2) and q(αmk,3) can be generalized to
the Gamma distribution,

q(αmk,2) = Gamma(αmk,2 | âmk,2 , b̂mk,2), (28)

where the parameters âmk,2 and b̂mk,2 satisfy

âmk,2 = a+ 〈zmk,2〉,
b̂mk,2 = b+ 〈s2

mk〉〈zmk,2〉,
(29)

and
q(αmk,3) = Gamma(αmk,3 | âmk,3 , b̂mk,3), (30)

where the parameters âmk,3 and b̂mk,3 satisfy

âmk,3 = a+ 〈zmk,3〉,
b̂mk,3 = b+ 〈(smk − 1)2〉〈zmk,3〉.

(31)

The expectation of αmk,l and lnαmk,l can be expressed as

〈αmk,l〉 =
âmk,l

b̂mk,l
, l = 1, 2, 3, (32)

and

〈lnαmk,l〉 = Ψ(âmk,l)− ln b̂mk,l, l = 1, 2, 3, (33)

where Ψ(·) denotes the digamma function.
3) Update of q(z):

ln q(z)

= 〈ln p(r ; Θ)〉q(s)q(α)q(ρ)q(γ) + const

=
M∑
m=1

K∑
k=1

[〈lnαmk,1〉zmk,1 − 〈(smk + 1)2〉〈αmk,1〉zmk,1

+ 〈lnαmk,2〉zmk,2 − 〈s2
mk〉〈αmk,2〉zmk,2

+ 〈lnαmk,3〉zmk,3 − 〈(smk − 1)2〉〈αmk,3〉zmk,3]

+
M∑
m=1

K∑
k=1

[〈ln ρmk,1〉zmk,1 + 〈ln ρmk,2〉zmk,2

+ 〈ln ρmk,3〉zmk,3] + const.
(34)

Since ln q(z) =
∑3
l=1 ln q(zl), we have

ln q(z1) =
M∑
m=1

K∑
k=1

[〈lnαmk,1〉zmk,1 − 〈(smk + 1)2〉〈αmk,1〉

× zmk,1 + 〈ln ρmk,1〉zmk,1] + const.
(35)

Each term in (35) can be written as

ln q(zmk,1) =(〈lnαmk,1〉 − 〈(smk + 1)2〉〈αmk,1〉
+ 〈ln ρmk,1〉)zmk,1 + const.

(36)

Similarly, we can obtain the logarithmic posterior probabil-
ities of zmk,2 and zmk,3,

ln q(zmk,2) =(〈lnαmk,2〉 − 〈s2
mk〉〈αmk,2〉

+ 〈ln ρmk,2〉)zmk,2 + const,
(37)

and

ln q(zmk,3) =(〈lnαmk,3〉 − 〈(smk − 1)2〉〈αmk,3〉
+ 〈ln ρmk,3〉)zmk,3 + const.

(38)

Under the setting
∑3
l=1 zmk,l = 1, we define the expecta-

tion of zmk,l as

〈zmk,1〉 =
Pmk,1

Pmk,1 + Pmk,2 + Pmk,3
,

〈zmk,2〉 =
Pmk,2

Pmk,1 + Pmk,2 + Pmk,3
,

〈zmk,3〉 =
Pmk,3

Pmk,1 + Pmk,2 + Pmk,3
,

(39)

where

Pmk,1 = exp(〈lnαmk,1〉 − 〈(smk + 1)2〉〈αmk,1〉+ 〈ln ρmk,1〉),
Pmk,2 = exp(〈lnαmk,2〉 − 〈s2

mk〉〈αmk,2〉+ 〈ln ρmk,2〉),
Pmk,3 = exp(〈lnαmk,3〉 − 〈(smk − 1)2〉〈αmk,3〉+ 〈ln ρmk,3〉).

