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Abstract—Massive machine-type communications (mMTC) are
anticipated to be supported by grant-free random access (GF-RA)
and multiple-input multiple-output (MIMO) techniques. Com-
pressed sensing (CS) is extensively advocated to accommodate
massive connectivity due to bursty data transmission. In this
paper, we formulate the joint activity detection and channel
estimation for the MIMO-enabled GF-RA system as a block
single measurement vector (SMV) problem. First, the hierarchical
block sparse Bayesian learning (BSBL) framework is developed
to solve this problem, where the potential block sparse properties
induced by multiantenna reception are exploited by assigning
the structured hyperprior. Then, by integrating the generalized
approximate message passing (GAMP) approach into the BSBL
formulation to effectively approximate the posterior distribution,
we propose a computationally efficient Bayesian learning algo-
rithm named GAMP-BSBL. Fortunately, the proposed Bayesian
algorithms enable automatic learning of block sparse solutions
without requiring noise level and user sparsity ratio as explicit
conditions. Simulation results show that the proposed algorithms
provide improved performance gains as compared with the
standard CS methods.

Index Terms—Grant-free random access, compressed sensing,
block single measurement vector, block sparse Bayesian learning,
generalized approximate message passing.

I. INTRODUCTION

Massive machine-type communications (mMTC) are pre-
dicted to accommodate widespread and unparalleled connec-
tivity for cellular Internet of Things (IoT) applications [1].
Unlike human-type communications, the main characteristics
of mMTC include large-scale users, short-time transmissions,
and sporadic data traffic. Therefore, how to design effective
and reliable wireless access techniques to support mMTC is
an open-ended topic [2]. As a branch of wireless access tech-
niques, the standard request-grant random access agreements
were commonly used in 5G new radio (NR) [3]. However,
for massive connectivity, the tedious handshake interaction
between users and base station (BS) is highly susceptible to
signaling cost and end-to-end delay. To remove this issue,
the grant-free random access (GF-RA) solutions have gained
great attention, since it authorizes the active users to access
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the BS directly without the need for cumbersome scheduling
procedures [4]. Intuitively, the key interests of GF-RA are
which users are active and how their channel state information
is available at any given time. However, due to sporadic traffic
transmission, active user identification and channel estimation
are typically transformed into the sparse signal reconstruction
paradigm and appropriately tackled via compressed sensing
(CS) algorithms [5]–[7].

Recently, well-established greedy CS methods, such as the
matching pursuit (MP) and its variants [8]–[10], have been
introduced to achieve massive connectivity in uplink GF-RA
systems. On the other hand, Bayesian-type algorithms, e.g.,
approximate message passing (AMP) [11] and sparse Bayesian
learning (SBL) [12], have been developed to perform the paral-
lel tasks of user identification and channel estimation. Further-
more, our previous work [13] proposed a low-complexity SBL
method to circumvent high-dimensional matrix inversion by
using the generalized approximate message passing technique.
However, the aforementioned studies [8]–[12] failed to utilize
multiple-input multiple-output (MIMO) techniques to further
enhance the massive detection performance. Inspired by the
above observations, the researchers in [14] developed an AMP-
based multiple measurement vector (AMP-MMV) algorithm
for GF-RA systems with multiantenna reception. In addition,
block greedy CS approaches, such as the block MP and its
extensions [15]–[17], have been proposed to enable massive
random access. However, the established works [14]–[17]
necessitated precise insights into user activity probability or
noise level, which is impractical for mMTC with occasional
traffic characteristics.

In this paper, the joint activity detection and channel esti-
mation (JADCE) in MIMO-enabled GF-RA system is trans-
formed into the form of block sparse signal reconstruction.
For this purpose, two sparse detection algorithms based on
Bayesian learning are developed to support massive connec-
tivity. The main contributions of this paper are summarised as
follows:

• First, we introduce the block sparse Bayesian learning (B-
SBL) [18] framework to capture the underlying structured
sparsity properties, where the sparse pattern of each block
is dominated by a unique hyperparameter. Different from
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the related BSBL algorithm, we employ a hierarchical
Gaussian-Gamma prior model to promote the sparsity of
the channel vector.

