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Abstract - Motivated by the suitability of the Weibull 
distribution to model multipath fading channels, the second 
order statistics and the spectral efficiency (SE) of L-branch 
SC receivers are studied. Deriving a n'ovel closed-form 
expression for the probability density function (pdf) of the 
SC output SNR, the average level crossing rate (LCR), the 
average fade duration (AFD) and the Shannon's average SE, 
at the output of the SC, are derived in closed-forms. Our 
results are sufficiently general to handle arbitrary fading 
parameter and dissimilar branch powers. 
Keywords - Selection combining (SC)i, Weibull fading 
channels, level crossing rate (LCR), average fade duration 
(AFD), spectral efficiency (SE). 

I. INTRODUCTION 

ELECTION combining (SC) receivers are utilized to S mitigate the detrimental effects of channel fading and 
co-channel interference in wireless digital communications 
systems. Their major advantage is the reduced complexity 
compared to other well-known diversity techniques, such 
as equal-gain combining (EGC), maximal-ratio combining 
(MRC) and generalized-selection combing (GSC). In L- 
branch selection diversity receivers, the instantaneous signal- 
to-noise ratio ( S N R )  of the L branches are estimated and the 
one with the highest value is selected [l]. 

The second order statistics and the cbannel capacity, in 
Shannon's sense, of SC receivers have been extensively stud- 
ied in the open technical literature for Rayleigh [2], [3], Rice 
[4]-[6] and Nakagami-m fading channel models [7]-[9]. 
Hoever, experimental fading channel measurements show, 
that the Weibull model also exhibits excellent fit for indoors 
[lo], [ I l l ,  as well as outdoors [12], [I31 environments. To 
the best of the authors' knowledge, only a published work 
related to the second order statistics and the average channel 
spectral efficiency (SE) has been presented by Sagias et al. 
in [14]. In this work, novel analytical expressions for the 
average level crossing rate (LCR), the average fade duration 

(AFD) [2] and the average SE, when the Weibull model is 
considered, have been extracted. However, such performance 
metrics have not been previously addressed for SC receivers 
in Weibull fading. 

In this paper, the channel SE and the second order 
statistics of SC receivers for non-identical Weibull fading 
channels, are studied. More specifically, deriving a novel 
and mathematical trackable formula for the probability den- 
sity function (pdf) of the SC output SNR, closed-form 
expressions for the average LCR, the AFD and the average 
SE, at the output of the combiner, are obtained. Selected 
numerical examples are presented, showing the effects of 
various channels and systems parameters, such as the fading 
severity and the number of diversity branches on the SC 
performance. 

11. SYSTEM AND CHANNEL MODEL 

We consider an L-branch SC receiver, where 
X l , t ( t )  = f i a t  Et=:=, S k , e  cos (2 . i r fk , e  t - # k , e )  and 
xz,e(t) = f i n e  Ck=l s k , e  sin (21r f k , e  t - 8 k , ( )  are the in- 
phase and quadrature components of a narrow-band process 
at timing instance t in the lth input branch, C = 1 , 2 , .  . . , L. 
In the above equations, f iae  Sk ,e  is the fading amplitude 
of the lcth wave which satisfies ~ ~ = : = ,  S i , g  = 1, 8 k , e  is the 
random phase uniformly distributed in [ 0 , 2 1 r ) ,  K: is the 
total number of waves and fk>e  is the Doppler shift given 
by fk,e  = f d c o s ( Q k , e ) ,  where fd is the maximum Doppler 
shift and &,( is the corresponding angle of wave arrival. 

Taking into account the central limit theorem, for fixed 
t and for a large value of IC, xl,e(t) and ~ 2 , e ( t )  can be 
considered as zero mean Gaussian random variables (rv) 
with variance U;. Here, it is convenient to alleviate this 
notation, by omitting the variable t in the equations. It is 
well-known that a sum of two quadrature Gaussian rvs is 
also a Gaussian one, i.e., ze = X 1 , e  + 3 x2,e = xe eJVe, 
where a = -1. The phase pe = tan-' ( ~ 2 , e / ~ l , e )  of this 
new Gaussian rv is uniformly distributed in [0,27r) and the 
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amplitude xe = &!>e + is Rayleigh distributed, having 
Pdf 

pze (.e) = 2 xe exp ( -x$ /Oe)  /Re  (1) 

where Re = E ( x z )  = 2 02, with E (.) denotes expectation. 
Let the received Sam led envelope in the Ah diversity branch 
be ye = zi”e = x i A  e3 q e / f l e ,  where ,Be is a positive real 
constant value. Using (l), the pdf of the envelope 

can be easily obtained as 

p,, (re) = pe T 2 - l  exp ( - @ / f i e )  /Re  (3) 

with E r? = Re. It is easily recognized that (3) follows 

fading parameter (@e 2 0) and expresses the severity of 
fading. As the value of increases, the severity of the fading 
decreases, while for the special case of = 2, (3) reduces to 
the well-known Rayleigh pdf. The corresponding cumulative 
density function (cdf) and the nth moment of re are 

the Weibull 0 istribution [15]. The parameter pe is the Weibull 

FTc(re) = 1 - exp ( e  -rfle/Oe 1 (4) 

