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Abstract—Orthogonal Time-Frequency-Space (OTFS) modu-
lation can effectively suppress the effects of Doppler shift in
high-speed mobile scenarios. At the same time, the accuracy
of OTFS channel estimation is an important factor that affects
the performance of OTFS. In this paper, we propose a Sparse
Bayesian Learning (SBL) algorithm to quickly and accurately
estimate the OTFS channel by combining the pilot pattern and
the sparsity of the OTFS channel. First, we propose a new pilot
pattern to prevent the contamination of information symbols on
pilot symbols. Since the pilot pattern uses only partial guard
symbols, it can also improve the spectral efficiency. Then, we
propose the Student-T prior SBL (STSBL) algorithm to improve
the speed and accuracy of OTFS channel estimation by exploiting
the sparsity of the OTFS channel. Simulation results show that
the normalized mean squared error (NMSE), bit error rate
(BER), and throughput of the proposed scheme outperform the
benchmark schemes.

Index Terms—OTFS, channel estimation, pilot pattern,
Student-T prior Sparse Bayesian Learning.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM)
modulation is a key technology in Long Term Evolution
(LTE) [1]. In fifth generation (5G) and next generation mobile
communication systems, the effects of Doppler shift become
more severe in high-speed mobile scenarios. To address the
problems caused by Doppler shift in such scenarios [2],
Orthogonal Time-Frequency-Space (OTFS) modulation tech-
nology has been proposed as an alternative to OFDM [3].
OTFS has its own advantages, such as the channel is sparse
and can be treated as time-invariant, and the Doppler shift can
be effectively handled in the delay Doppler (DD) domain [4].
However, OTFS also faces challenges: 1) as a multi-carrier
multiplexing technique, OTFS also faces the problem of high
peak-to-average power ratio (PAPR) similar to OFDM [5], [6];
2) due to delay and Doppler shift, OTFS symbols overlap in
the DD domain, necessitating the use of non-linear detectors,
while reducing the complexity of data detection has become
an important OTFS research direction [7]; 3) the accuracy
of OTFS channel estimation is critical in affecting OTFS
performance.

As an approach to solve the OTFS channel estimation
problem, the embedded single pilot (EP) design has been
proposed in [1]. By surrounding pilot symbols with guard
symbols, EP can avoid contamination of information symbols
by pilot symbols. However, the guard symbols of EP reduce
the spectral efficiency. To solve this problem, [8] proposes
to use the full superposition pilot, where information symbols
and pilot symbols overlap. This improves efficiency, but results
in information contamination of the pilot symbols. In [9], a
guard symbol-free frame structure is designed and the Laplace
Prior Sparse Bayesian Learning (SBL) algorithm is applied to
estimate the OTFS channel. This scheme improves the spectral
efficiency but also overlooks the pilot symbol contamination
by information symbols. [10] optimizes the algorithm of the
literature [9] by using the method of reducing algorithm
complexity in compressed sensing [11]–[14], but it still cannot
avoid the pilot symbol pollution by information symbols.

Inspired by both pilot design and algorithm optimization
[10], [15], this paper first proposes an SBL algorithm com-
bined with a pilot pattern using partial guard symbols to solve
the integral order Doppler shift channel estimation problem for
OTFS systems. Furthermore, we propose the Student-T prior
SBL (STSBL) algorithm to achieve higher accuracy in OTFS
channel estimation.

The contributions of the paper as follows:

• Unlike EP [1] and being guard symbol free [9], [10], our
partial guard pilot symbol scheme prevents contamination
of pilot symbols by information symbols along the delay
axis.

• The relax method is used to obtain a lower bound on
the likelihood function for the received signal, thereby
reducing the complexity of the STSBL algorithm.

• Simulations show that the performance results of the
proposed scheme are better than Laplace prior SBL [9],
Generalized Approximate Message Passing SBL (GAMP-
SBL) [14], EP [1] and conventional Minimum Mean
Square Error (MMSE).

This paper is organized as follows. Section II describes the
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OTFS system model with integer order Doppler shift. The pilot
pattern and the proposed STSBL algorithm model are derived
in Section III. Section IV presents the simulations results and
Section V concludes the paper.

II. OTFS SYSTEM MODEL

At the transmitter of the OTFS systems, user data are first
modulated using binary phase shift keying (BPSK). Then
the BPSK symbols are mapped to the DD field which is
represented xd(k, l), k ∈ [0, N − 1], l ∈ [0,M − 1]. In the
two-dimensional DD domain, k is the Doppler axis index, l is
the delay axis index, N is the number of Doppler axis grid,
and M is the number of delay axis grid. After mapping the
BPSK symbols into the DD domain, xd(k, l) is first converted
from the DD domain to the time-frequency domain symbol
X(n,m), n ∈ [0, N − 1], m ∈ [0,M − 1] through the Inverse
Symplectic Fast Fourier Transform (ISFFT). The details of
ISFFT process is presented as follows:

X(n,m) =
1√
NM

N−1∑
k=0

M−1∑
l=0

xd(k, l) exp(j2π(
nk

N
− ml

M
)).