• Then, to overcome the complexity problem, we develop a
cost-efficient Bayesian learning algorithm by integrating
the generalized approximate message passing (GAMP)
method [19] into the BSBL formulation. Since high-
dimensional matrix inversion is bypassed, the proposed
GAMP-BSBL algorithm significantly reduces the com-
putational cost of BSBL.

• In contrast to existing studies [14]–[17], the proposed
Bayesian algorithms enable automatic learning of block
sparse solutions without imposing any restrictions on
noise magnitude and user activity level.

• The superiority of the proposed algorithms in terms of
reconstruction accuracy and cost efficiency is validated
by extensive simulation experiments.

The remainder is arranged as follows. Section II presents the
system model for MIMO-enabled GF-RA. Sections III and IV
describe the proposed BSBL and GAMP-BSBL algorithms for
JADCE. Section V shows the performance analysis. Finally,
Section VI concludes the paper.

Notation: The transpose, conjugate transpose, expectation,
column-wise vectorization, and Kronecker product are marked
as (·)T , (·)H , E[·], vec(·), and ⊗. ‖ · ‖2 indicates the l2-norm.
tr[ · ] represents the matrix’s trace. Γ(·) denotes the Gamma
function. 0r denotes a vector with all zero elements and size
r. Ir denotes a identity matrix of size r × r. diag(r) stands
for a diagonal matrix comprising the elements r.

II. SYSTEM MODEL

This paper considers a uplink MIMO-enabled GF-RA sys-
tem containing a BS with M antennas and K one-antenna
users, as illustrated in Fig. 1. As the access time slot arrives,
only Ka users among K are active, i.e., Ka � K, corre-
sponding to sporadic service traffic of mMTC. Since the total
users for massive connectivity are generally greater than the
finite resource blocks, it is assumed that each user is endowed
with a non-orthogonal pilot sk = (sk,1, sk,2, · · ·, sk,N )

T of
length N . For simplicity, the case of synchronized reception is
considered within a coherent block. Thus, the received signal
of multiple antennas can be formulated as

Y =
K∑
k=1

skh
T
k + W = SH + W, (1)

where Y = (y1,y2, · · ·,yM ) with ym ∈ CN×1 is the received
signal of the m-th antenna, hk = (hk,1, hk,2, · · ·, hk,M )

T is
the channel gain between user k and the BS, W = (w1,w2, ··
·,wM ) with wm ∈ CN×1 is additive Gaussian noise satisfying
mean 0N and covariance σ2IN , S = (s1, s2, · · ·, sK), and
H = (h1,h2, · · ·,hK)T . The row sparse matrix H exhibits
the same sparse pattern in each column, as shown in Fig. 1.

To extract the underlying structured sparse properties of
user activity induced by multiantenna reception, we further
recombine H into a new sparse vector h by sequentially

K

M

M

M

KM

Fig. 1. A typical massive connectivity scenario and the equivalent CS
models. (a) Uplink GF-RA system with multiantenna reception. (b)
MMV model. (c) Block sparse SMV model.

extracting each row vector of H. Similarly, the matrices Y,
S, and W need to be transformed into a suitable form to fit
the reshaped profile of H. Considering this, Equation (1) is
converted to the equivalent block single measurement vector
(SMV) model,

y = Ah + w = (S⊗ IM )h + w, (2)

where y = vec(YT ) is the linear observation signal, w =
vec(WT ) is the linear Gaussian noise, h = vec(HT ) is the
linear channel vector, and A = S ⊗ IM is the equivalent
measurement matrix. Note that h is a block sparse vector, i.e.,
each block of h shares the same sparse mode, as presented in
Fig. 1(c). This potential structured sparsity properties can be
exploited to improve the accuracy of massive user detection.

Throughout this paper, the main objective is joint active user
identification and channel estimation. This involves extracting
the block sparse vector h from the linear observation vector
y based on the equivalent measurement matrix A.

