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Abstract— We present exact closed-form expressions for
the statistics of the sum of non-identical squared Nakagami-
m random variables and it is shown that it can be written as
a weighted sum of Erlang distributions. The analysis includes
both independent and correlated cases with distinct average
powers and integer-order fading parameters. The proposed
formulation significantly improves previously published re-
sults which are in the form of infinite sums or higher order
derivatives. The obtained formulae can be applied on the
performance analysis of maximal-ratio combining diversity
receivers operating over Nakagami-m fading channels.

I. I NTRODUCTION

Performance analysis of digital wireless communica-
tions systems usually deals with complicated and cumber-
some statistical tasks. One of them arises in the study of
diversity combining receivers operating over Nakagami-
m fading channels [1], where the statistics of the sum of
squared Nakagami-m random variables (RVs) (or equiva-
lently the sum of Gamma RVs) are required. Well-known
applications in the field of mobile radio systems where
such sums could be useful are maximal-ratio combining
(MRC) and post-detection equal-gain combining (EGC),
or in the evaluation of the outage probability in cellular
systems with co-channel interference (see [2]–[8] and
references therein).Ω The most general approach related
to the distribution of the sum of Gamma RVs has been
presented by Moschopoulos in [9], where an infinite series
representation for the probability density function (PDF)
of the sum of independent Gamma RVs, with non-identical
parameters, has been proposed. Alouiniet al. in [8], have
extended the result of [9], for the case of arbitrarily
correlated Gamma RVs and studied the performance of
MRC and post-detection EGC receivers, as well as the
cochannel interference in cellular mobile radio systems.
However, to the best of the authors’ knowledge, there are
not available in the open technical literature any simple
closed-form expressions for both PDF and cumulative
distribution function (CDF) of the sum of squared non-
identically distributed Nakagami-m RVs. Consequently,
there have not been presented any closed-form expressions
for the performance metrics of the above mentioned
diversity receivers.

In this paper, novel closed-form expressions for the
PDF and the CDF of the sum of non-identical squared
Nakagami-m RVs, with integer-order fading parameters,
are derived. Our results include both the statistical inde-
pendent and correlated cases. Furthermore, in order to re-
veal the importance of the proposed statistical formulation,
we study the performance ofL-branch MRC receivers,
in the presence of Nakagami-m multipath fading. Exact

formulae for the outage probability, the channel average
spectral efficiency (SE) and the average symbol error
probability (ASEP) for several coherent, non-coherent,
binary and multilevel modulation signallings are obtained.

After this short introduction, in Section II, novel closed-
form expressions for the PDF and the CDF of the sum of
squared Nakagami-m RVs are obtained. In Section III, the
theoretical results of Section II are applied to derive useful
expressions for performance metrics of MRC diversity
receivers, operating over Nakagami-m fading channels.
Finally, in Section V, useful concluding remarks are
provided.

II. CLOSED-FORM STATISTICS FOR THESUM OF

SQUARED NAKAGAMI -m RVS

Let {Xℓ}L

ℓ=1 be L Nakagami-m distributed RVs, with
PDF given by1 [1]

fX(x; mℓ, ηℓ) =
2 x2 mℓ−1

ηmℓ

ℓ (mℓ − 1)!
exp

(

−x2

ηℓ

)

U(x) (1)

whereU(x) is the well-known unit step function defined
as U(x ≥ 0) = 1 and zero otherwise,mℓ denotes the
Nakagami-m fading parameter, here considered as a pos-
itive integer parameter andηℓ = E

〈

X2
ℓ

〉

/mℓ, with E 〈·〉
denoting expectation. Moreover, the squared value ofXℓ,
Yℓ = X2

ℓ , follows the Erlang distribution2 with PDF given
by

fY (y; mℓ, ηℓ) =
ymℓ−1

ηmℓ

ℓ (mℓ − 1)!
exp

(

− y

ηℓ

)

U(y) (2)

and the CDF can be expressed as [10]

FY (y; mℓ, ηℓ) = 1 − Γ (mℓ, y/ηℓ)

(mℓ − 1)!
(3)

or, using [11, eq. (8.3502.2)] the CDF can be re-written
as

FY (y; mℓ, ηℓ) = 1 − exp

(

− y

ηℓ

)mℓ−1
∑

µ=1

1

µ

(

y

ηℓ

)µ

. (4)

A. Independent RVs

Theorem 1 (PDF of sum of squared Nakagami-m RVs):
Let {Yℓ}L

ℓ=1 be a set of RVs which follow the PDF
defined in (2). Then, the PDF of the sum

ZL =

L
∑

i=1

Yi (5)

1Note that, (1) is an alternative form of the classical Nakagami-m PDF
[1], in the case where the fading parametermℓ is a positive integer.