(1)
Then we need to utilize the Heisenberg transform to move

X(n,m) from the time-frequency domain to the time domain.
Based on Heisenberg transformation process, the transmitted
symbol is

s(t) =

M−1∑
m=0

N−1∑
n=0

X(n,m) exp(j2πm4f(t− nT ))

× gtx(t− nT ),

(2)

where T , gtx are sampling interval and the transmit pulse
respectively, 4f = 1

T . In OTFS system, the channel impulse
response model is as follows:

h(τ, v) =

P∑
i=1

hiδ(τ − τi)δ(v − vi), (3)

where, hi represents gain coefficient of the i-th path, δ(·) is
Dirac function, τi =

lτi
M4f , vi =

kvi+κvi
NT represents delay and

Doppler shift in the multipath model, respectively. The model
established in this paper is integer order Doppler shift, we set
κvi = 0 [4]. According to the analysis in [4], OTFS channel
is sparse and has only P non-zero values with a sparse factor
of P

NM .
At the receiver of OTFS system, Wigner transform and

Symplectic Fast Fourier Transform (SFFT) are successively
applied and transform received symbol to the symbol y(k, l)
in DD domain as:

y(k, l) ≈
P∑
i=1

hi exp(j2π(
l − lτi
M

)
kvi
N

)χi(k, l)

× x([k − kvi ]N , [l − lτi ]M ) + n(k, l),

(4)

χi(k, l) =

{
1 lτi ≤ l < M
N−1
N exp(−j2π(

[k−kvi ]N
N )) 0 ≤ l < lτi ,

(5)

where [·]N is mod N operation, n(k, l) represents the complex
additive white Gaussian noise (AWGN). After the information
symbol of DD domain is obtained, y[k, l] can be recovered by
linear minimum mean square error data detector [7].

III. PROPOSED STSBL FOR CHANNEL ESTIMATION

In this part, we first introduce our pilot pattern in this paper.
Then the STSBL algorithm for OTFS channel estimation
proposed in this paper is described.

A. Pilot pattern

Different with the pilot patterns in the literature [9] and [1]
which do not exist the guard symbols or use guard symbols
surround the pilot symbol, our pilot pattern utilizes the partial
guard symbols to reduce the pilot symbols pollution from
information symbols. The pilot symbols distribution in this
paper is as follows:

x[k, l] =


xp, k ∈ [kp − kmax, kp + kmax],

l ∈ [lp, lp +Mp]
xd, k /∈ [kp − kmax −Np, kp + kmax +Np],

l /∈ [lp − lmax, lp +Mp]
0, otherwise,

(6)
where kp and lp represent the coordinates of the reference
pilot symbol in the DD domain.

N-1

kp+kmax

0

kp-kmax

p

k k

kp

data guard pilot

M-1lp+Mplplp-lmax0

kp-kmax-Np

kp-kmax+Np

Fig. 1. The pilot pattern with partial guard symbols in DD domain.

After obtaining the position distribution of pilot symbols
xp, we can derive the symbol formula which will be used to
channel estimation in DD domain:

yp(k, l) =

lmax∑
l1=0

kmax∑
k1=−kmax

w(k1, l − l1)hk1,l1xp(k − k1, l − l1)

+ n(k, l).
(7)

where w(k1, l − l1) = exp( j2π(l−l1)(k1)MN ). Then we construct
vector yp for channel estimation from the symbol yp(k, l). The
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length of yp is (2kmax + 1) × (Mp + 1). In SBL algorithm,
the relationship between yp, xp, channel response vector h is
established using formula (8) and (9), as follows:

yp = Aph + n, (8)

Ap = (Xp �Φ), (9)

where � is Hadamard product, yp is the observation vec-
tor; Ap is sense matrix; Xp is pilot symbol matrix which
composed of pilot symbol xp; n is complex AWGN vector,
Φ((l − lp + (k + Np)Mp), (l1(2kmax + 1) + k1 + kmax)) =
w(k1, l−l1). Formula (8) is the mathematical model of STSBL
algorithm proposed in this paper.

B. Sparse Bayesian Learning

SBL is a machine learning algorithm. Due to the sparsity of
signals or channels, SBL has been studied in the communica-
tion field [12]. This section introduces the STSBL algorithm
proposed in this paper.