III. BSBL FOR JADCE

In the uplink GF-RA system with multiantenna reception,
the sparse patterns of all coefficients within a block of h
are statistically dependent. To extract the underlying block
sparsity properties, we adopt a two-layered hierarchical prior
model with a unique hyperparameter assigned to each block.
The hierarchical prior structure provides improved sparsity-
promoting property as compared with the standard BSBL
framework [18]. More precisely, in the first layer, we assign
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a multivariate Gaussian prior to h,

p(h ;α) =
K∏
k=1

M∏
m=1

CN (hk,m | 0 , α−1
k )

= (2π)−KM |Λ| exp(−hHΛh),

(3)

where hk,m is the km-th coefficient of h, αk is the hy-
perparameter of k-th block, α = (α1, α2, · · ·, αK)T is the
hyperparameter vector used to tune the structured sparsity of
h, and Λ = diag(vec[(α,α, · · ·,α)T ]). It is clear that the k-th
block of h becomes zero as the hyperparameter αk tends to
positive infinity.

In the second layer, we assign Gamma prior distributions to
the hyperparameters α,

p(α) =
K∏
k=1

Gamma(αk | a , b)

=
K∏
k=1

Γ(a)−1baαa−1
k e−bαk ,

(4)

where a and b are empirically defined parameters employed
to encourage sparsity of h.

For clarity, we denote θ as 1/σ2, which indicates the inverse
precision of noise level. Furthermore, it is assumed that the
noise vector w satisfies a common Gaussian prior,

p(w) = CN (w | 0NM , θ−1INM ). (5)

Then, the Gamma distribution is assigned to the hyperpa-
rameter θ,

p(θ) = Gamma(θ | c , d) = Γ(c)−1dcθc−1e−dθ, (6)

where c and d are empirically determined parameters. As a
result, the linear observation signal y satisfies a Gaussian
likelihood distribution,

p(y | h ; θ) = CN (y | Ah , θ−1INM ). (7)

Based on Bayes’ theory, the posterior probability for h is
given by

p(h | y ;α , θ) =
p(y | h ; θ)p(h ;α)∫
p(y | h ; θ)p(h ;α)dh

. (8)

Substituting (3) and (7) into (8), and employing some math-
ematical simplifications [5], it is proved that h approximately
satisfies a Gaussian distribution,

p(h | y ;α , θ) = CN (h | µ ,Σ), (9)

where the mean and variance of the posterior probability are
given by

hBSBL = µ = θΣAHy,

Σ = (θAHA + Λ)−1.
(10)

The mean of posterior distribution is treated as the minimum
mean square error (MMSE) estimate of h, which depends on
the estimated hyperparameters. Then, we focus on estimat-
ing the hyperparameters {α , θ}. Specifically, the expectation

Algorithm 1 BSBL

Initialization: ∀k: µ(0) = 0, α(0)
k = 1, θ(0) = 1, and t = 1.

Step 1. Updating the MMSE estimation of the linear channel vector
h refer to (10).
Step 2. Estimating the hyperparameters refer to (12) and (13).
Iterating the full process until ‖µ(t) − µ(t−1)‖2 < η, where η is
the maximum permissible error of 10−8.

maximization (EM) strategy [20] is performed to renew the
hyperparameters.

1) E-step: In the first phase, the expectation value of the
full log-likelihood distribution, also known as the Q-function,
is computed,

Q(t−1)(y ,h | α , θ)

=
K∑
k=1

M∑
m=1

(
1

2
lnαk −

1

2
αkE[h2k,m])

+
K∑
k=1

((a− 1) lnαk − bαk) +
NM

2
ln θ

− θ

2
E[‖y −Ah‖22] + (c− 1) ln θ − dθ.

(11)

2) M-step: In the second phase, the hyperparameters are re-
newed by maximizing the Q-function. Extrapolating the first-
order partial derivatives of (11) versus α and θ, respectively,
and taking zero values, we can access the update rules for αk
and θ,

α
(t)
k =

M + 2a− 2

2b+
M∑
m=1

(µ2
k,m + Σkm,km)

, (12)

θ(t) =
NM + 2c− 2

2d+ ‖y −Aµ‖22 + tr[ΣAHA]
. (13)

The BSBL algorithm is summarized in Algorithm 1.