2The Erlang distribution is a special case of the well-known Gamma
distribution for integer values ofmℓ.
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is a nested finite weighted sum of Erlang PDFs, given by

fZL
(z) =

L
∑

i=1

mi
∑

k=1

ΞL

(

i, k, {mq}L

q=1 , {ηq}L

q=1 , {lq}L−2
q=1

)

× fY (z; k, ηi)
(6)

where the parameterΞL

(

i, k, {mq}L

q=1 , {ηq}L

q=1 , {lq}L−2
q=1

)

is given in (7) (see at top of this page) withRL defined
asRL

∆
=
∑L

i=1 mi.
Proof: See [12, Appendix]

Note, that formℓ = 1 (i.e., Rayleigh fading), it can be
easily verified that (6) is reduced to a well-known result
in the literature [13, eq. (10)].

Corollary 1 (CDF of sum of squared Nakagami-m RVs):
The CDF ofZL is given by

FZL
(z) =

L
∑

i=1

mi
∑

k=1

ΞL

(

i, k, {mq}L

q=1 , {ηq}L

q=1 , {lq}L−2
q=1

)

× FY (z; k, ηi).
(8)

Proof: The CDF ofZL can be easily obtained by
integrating (6) from 0 toz, interchanging the order of
summations and integration.

To the best of the authors’ knowledge, (6) and (8) are
novel. Both expressions can be easily evaluated due to
the fact that are sums of simple elementary functions
(i.e., powers and exponentials). Moreover, (6) is simpler
compared to the PDF expression presented in [2, eq. (10)],
which is apparently not in closed-form since it includes
higher order derivatives as functions of the parameterm.
Note also, that with the use of [2, eq. (10)] is difficult, if
not impossible, to study other statistical metrics such as
CDF.

B. Correlated RVs

In order to obtain the sum of correlated squared
Nakagami-m RVs, the following assumptions, made also
in [14]–[16], are taken into account and repeated here for
the reader’s convenience:

i) Without loss of generality, it can be assumed that
statistical parametersmℓ are is increasing order, i.e.,
m1 ≤ m2 ≤ · · · ≤ mL,

ii) Let {Xℓ} be arbitrarily correlated Nakagami-m RVs
with marginal PDFs given by (1),

iii) Let Wℓ be2 mℓ ×1 dimensional vectors defined as
Wℓ = [Wℓ,1 Wℓ,2 · · ·Wℓ,2mℓ

]
†, where(·)† denotes

transpose and the elements{Wℓ,k}2mℓ

k=1 are indepen-
dent and identically distributed zero mean Gaussian
RVs with varianceE

〈

W 2
ℓ,k

〉

= ηℓ/2,
iv) Let W is a vectorDT × 1 order, defined asW =

[

W
†
1 W

†
2 · · ·W†

L

]†

, whereDT =
∑N

i=1 2 mi, with

covariance matrix given byKW = E
〈

WW
†
〉

,
v) The correlation among the elements ofW is con-

structed such that

E 〈Wi,k Wj,l〉 =























ηi/2, if i = j & k = l
ρi,j

2

√
ηi ηj , if i 6= j & k = l

= 1, 2, . . . ,
2 min {mi, mj}

0, otherwise.

It can be shown that the relationship between the
covariance ofYi and Yj and the correlation of the
elements ofW is given by

ρYi,Yj
=

E 〈(Yi − mi ηi) (Yj − mj ηj)〉
√

var(Yi) var(Yj)

=
min {mi, mj}√

mi mj

ρ2
i,j ,

(9)

vi) Let {λℓ} be the set ofL distinct eigenvalues ofKW ,
where eachλℓ has algebraic multiplicityµℓ, such
that

∑L

i=1 µi = DT .

Theorem 2: (PDF of the sum of squared correlated
Nakagami-m RVs): If

ZL =

L
∑

i=1

X2
i (10)

then it holds that

ZL
d
=

L
∑

i=1

Vi (11)

whereVℓ is theℓth Erlang distributed RV with parameters
mℓ = µℓ/2, ηℓ = 4 λℓ/µℓ and the notation “

d
=” means

“equality in distribution”.
Proof: See [14], where the Karhunen-Loeve expan-

sion is used to de-correlate arbitrarily correlated, non-
identical, Gamma distributed RVs, with integer-orders for
mℓ’s.