E (re“) = r (d,,e) (5) 
and 

respectively, where (.) is the Gamma function [16, eq. 
(8.310/1)] and d,,e is defined as dn,e = 1 + n/,&. Let the 
instantaneous input SNR per symbol in the &h branch be as 

Ye = re2 E,/No (6) 

Te = Es/No (7) 

and the corresponding average input SNR per symbol as 
- 

where E, is the transmitted symbols’ energy, 3 is the fading 
power, T; = R2/Pe r (d2,e) and No is the single-sided noise 
power spectral density (psd) of the additive white Gaussian 
noise (AWGN), assumed identical and uncorrelated among 
the L diversity branches. Using (9, (6) and (7) with (4), the 
cdf of ye can be written as 

- 

where ae = l/r (d2,e). 

the one with the highest value among the L branches, i.e., 
The envelope r at the output of the SC receiver will be 

r = max { re }  (9) 

and having assumed identical noise psd to all diversity 
branches during the sampling process, the instantaneous 
output SNR will be 

(10) ysc = max { r e }  = r2 E,/No. 

The cdfs of r and ysc are the probability that the signal 
levels of all branches fall below a certain level, which using 
(4) and (8), can be expressed as 

L 

F,.(r) = n [I - exp ( - r P k / f l k ) ]  (11) 
k= 1 

and 

respectively. The pdf of ysc is obtained by differentiating 
(12) with respect to ysc, yielding 

(13) 
The above expression for the pdf of ysc can not be easily 
manipulated in the current form. Therefore, we rearrange 
(1 3), performing all the multiplications required and thus, 
for ,& = ,8, b’e (ae = a and dn,e = dn) ,  valid for practi- 
cal applications, after manipulations (1 3) can be efficiently 
written as 

L 

(14) 
k = l  

L - k + l  L - k + 2  L L 

where ue = p/ (aTe)p/2 and te = exp ( U e $ L 2 / p ) ,  

respectively. Equation (14) includes only sums of simple 
products of powers and exponential functions, which are 
mathematically trackable. For independent and identically 
distributed (i.i.d.) input paths (Ti = 5 and Re = R , V Q  
using the binomial identity [16, eq. (1.1 ll)], (13) can be 
simplified as [17, eq. (4)] 

where ( L ; l )  = ( L  - l)!/[k! ( L  - 1 - k ) ! ] .  

111. AVERAGE FADE DURATION (AFD) AND LEVEL 
CROSSING RATE (LCR) 

The average LCR and the AFD are two criteria which 
statistically characterize the fading communication channel. 
The average LCR is defined as the average number of times 
per unit duration that the envelope of a fading channel 
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crosses a given value in the negative di:rection. The AFD 
corresponds to the average length of time the envelope 
remains under this value once it crosses it in the negative 
direction. Both reflect the correlation properties, and thus 
the second-order statistics, of the fading channel and they 
provide a dynamic representation of the channel [2]. 

The average LCR and the AFD are defned as 

N ( r )  = i .pp,, (?, r )  df (16) 

T(7-1 c-(r)/iv(T-) (17) 

La 
and 

respectively, where p+,, (i.,r) is the joint pdf of r and its 
time derivative i.. Using (2), the time derivative of re is 

where j.e is the time derivative of xe. For isotropic scattering, 
j.e is Gaussian distributed with zero mean and variance [2] 

&-e“ = a; 2 2  fd”. 

erg = 2 ,:-Pel2 delbe. 

(19) 

From (18), the pdf of i.e conditioned on re is also a zero 
mean Gaussian distribution, with standard deviation 

(20) 

Using (9), the time derivative of the envelope at the output 
of the SC receiver is 

(21) 
. .  r = ri, r, = max{re} . 

From (18) and (21), it can be easily recognized that i. 
conditioned on the re is a zero mean Gaussian rv, with 
variance 6: = if (ri = max {re} 1 ri = r )  and pdf 

pi- ( ? I T )  = exp (-0.5i.2/d:t) / (&C?,~ . (22) 1 
Consequently, 5, is a discrete rv with pclf 

L 

p e r  (6,) = 

= 

P (8, = d2) b (8, - 6%) 

P (rz  = max {re) I r, == r )  6 (6, - dz). 