IV. GAMP-BSBL FOR JADCE

The BSBL algorithm enables automatic learning of block
sparse solutions without the fundamental information of noise
level and user sparsity ratio. However, the computation of
the posterior distribution of h incorporates the inverse op-
eration of KM × KM matrix. The BSBL algorithm has a
complexity order of O(K3M3), which limits its applicability
especially in massive connectivity scenarios. To overcome
the expensive cost, we embed the GAMP approach into the
BSBL formulation to achieve the effective approximation of
posterior distribution, and propose a computationally efficient
alternative named GAMP-BSBL. GAMP is a refined version
of the traditional belief propagation algorithm by simplifying
the message passing rules at the factor and variable nodes [19].

In this case, we define Θ = {α , θ} as the set of hyperpa-
rameters and z = Ah as the noiseless output signal. GAMP-
BSBL algorithm provides a series of scalar estimates for the
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unknown vectors h and z. Firstly, GAMP-BSBL approximates
the true posterior probability p(hk,m | y , r̂k,m, τ rk,m,Θ) as

p(hk,m | y , r̂k,m , τ rk,m ,Θ)

=
p(hk,m | Θ)CN (hk,m | r̂k,m , τ rk,m)∫

p(hk,m | Θ)CN (hk,m | r̂k,m , τ rk,m)dhk,m
,

(14)

where r̂k,m denotes the variable of hk,m plus noise and
τ rk,m denotes the variance of noise. Substituting (3) into
(14) and making some simplifications, it can be evidenced
that p(hk,m | y , r̂k,m , τ

r
k,m ,Θ) approximately satisfies a

Gaussian distribution CN (hk,m | µhk,m , φhk,m) with mean and
variance as follows

µhk,m =
r̂k,m

αkτ rk,m + 1
,

φhk,m =
τ rk,m

αkτ rk,m + 1
.

(15)

Moreover, GAMP-BSBL approximates the true posterior
probability p(zn,m | y , p̂n,m , τpn,m ,Θ) as

p(zn,m | y , p̂n,m , τpn,m ,Θ)

=
p(yn,m | zn,m ,Θ)CN (zn,m | p̂n,m , τpn,m)∫

p(yn,m | zn,m ,Θ)CN (zn,m | p̂n,m , τpn,m)dzn,m
,

(16)
where zn,m denotes the nm-th coefficient of z, p̂n,m de-
notes the variable of zn,m plus noise, and τpn,m denotes
the variance of noise. The Gaussian noise setting produces
p(yn,m | zn,m ,Θ) = p(yn,m | zn,m , θ−1). Hence, p(zn,m |
y , p̂n,m , τ

p
n,m ,Θ) also approximately satisfies a Gaussian

distribution CN (zn,m | µzn,m, φzn,m) with mean and variance
as follows

µzn,m =
τpn,mθyn,m + p̂n,m

θτpn,m + 1
,

φzn,m =
τpn,m

θτpn,m + 1
.

(17)

Since the main cost of computing the posterior distribution
stems from matrix-vector multiplications, the GAMP-BSBL
algorithm has a complexity order of O(NKM2), such that it
is more suitable for massive connectivity cases. Then, the EM
strategy [20] is implemented to estimate the hyperparameters
by taking h as the hidden variables and optimizing the Q-
function, i.e.,

Q(t−1)(y ,h | α , θ)
= E[ln p(h ;α)p(α)] + E[ln p(y | h ; θ)p(θ)]

, Q(α | α(t−1) , θ(t−1)) +Q(θ | α(t−1) , θ(t−1)).

(18)

For the hyperparameters α, we have

Q(α | α(t−1) , θ(t−1)) =
K∑
k=1

M∑
m=1

(
1

2
lnαk −

1

2
αkE[h2k,m])

+
K∑
k=1

((a− 1) lnαk − bαk).