(40)
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4) Update of q(ρ):

ln q(ρ)

= 〈ln p(r ; Θ)〉q(s)q(α)q(z)q(γ) + const

=
M∑
m=1

K∑
k=1

[〈zmk,1〉ln ρmk,1 + 〈zmk,2〉ln ρmk,2

+ 〈zmk,3〉ln ρmk,3] +
M∑
m=1

K∑
k=1

[(θ1 − 1)ln ρmk,1

+ (θ2 − 1)ln ρmk,2 + (θ3 − 1)ln ρmk,3] + const.

(41)

Since ln q(ρ) =
∑3
l=1 ln q(ρl), we have

ln q(ρ1) =
M∑
m=1

K∑
k=1

[〈zmk,1〉ln ρmk,1

+ (θ1 − 1)ln ρmk,1] + const.

(42)

Each term in (42) can be written as

ln q(ρmk,1) = (θ1 + 〈zmk,1〉 − 1)ln ρmk,1 + const. (43)

Moreover, the log-posterior probabilities of q(ρmk,2) and
q(ρmk,3) are given by

ln q(ρmk,2) = (θ2 + 〈zmk,2〉 − 1)ln ρmk,2 + const, (44)

and

ln q(ρmk,3) = (θ3 + 〈zmk,3〉 − 1)ln ρmk,3 + const. (45)

Given that
∑3
l=1 ρmk,l = 1, we define the expectation of

ln ρmk,l as

〈ln ρmk,l〉 = Ψ(Qmk,l)−Ψ(

3∑
l=1

Qmk,l), (46)

where
Qmk,l = θl + 〈zmk,l〉. (47)

5) Update of q(γ):

ln q(γ)

= 〈ln p(r ; Θ)〉q(s)q(α)q(z)q(ρ) + const

= NM ln γ − 〈‖r−As‖22〉γ + (c− 1)ln γ − dγ + const

= (c+NM − 1)ln γ − (d+ 〈‖r−As‖22〉)γ + const.
(48)

It is observed that q(γ) obeys a Gamma distribution, i.e.,

q(γ) = Gamma(γ | ĉ , d̂), (49)

where the parameters ĉ and d̂ are denoted as

ĉ = c+NM,

d̂ = d+ 〈‖r−As‖22〉.
(50)

Based on this, the expectation of γ can be calculated as

〈γ〉 =
ĉ

d̂
=

c+NM

d+ ‖r−Aµ̂‖22 + tr[AHAΣ]
. (51)

IV. SE-COFE-VBI FOR MUD

SE-VBI is an improved sparse detection method for multi-
antenna reception. Unfortunately, inferring the posterior co-
variance of s requires a high-dimensional matrix inversion,
as mentioned in (19). The computational cost of SE-VBI is
O(K3M3) per iteration, which is burdensome and prohibitive
for massive connectivity. To this end, we introduce the CoFe
strategy [9] into the SE-VBI framework to produce a cost-
effective MUD method called SE-CoFe-VBI. Recalling the
steps of SE-VBI, Σ is needed to update µ in (18), 〈αmk,l〉
in (32), 〈lnαmk,l〉 in (33), 〈zmk,l〉 in (39), and 〈γ〉 in (51).
CoFe provides a streamlined update of the above expectations
without explicitly calculating Σ, using the diagonal estimation
principle and fundamental matrix theory.

1) Update of µ: After a basic matrix transformation, (18)
can be re-written as

Σ−1µ = (〈γ〉rHA−Λ1 + Λ3)H . (52)

As such, the posterior mean can be estimated by solving the
linear equation Φvµ = uµ for Φ = (〈γ〉AHA+Γ1+Γ2+Γ3),
vµ = µ, and uµ = (〈γ〉rHA−Λ1 + Λ3)H .

2) Update of Σ: As seen in (32), (33), and (39), only the
diagonal elements of Σ are required to update these hyperpa-
rameters without computing the entire matrix. Therefore, we
aim to estimate the diagonal entries of Σ by the following
diagonal estimation rule [9].