2=1 

L 

2=1 

(23) 

Using (16) and (22) and taking into account p+, ,  ( f , r )  = 
pc (? l r )p ,  ( T ) ,  the average LCR conditional on 8, is 

N (rid,) = p , ( r )  d,/dG. (24) 

By averaging (24) over the pdf of ti,, i.e., N ( r )  = 

N (rid,) pe7 (8,) dd, and using (20) and (23), yields 

Talung into account the independence assumption be- 
tween the input branches, l‘ (ri = max {re} l ri = r )  = 

J$=l FTk(r)  and by replacing, together with (3), (4) and 
(19) into (25), the average LCR of the SC operating in 
Weibull fading can be obtained in closed-form as 

k f i  

(26) 
Now, replacing (1 1) and (26) into (17), the AFD of the SC 
is also expressed in closed-form as 

.”, . 
(27) 

For i.i.d. input paths, after normalizing the signals’ levels to 
its root mean square (rms) value p = r/rrms, with T,,, = 
G, (26) and (27) reduce to 

and 

T ( P )  = (29) 
L f d 6  (P/v@’2 exP [- (P/&)”] 

respectively. Note, that when ,8 = 2, (26) and (27) reduce to 
previously published expressions for the average LCR and 
AFD of the well-known Rayleigh model [9]. For L = 1, 
(28) and (29) can be further reduced to [14, eq. (12)] and 
[ 14, eq. (1 3)], respectively. 

The value which maximizes the average LCR can be de- 
rived as aN(r)/arIr=,,,, = 0. For L = l, it can be shown 
that the average LCR is maximized at pmax = 2T1/P& 
as N (Prnax) = f d m ,  where pmaa: = rmaa:/r,ms . ~t 
is interesting to note that the severity of fading does not 
affect N(pmax). However, for L > 1, ,omax can not be 
analytically extracted and any of the well-known software 
mathematical packages such Mathematica and Maple can be 
used for numerical evaluation. 

Using (28) and (29), Figs. 1 and 2 plot the normalized 
average LCR and AFD, respectively, for a dual branch 
SC with i.i.d. input branches SNRs as a function of p, 
for several values of p. As the fading severity increases, 
the normalized average LCR increases, meaning that fades 
occur more frequently. Furthermore, the lower the signal 
levels are, the less frequently that they are crossed, whereas 
higher signal level are crossed more frequently. Furthermore, 
in Figs. 3 and 4, the normalized average LCR and AFD, 
respectively, for an L-branch SC with i.i.d. input branches 
SNRs, is plotted as a function of p for ,8 = 2.5 and different 
diversity orders. As L increases, the frequency at which the 
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Fig. 1 Fig. 2 
Normalized average LCR vs. normalized envelope level for 

L = 2. 
F h n d i z e d  AFD VS. n0mdized envelope level for L = 2.  

special case of ,5’ being integer, k = 2 and 1 = ,B. For i.d.d. 
input paths (31) reduces to (32) (top of the next page) and 
setting L = 1 in (32), leads to [ 14, eq. (17)]. 

received simal crosses high values (e.g. P > 2.5dB) stays 
almost the same. Moreover, as L increases fades occur rarely. 

IV. AVERAGE SPECTRAL EFFICIENCY (SE) 
The SE, in Shannon’s sense, is an important performance 

measure since it provides the maximum transmission rate 
which can be succeeded, in order to the errors be recover- 
able. The average SE is expressed as [3] 

CO - 
SE = log2 (1 + 7) PYsc (7) d7. (30) 

By replacing (14) into (30), it is required to evaluate integrals 
of the form ~ f i / ~ - ’  ln(1 + x) exp ( - < ~ f i / ~ )  dx. This 
type of integral has been analytically solved in [14], using 
[ lS]  and the average SE can be obtained in a closed-form 
expression as in (31) (top of this page), where G[.] is the 
tabulated Meijer’s G-function [ 16, eq. (9.301)], available in 
most of the well-known mathematical software packages, 
such Maple and Mathernatica and A(n , t )  = t / n ,  ( E  + 
l) /n,  . . . , (e+n- l ) /n ,  with < an arbitrary real value and n 
a positive integer. Moreover, the values of integers K and p 
must be chosen, so that p / ~  = p/2 holds (e.g. for p = 3.4 
we have to choose k = 10 and 1 = 17). Note, that for the 

V. CONCLUSIONS 

Based on a useful formula extracted for the pdf of the 
SC output SNR, closed-form expressions for the average 
LCR, the AFD and the average SE were derived. Selected 
numerical examples were presented, supporting that the 
performance gain of SC gets more important as the fading 
gets less severe and the diversity order increases. 
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