(19)

Algorithm 2 GAMP-BSBL

Initialization: ∀k,m, n: α(0)
k = 1, θ(0) = 1, µh (0)

k,m = 1, φh (0)
k,m =

1, ŝ(0)n,m = 0, and t = 1.
Step 1. ∀n ∈ {1, 2, · · ·, N} and ∀m ∈ {1, 2, · · ·,M}:

z
(t)
n,m =

K∑
k=1

M∑
m=1

Anm ,kmµ
h (t−1)
k,m

τ
p (t)
n,m =

K∑
k=1

M∑
m=1

A2
nm ,kmφ

h (t−1)
k,m

p̂
(t)
n,m = z

(t)
n,m − τp (t)

n,m ŝ
(t−1)
n,m

Step 2. ∀n ∈ {1, 2, · · ·, N} and ∀m ∈ {1, 2, · · ·,M}:

ŝ
(t)
n,m = 1

τ
p (t)
n,m

(
τ
p (t)
n,m θ(t−1)yn,m+p̂

(t)
n,m

θ(t−1)τ
p (t)
n,m +1

− p̂(t)n,m)

τ
s (t)
n,m = θ(t−1)

θ(t−1)τ
p (t)
n,m +1

Step 3. ∀k ∈ {1, 2, · · ·,K} and ∀m ∈ {1, 2, · · ·,M}:

τ
r (t)
k,m = (

N∑
n=1

M∑
m=1

A2
nm ,kmτ

s (t)
n,m )−1

r̂
(t)
k,m = µ

h (t−1)
k,m + τ

r (t)
k,m

N∑
n=1

M∑
m=1

Anm ,kmŝ
(t)
n,m

Step 4. ∀k ∈ {1, 2, · · ·,K} and ∀m ∈ {1, 2, · · ·,M}:

µ
h (t)
k,m =

r̂
(t)
k,m

α
(t−1)
k

τ
r (t)
k,m

+1

φ
h (t)
k,m =

τ
r (t)
k,m

α
(t−1)
k

τ
r (t)
k,m

+1

Step 5. Updating of αk:
α
(t)
k = M+2a−2

2b+

M∑
m=1

E[h
2 (t)
k,m ]

Step 6. Updating of θ:
θ(t) = NM+2c−2

2d+

N∑
n=1

M∑
m=1

E[(yn,m − z(t)n,m)2]

Iterating the full process until

√√√√ K∑
k=1

M∑
m=1

∣∣∣µh (t)
k,m − µ

h (t−1)
k,m

∣∣∣2 < η,

where η is the maximum permissible error of 10−8.

Deriving the first-order derivative of (19) versus αk, and
letting it be zero, we get

α
(t)
k =

M + 2a− 2

2b+

M∑
m=1

E[h2k,m]

. (20)

Since CN (hk,m | µhk,m , φhk,m) obeys a Gaussian probability
with mean µhk,m and variance φhk,m, E[h2k,m] can be formulated
as

E[h2k,m] = (µhk,m)2 + φhk,m

= (
r̂k,m

αkτ rk,m + 1
)2 +

τ rk,m
αkτ rk,m + 1

.
(21)
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For the hyperparameter θ, we have

Q(θ | α(t−1) , θ(t−1)) =
NM

2
ln θ + (c− 1) ln θ − dθ

− θ

2

N∑
n=1

M∑
m=1

E[(yn,m − zn,m)2].

(22)

Deriving the first-order derivative of (22) versus θ, and
letting it be zero, we get

θ(t) =
NM + 2c− 2

2d+
N∑
n=1

M∑
m=1

E[(yn,m − zn,m)2]

. (23)

Since CN (zn,m | µzn,m, φzn,m) obeys a Gaussian probability
with mean µzn,m and variance φzn,m, E[(yn,m − zn,m)2] can
be given by

E[(yn,m − zn,m)2]

= (yn,m − µzn,m)2 + φzn,m

= (yn,m −
τpn,mθyn,m + p̂n,m

θτpn,m + 1
)2 +

τpn,m
θτpn,m + 1

.

(24)

The GAMP-BSBL algorithm is summarized in Algorithm
2.