First, we assign the n in the formula (8) to a normal
distribution with zero mean and variance of λ−1:

p(n|λ) ∼ CN (n|0, λ−1I), (10)

where I is unit matrix. According to the assumption of the
hierarchical model in Bayesian inference [11], we make the
hyperparameter λ obey the Gamma distribution and assign the
parameters a, b.

p(λ) = Gamma(a, b) =
ba

Γ(a)
λa−1 exp(−bλ), (11)

where Γ(a) =
∫∞
0
ta−1 exp(−t)dt.

After obtaining the distribution function of the noise, we
can write the likelihood function of the symbols which are
used to channel estimation as follows:

p(yp|Ap, λ) = CN (yp|Aph, λ
−1I). (12)

Before the process of channel estimation using SBL, a
prior model needs to be assigned to h, which can reduce the
variance. In this hierarchical model, the channel response h is
assigned a Student-T prior. The prior model is as follows:

p(h) =

n∏
j=1

p(hj) =

n∏
j=1

∫
p(hj |αj)p(αj)dαj , (13)

p(hj |αj) = CN (hj |0, α−1j ). (14)

Because of assigning a prior distribution to h, we assume
that the hyperparameter αj follows the Gamma distribution of
the parameter c, d:

p(αj) ∼ Gamma(c, d). (15)

After integrating αj , we can get Student-T prior of h. In
order to reduce the complexity of STSBL algorithm, we use
Lemma 1 [11] to relax lower bound of equation (12). Let

f(h) : Rn ⇀ R is a continuously differentiable function [13]
with Lipschitz continuous gradient. Then we can get:

f(h) ≤ R(h,β) :=||yp −Apβ||
+ 2(h− β)∗(Ap)

∗(Apβ − yp)

+ s0||h− β||2,
(16)

where (·)∗ represents the conjugate transpose operation, s0 =
eig(ΦTΦ) + τ , eig(·) is the maximum eigenvalue of a square
matrix; τ is a constant, τ = 1e − 2 in this paper; R(·, ·) is
correlation function; if and only if h = β, f(h) = R(h,β).
Formula (12) can be rewritten:

p(yp|h, λ) ≥ (
λ

2π
)
mAp

2 exp(− (λ)

2
R(h,β)), (17)

where mAp
is row of matric Ap. Based on Bayesian infer-

ence [11], we can derive the posterior conditional probability
distribution function of the channel response model h:

p(h|yp, λ,α−1) ∼ CN (µh,Σh), (18)

µh = λΣh(s0β − (Ap)
∗Apβ + (Ap)

∗yp), (19)

Σh = (Γ−1 + s0λI)−1,Γ = diag(α−1), (20)

where (·)−1 represents inverse operation of matrix, diag(·) de-
note change a vector to a diagonal matrix, α = [α1; · · · ;αn].
The loss function of the model can be derived by combining
formulas (13), (14):

L(h,β, σ2,α−1) =

n∑
j=1

(ln(σ2 + s0α
−1
j ) + c1 lnα−1

+
2d+ h2j
α−1

) +
R(h,β) + 2b0

σ2

− e lnσ2,

(21)

where e = nAp
+ 2 −mAp

− 2a, c1 = 2c − 2, nAp
denotes

column of matric Ap.
Finally, according to the steps of maximization and min-

imization (MM) [11], we can replace the minimization loss
function with a iteratively minimize convex surrogate function:

(ĥ(i+1),β(i+1),α−1
(i+1)

) ∈ arg min
h,β,α−1

L̂(h,β,α−1) (22)

Due to the function L̂(h,β,α−1) is decomposable, we can
use the block coordinate descent (BCD) method to iteratively
update the parameters [11]. When the gradient is zero, we can
update the parameter:

Σ
(i)
h = (Γ(i)−1

+
s0

(σ2)(i)
I)−1, (23)

ĥ(i+1) =
1

(σ2)(i)
Σ

(i)
h (s0β

(i) − (Ap)
∗Apβ

(i) + (Ap)
∗yp),

(24)

β(i+1) = ĥ(i+1), (25)
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ρ(i+1) =

n∑
j=1

1

(σ2)(i) + s0α
−1(i)
j

, (26)

(σ2)(i+1) =
e+

√
e2 + 4ρ(i+1)(||yp −Apβ

(i+1)||2 + 2b)

2ρ(i+1)
,

(27)

α−1
(i+1)

j =

√√√√α−1
(i)

j ((σ2)(i) + s0α
−1(i)
i )(2d+ h

(i+1)2

j )

(c1 + 1)s0α
−1(i)
j + c1(σ2)(i)

,

(28)

Algorithm 1: The STSBL scheme for OTFS channel estimation
Input: yp, A
Initialization:

Set i = 1, and initialize a = b = d = 10−6, c =

1 + 10−6, α−1(0)

j = 1, λ(0) = (σ2)(0) = var(yp)/100, β(0) =
(Ap)

∗yp and maximum iteration iter imax = 200;
Repeat:

1. Calculate ĥ0 and Σ0
h using s0, (σ−2)(0) and α−1(0)

i ;
2. Update σ2 and α−1

j use formula (25), (26), (27), (28);
3. i = i+ 1;

Continue the iterations until:
i = imax or ||ĥ

(i+1)−ĥ(i)||
||ĥ(i+1)|| ≤ 10−5.