Lemma 1: We define H ∈ CG×G and h ∈ CG×1 as arbitrary
square matrix and its diagonal vector. The unbiased estimation
of h can be expressed as

h = (

W∑
w=1

uw �Huw)� (

W∑
w=1

uw � uw), (53)

where uw ∈ CG×1, ∀w ∈ {1, 2, · · ·,W} are random probe
vectors satisfying 〈uw〉 = 0 and � is the element-wise
division. For simplicity, we assume that the stochastic vectors
obey the Randemacher distribution, i.e., uw draws values from
{−1, 1} with equal probability. Thus, the diagonal estimator
can be reduced to

h =
1

W

W∑
w=1

uw �Huw. (54)

Thanks to the above lemma, the diagonal vector estimation
problem for Σ is transformed into solving a system of linear
equations Φ[v1,v2, · · ·,vW ] = [u1,u2, · · ·,uW ]. The solution
vw is the estimated Σuw used in (54) to compute the diagonal
elements.

3) Update of 〈γ〉: It is obvious from (51) that the diagonal
elements of AHAΣ are required for updating the posterior
distribution of γ. This motivates use of the diagonal estimation
rule to calculate diag(AHAΣ). Based on the estimated Σuw,
the diagonal vector can be expressed as

diag(AHAΣ) =
1

W

W∑
w=1

uw �AHAΣuw. (55)

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 24,2025 at 11:13:35 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. SER performance of the proposed MUD algorithms for multi-
antenna reception.

The parallel conjugate gradient (PCG) algorithm [9] is
adopted to solve these W + 1 linear equations. Since the
complexity of PCG depends on matrix-matrix multiplication,
the computational cost of SE-CoFe-VBI is O(K2M2(W+1))
for single iteration.

V. SIMULATION RESULTS

In this section, experimental results are presented to validate
the proposed MUD algorithms. Specifically, the proposed SE-
VBI and SE-CoFe-VBI algorithms are evaluated and compared
with the standard AMP [4], SBL [5], B-SBL [7], and SE-
SBL [8] methods. We consider an overloaded mMTC scenario
in which the total number of users is K = 200, the user
sparsity level is ε = 0.2, and the spreading sequence length
is N = 160. In all simulations, BPSK modulation and flat
Rayleigh fading channel model are adopted. The number of
random probe vectors is W = 20, which is an empirical value
according to [9]. Moreover, the static parameters are a = 1,
b = c = d = 10−8, and θ1 = θ2 = θ3 = 1.

Fig. 2 shows the symbol error rate (SER) performance of
the SE-VBI and SE-CoFe-VBI algorithms for multi-antenna
reception. The single-antenna case is further considered for
comparison. It is noticed that the SER performance improves
significantly with more receiving antennas. This suggests that
the proposed algorithms exploit the spatial structure of user
sparsity patterns. Furthermore, the performance of SE-VBI
and SE-CoFe-VBI is virtually identical, because the estimated
posterior distribution is roughly comparable to the results of
variational inference.

Fig. 3 shows the SER comparison of several MUD algo-
rithms. The performance of all algorithms improves as the
signal-to-noise ratio (SNR) increases. We can observe that SE-
VBI and SE-CoFe-VBI outperform the alternatives especially
in the high SNR region. This is because the proposed algo-
rithms exploit the multivariate nature of discreteness, sparsity,
and spatial correlation of the transmitted signal. Moreover, the
proposed algorithms still perform better than the standard SBL
method even in the single-antenna case, as presented in Figs.
2 and 3.

Fig. 3. SER comparison of several MUD algorithms for M = 4
antenna reception.

VI. CONCLUSIONS

In this paper, we developed two VBI-based MUD algorithm-
s to improve sparse detection and reduce computational com-
plexity in an uplink MIMO-enabled GF-NOMA system. The
proposed SE-VBI and SE-CoFe-VBI algorithms exploit the
multivariate nature of BPSK modulation to be more suitable
for energy-constrained mMTC scenarios. Simulation results
showed that the proposed algorithms not only outperform SE-
SBL for multi-antenna reception, but also surpass SBL for
single-antenna reception.
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