V. SIMULATION RESULTS

The performance of the developed BSBL and GAMP-BSBL
algorithms are evaluated and compared with the classical SBL
[12], block orthogonal MP (B-OMP) [15], block compressive
sampling MP (B-CoSaMP) [16], and AMP-MMV [14] meth-
ods. The primary system parameters are listed below. The
total users and pilot sequence length are set to K = 200 and
N = 100. The antennas deployed by the BS are M = 4, which
is a typical parameter for realistic scenarios. In all simulations,
a flat Rayleigh fading channel model is considered, i.e.,
hk ∼ CN (0M , IM ). The informative parameters are a = 1.5
and b = 10−8. The non-informative parameters are c = 10−8

and d = 10−8. Moreover, the pilot sequences are generated
with a random Gaussian distribution and the simulation results
are averaged over 1000 Monte Carlo runs.

To evaluate the proposed Bayesian algorithms, we define the
activity detection success rate (ADSR) and the mean square
error (MSE) as follows

ADSR =
K̂a

Ka
, (25)

MSE =

∥∥∥ĥ− h
∥∥∥2
2

KM
, (26)

where K̂a denotes the number of successfully identified active
users and ĥ denotes the estimated channel vector.

Fig. 2 shows the recovery accuracy of the considered
algorithms under varying signal-to-noise ratios (SNR). Clearly,
the proposed BSBL and GAMP-BSBL algorithms signifi-
cantly outperform the other four counterparts, because they
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Fig. 2. Comparison of the considered algorithms versus SNR when
Ka = 20. (a) ADSR. (b) MSE.

not only exploit the spatial correlation of user activity, but
also incorporate the empirical prior distribution of channel
vector. Moreover, the GAMP-BSBL algorithm exhibits similar
performance to the BSBL algorithm, which coincides with
the fact that the approximated posterior distribution strongly
approaches the actual posterior probability.

Fig. 3 presents the recovery accuracy of the considered
algorithms under varying number of active users. The per-
formance of all algorithms deteriorates as the user activity
probability increases, but the proposed BSBL and GAMP-
BSBL algorithms still outperform the remaining CS methods.
Note that the B-OMP, B-CoSaMP, and AMP-MMV methods
require the accurate number of active users. However, the
proposed Bayesian algorithms enable automatic learning of
block sparse solutions without the need for user activity factor
as prior information.

Table I illustrates the number of multiplications and the
running time of the considered algorithms. Specifically, we
record the computational runtime used to perform one iteration
when the user sparsity level is Ka = 20. It is obvious that
SBL and BSBL have a higher computational complexity as
compared with the B-OMP and B-CoSaMP. However, the
proposed GAMP-BSBL algorithm significantly improves the
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Fig. 3. Comparison of the considered algorithms versus the number
of active users when SNR = 20 dB. (a) ADSR. (b) MSE.

TABLE I
COMPUTATIONAL COMPLEXITY

Algorithm Computational cost for single iteration Runtime (ms)
B-OMP [15] K + 2KM + 2NKM2 +NtM2 + 2Nt2M3 + t3M3 4.592

B-CoSaMP [16] 3K + 4KM + 2NKM2 + 3NKaM2 + 10NK2
aM

3 + 9K3
aM

3 29.953
AMP-MMV [14] M + 22K + 2NM + 7KM + (K +N + 1)M2 + 2NKM 5.482

SBL [12] NM + 2KM + 2NKM2 + 4NK2M3 +K3M3 544.332
BSBL NM +KM + (2N + 1)KM2 + 4NK2M3 +K3M3 555.967

GAMP-BSBL 9NM + 7KM + (6N + 1)KM2 8.862

cost efficiency by circumventing the matrix inversion process.
Moreover, GAMP-BSBL achieves better detection accuracy
at a slight computational cost compared to the AMP-MMV
method, as presented in Table I and Fig. 2.

VI. CONCLUSIONS

In this paper, we developed two Bayesian learning algo-
rithms for joint activity detection and channel estimation in
MIMO-enabled GF-RA system. The developed BSBL and
GAMP-BSBL algorithms exploit the underlying block sparse
structure induced by multiantenna reception, and do not re-
quire noise level and user activity probability as explicit
information. The simulation results validate the superiority of
the proposed algorithms over the standard CS methods both
in recovery accuracy and cost efficiency.
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