Lemma 1: (CDF of the sum of squared correlated
Nakagami-m RVs): The CDF of the sum of arbitrarily
correlated squared Nakagami-m RVs, can be found in
closed-form usingCorollary 1 together withTheorem 2.
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III. PERFORMANCE OFMRC RECEIVERS

We consider anL-branch diversity receiver operating in
a flat fading environment. The baseband received signal
at theℓth, ℓ = 1, 2, . . . , L, diversity branch is

ζℓ = s Xℓ exp ( θℓ) + nℓ (12)

where s is the transmitted symbol, with energyEs =
E
〈

|s|2
〉

, Xℓ is the Nakagami-m distributed fading enve-
lope,  =

√
−1, nℓ is the additive white Gaussian noise,

with a single-sided power spectral densityN0 and θℓ is
the random phase due to Doppler shift and oscillators
frequency mismatch. The phaseθℓ is uniformly distributed
over the range[0, 2π) and the noise components are
assumed to be statistically independent of the signal and
uncorrelated with each other. The channel is considered
slowly time varying and thus, the phase can be easily
estimated.

The instantaneous SNR per symbolγℓ = X2
ℓ Es/N0

in the ℓth input branch follows a two parameter Er-
lang distributionfYℓ

(γℓ; mℓ, γℓ/mℓ), with mℓ andγℓ =
E
〈

X2
ℓ

〉

Es/N0 being the corresponding Nakagami-m
fading parameter and the average input SNR per sym-
bol, respectively. The performance analysis of the MRC
receivers, in which the instantaneous SNR per symbol at
the output is given by the well-known expressionγ =
∑L

i=1 γi, can be tackled using the analysis presented in
Section II, both for independent and correlative fading.

A. Outage Probability

The outage probability in noise-limited systems,Pout,
is defined as the probability that the instantaneous MRC
output SNR falls below a given outage threshold,γth. This
probability can be easily obtained by replacingz with γth

in (8) as
Pout (γth) = FZL

(γth) (13)

with ηq = γq/mq, for the independent case, or using
Lemma 1 for the correlative case. Furthermore, our ap-
proach can be efficiently applied to evaluate the outage
probability in cellular systems, when co-channel interfer-
ence is considered.

B. Average SE

The Shannon channel capacity provides an upper bound
of maximum transmission rate in a given Gaussian envi-
ronment [17]. The average SE, in Shannon’s sense, defined
as the normalized, by the transmitted signal’s bandwidth,
average channel capacity is given by

Se =

∫ ∞

0

log2(1 + γ) fZL
(γ) dγ. (14)

By substituting (6) in the above integral and using [11,
eq. (4.358/1)], in case of independent fading, the average
channel SE can be written in closed-form as in (15) (see at
top of this page), whereC is the Euler’s constant [11, Sec.
(9.73)], 2F2 (·, · ; ·, · ; ·) is a generalized hypergeometric
series [11, eq. (9.14/1)] and

(

k−1
w−1

)

is the binomial coeffi-
cient defined as

(

k−1
w−1

)

= (k − 1)!/[(w − 1)! (k −w)!]. In
case of correlative fading, the average SE can be obtained
using (15) and substitutingmi with µi/2 andγi with λi/2.

C. ASEP

The most straightforward approach to obtain the ASEP,
P se, is to average the conditional symbol error probability,
Pse(γ), over the PDF of the combiner output SNR [10],
i.e.,

P se =

∫ ∞

0

Pse(γ) fZL
(γ) dγ. (16)

It is well known, that for several signaling constellations,
Pse(γ) can be written as follows:

i) For binary phase shift keying (BPSK), binary fre-
quency shift keying (BFSK) and for high val-
ues of average input SNR for Gaussian mini-
mum shift keying (GMSK)3, M -ary-differentially
encoded phase shift keying (M -DEPSK), quadrature
phase shift keying (QPSK),M -ary-phase shift key-
ing (M -PSK), M -ary-frequency shift keying (M -
FSK), squareM -ary-quadrature amplitude modula-
tion (M -QAM), and M -ary-differential PSK (M -
DPSK) in the form ofPse(γ) = A erfc

(√
B γ
)

,
where erfc(·) is the complementary error function
[11, eq. (8.250.4)],

ii) For differential binary PSK (DBPSK) andM -ary-
non-coherent frequency shift keying (M -NFSK), in
the form ofPse(γ) = A exp(−B γ).

The particular values ofA andB depend on the consid-
ered modulation scheme and summarized in [12, Table
1]. Into the following, P se is obtained in closed-form
expressions for each one of the above two cases.