Output: ĥ

IV. SIMULATION RESULTS

In this section, we first compare the Normalised Mean
Squared Error (NMSE) performance of the proposed STSBL
scheme with four benchmark schemes, Laplace prior SBL [9],
GAMP-SBL [14], EP [1] and MMSE.

NMSE = 10 log10(
E(‖ h− ĥ) ‖22)

E(‖ h ‖22)
). (29)

We also verify the Bit Error Rate (BER) of the STSBL
scheme and the benchmark schemes to further validate its
channel estimation accuracy, comparing them with perfect
channel state information (CSI). Additionally, we analyse the
NMSE performance of the STSBL scheme under different
pilot ratio by adjusting Mp.

A. Parameters

In our simulation, the OTFS channel follows the ex-
tended vehicle model [9], with using Jason’s formula generate
Doppler shift [9]. We set 4f = 20kHz, the carrier frequency
is 4GHz, and the average power of the pilot is p = 3. Finally,
lmax, kmax also meet lmax ≤ 2Np+1, kmax ≤Mp. The initial
value of the proposed STSBL algorithm is set as follows:
a = 10−6, b = 10−6, c = 1 + 10−6, d = 10−6, and the
decision threshold is 10−5.

TABLE I
SNR = 10dB, RUNNING TIME OF DIFFERENT SCHEMES.

Algorithm runtime(s/frame)
Laplace prior SBL [9] 0.04

GAMP-SBL [14] 0.06
EP [1] 0.0001
MMSE 0.001
STSBL 0.004

B. NMSE

Fig. 2 illustrates the NMSE performance versus the average
frame symbols, demonstrating that the proposed STSBL out-
performs benchmark schemes. This can be attributed to the fact
that the proposed pilot pattern alleviates contamination from
information symbols. Table.I compares the running time of
different schemes, showing that STSBL performs fairly close
with MMSE and EP, and is obviously faster than the other
two schemes.

10 12 14 16 18 20

SNR(dB)

-30

-25

-20

-15

-10

-5

0

5

N
M

S
E

(d
B

)

\

StSBL

Laplace prior SBL [9]

GAMP-SBL [14]

EP[1]

MMSE

Fig. 2. NMSE(dB) of different schemes with N = 64,M = 128, P =
9,Mp = 10, Np = 5.

C. BER

To further verify the effectiveness of STSBL scheme in
improving channel estimation accuracy for the OTFS sys-
tem, we compare the BER performance of the proposed
STSBL scheme with benchmark schemes. Fig.3 illustrates
the BER curves versus signal-to-noise ratio (SNR), showing
that STSBL performs the best and exhibits BER performance
similar to that of perfect CSI. The throughput results are
depicted in Fig.4, where the proposed STSBL scheme also
performs the best.

D. NMSE with different Mp

Finally, we compare the NMSE performance of STSBL with
that of the benchmark schemes when the proportion of pilot
symbols is different at Mp = 11, 12, 13, 14, 15. In the case of
SNR = 18dB, it can be seen from Fig.5 that with the increase
of Mp, the NMSE values of the five schemes are almost
constant and the NMSE value of the STSBL scheme proposed
is always lower than the other four benchmark schemes.
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Fig. 3. Comparison of BER under the N = 64,M = 128, P = 9,Mp =
10, Np = kmax = 5.
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Fig. 4. Throughput vs SNR(dB) with N = 64,M = 128, P = 9,Mp =
10, Np = kmax = 5.
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Fig. 5. Influence of different Mp for five schemes’ NMSE.

V. CONCLUSION

In this paper, a new pilot pattern and STSBL algorithm
are proposed to estimate the OTFS channel more accurately.
The new pilot pattern reduces the contamination of pilot
symbols by information symbols along the delay axis by
using partial guard symbols. The proposed STSBL algorithm
achieves more accurate CSI in less time. Simulation results
verify that the proposed scheme outperforms GAMP-SBL,

Laplace prior SBL, EP, and MMSE schemes in terms of
NMSE, BER, and throughput performance.
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