By substituting (6) in (16), it can be easily recog-
nized that for coherent binary andM -ary modulation
schemes, such as i) BPSK and BFSK and ii) for
high values of average input SNR for GMSK,M -
DEPSK, QPSK,M -PSK, M -FSK, M -QAM and M -
DPSK, the evaluation of integrals of the formΥ =
∫∞

0
xk−1 erfc

(√
B x
)

exp (−x/ηi) dx with ηi = γi/mi,

is required. The above integral can be evaluated via [11,
eq. (6.455-1)], by noting thaterfc (·) can be expressed as
an incomplete Gamma function with the using of [18, eq.

3B is determined by the bandwidth of the premodulation Gaussian
filter.
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Fig. 1. Outage probability versus inverse, normalized to the average
SNR of the first input branch, outage threshold, forL = 3, with an
exponentially decaying PDP andm1 = m2 = 1 andm3 = 2.

(06.06.03.0004.01)]. Therefore, the ASEP can be derived
in closed-form as

P se = A

L
∑

i=1

mi
∑

k=1

ΞL

(

i, k, {mq}L

q=1 ,

{

γq

mq
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k! (2 B)k

(
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)k

2F1

(

k, k +
1

2
; k + 1;− mi

B γi

)

(17)

where2F1 (·, · ; · ; ·) is the Gauss hypergeometric function
[11, eq. (9.100)].

The ASEP for non-coherent modulation schemes, such
as NBFSK and DBPSK, can be extracted by substituting
(6) in (16) and using [11, eq. (3.381/4)], yielding

P se = A

L
∑

i=1

mi
∑

k=1

ΞL

(

i, k, {mq}L

q=1 ,

{

γq

mq

}L

q=1

, {lq}L−2
q=1

)

×
(

mi

γi

)k (

B +
mi

γi

)−k

.

(18)

For correlative fading, the ASEP can be obtained using
(17) and (18) after substitutingmi with µi/2 andγi with
λi/2.

IV. N UMERICAL RESULTS

Based on the analysis presented in the previous section,
some representative numerical examples for the outage
probability, the average SE and the ASEP, are presented
in Figs. 1, 2 and 3, respectively. In these numerical results,
it is considered an MRC receiver withL = 3 antennae,
operating in a Nakagami-m multipath fading environment,
with fading parametersm1 = m2 = 1 and m3 = 2,
having an exponentially decaying power delay profile
(PDP) γℓ = γ1 exp[−δ (ℓ − 1)] with power decaying
factorsδ = 0.5 and1, and exponential correlation among
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Fig. 2. Average SE versus first branch average SNR, forL = 3, with
an exponentially decaying PDP andm1 = m2 = 1 andm3 = 2.
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Fig. 3. ASEP of 16-QAM versus first branch average SNR, forL = 3,
with an exponentially decaying PDP andm1 = m2 = 1 andm3 = 2.

the input channels4ργi,γj
= ρ|i−j|, with ρ = 0.3 and0.7.

Note, that the correlation matrix of this model corresponds
to the scenario of multichannel reception from equispaced
diversity antennas, since the correlation between the pairs
of combined signals decays as the spacing between the
antennas increases [3].

In Fig. 1, the outage probability,Pout, is plotted as
a function of the inverse, normalized, toγ1, outage
threshold, i.e.,γ1/γth. The obtained results clearly show
that the outage performance degrades with an increase
of the fading correlation and/or the decaying factor. In
Fig. 2, the average SE,Se, is plotted as a function of
the average SNR of the first input branch,γ1. It can be

4Whenρ → 1, it is easily verified that the covariance matrixKW is
not a positive definite matrix (i.e., some eigenvalues are not greater than
zero or complex). Therefore, it is impossible to study casesfor values
of ρ near to1. This is true due to the fact that two Nakagami RVs with
different distributions can not be completely correlated [19].



observed that, the higher the values ofρ and δ, the less
the maximum errorless transmission rate which can be
achieved. In Fig. 3, the ASEP of 16-QAM,P se, is plotted
as a function of the average SNR of the first input branch.
The obtained performance evaluation results show that the
error performance improves with the decrease ofρ, while
as expected the diversity gain decreases with increasing
values ofδ.

V. CONCLUSIONS

We derived novel closed-form expressions for the PDF
and the CDF of the sum of squared, non-identical, inde-
pendent or correlated Nakagami-m RVs in case of integer-
order Nakagami-m fading parameters, which improve
previously published results. It was shown that these
expressions can be written as a weighted sum of Erlang
distributions. Based on the statistical formulae obtained,
MRC receivers were studied and important performance
metrics, such as outage probability, average SE and ASEP,
were expressed in closed form.
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