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Abstract. In this paper, some of the most important statistical properties concern-
ing the product and the ratio of two correlated generalized Gamma (GG) random
variables (rvs) are studied. The probability density function of both the product
and the ratio of two correlated GG rvs are obtained in closed form, while the cumu-
lative distribution function of the product is derived in terms of an infinite series.
Capitalizing on the distribution of the product, a union upper bound for the dis-
tribution of the sum of two correlated GG rvs is also derived.
Keywords: correlated statistics, distribution of product, distribution of ratio, gen-
eralized Gamma, stochastic models.

1 Introduction

The generalized Gamma (GG) distribution, introduced by Stacy in 1962
[Stacy, 1962], has been considered as a generalization of the Gamma distri-
bution. It is a versatile and generic distribution, while it is especially attrac-
tive because it incorporates several well-known distributions as special cases,
i.e., Rayleigh, Nakagami-m [Nakagami, 1960], and Weibull [Weibull, 1951],
as well as the well-known lognormal as a limiting case. The GG distribu-
tion has been used in many scientific fields including life data, speech recog-
nition, ultrasonic backscatter signals modeling [Raju and Srinivasan, 2002],
[Dat et al., 2005], and [Heard and Pensky, 2006]. More recently, the GG dis-
tribution has been considered in wireless communications theory for accu-
rately modeling short term fading in conjunction with long term fading (shad-
owing) channels [Coulson et al., 1998].



2 Bithas et al.

Representative previously published works concerning distribution of ra-
tios, products can be found in [Mathai, 1972], [Nadarajah and Kotz, 2006],
[Nadarajah and Gupta, 2005], [Nakagami and Ōta, 1957], [Lee et al., 1979],
[Simon, 2002], and [Malik and Trudel, 1986]. Specifically in [Mathai, 1972],
[Nadarajah and Kotz, 2006], and [Nadarajah and Gupta, 2005], independent
random variables (rv)s have been considered. Moreover, in [Simon, 2002],
[Malik and Trudel, 1986], [Lee et al., 1979], and [Nakagami and Ōta, 1957],
correlated rvs have been considered. The bivariate Rayleigh, Nakagami,
Weibull, and lognormal distributions have been thoroughly studied in the
past, e.g., see [Alouini and Simon, 2002] and [Tan and Beaulieu, 1997]. How-
ever, the bivariate GG distribution has been introduced only very recently1

[Piboongungon et al., 2005] and [Yacoub, 2007]. In those papers, the bivari-
ate model has been derived and applied to model fading channels with arbi-
trary correlation between them. However, to the best of the authors’ knowl-
edge, the topic of distributions of products and ratios of correlated GG rvs
has not been addressed in the open technical literature, and this is the subject
of our paper.

Let Xℓ ≥ 0 (ℓ = 1 and 2) represent two correlated GG distributed rvs,
which are not necessarily identically distributed, having the joint probability
density function (pdf) given by [Piboongungon et al., 2005, eq. (5)]
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In the above equation β > 0 and m ≥ 1/2 are the distribution shaping
parameters, αℓ = E〈X2

ℓ 〉 > 0 is the scaling parameter (with E〈·〉 denoting
expectation), Im−1 (·) is the (m− 1)th order modified Bessel of the first kind
[Gradshteyn and Ryzhik, 2000, eq. (8.406)], and Γ (·) is the Gamma function
[Gradshteyn and Ryzhik, 2000, eq. (8.310/1)]. Moreover, the correlation co-
efficient between X2

1 and X2
2 is related with the correlation coefficient between

Nakagami-m rvs as [Piboongungon et al., 2005, eq. (9)]

̺ =
2F1(−1/β,−1/β; m; ρ)− 1

−1 + Γ (m + 2/β)Γ (m)/Γ 2(m + 1/β)
(2)

with 0 ≤ ̺ < 1 and pFq(·) representing the generalized hypergeometric func-
tion with p, q integers [Gradshteyn and Ryzhik, 2000, eq. (9.14/1)].

In this paper, capitalizing on (1), important statistical metrics, such as
the pdf and the cumulative distribution function (cdf) of the product of two
correlated GG rvs are derived. Moreover, using an inequality between the

1 It is clarified that the bivariate GG distribution under consideration is originated
by correlated Gaussian rvs.
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arithmetic and geometric mean, a useful union upper bound for the distribu-
tion of the sum of two correlated GG rvs is also presented. Finally, the pdf
of the ratio of two correlated GG rvs is obtained in closed form.

The rest of this paper is organized as follows. After this introduction, in
Section 2, the distribution of the product and a bound of the distribution of
the sum of two correlated GG rvs are presented. In Section 3, the pdf of the
ratio is derived in closed form, while in Section 4, concluding remarks are
provided.

2 Product and sum distributions

In this section, based on (1), the pdf and the cdf of X1 X2 are obtained, while
a union upper bound for the distribution of X1 + X2 is also extracted.

2.1 Distribution of the product

Let R be a rv defined as

R △
= X1 X2. (3)

By applying (1) and (3) in[Papoulis, 2001, eq. (6-74)], changing variables,
using [Gradshteyn and Ryzhik, 2000, eq. (3.471/9)], and after some straight-
forward mathematical manipulations, the pdf of R is given in closed form by

fR(x) =
4 β mm+1 xβ(m+1)−1
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where λ1 = α1 α2 and Kn (·) represents the nth-order modified Bessel of the
second kind [Gradshteyn and Ryzhik, 2000, eq. (8.407)] (n ∈ N). By setting
β = 1, (4) reduces to a previously derived result [Nakagami, 1960, eq. (144)].

By integrating (4) with respect to x, and after making a change of vari-

ables, an integral of the form
∫ A

0
xm Im−1(B x)K0(C x) dx needs to be solved,

with A, B, C > 0. This type of integral is very difficult, if not impossi-
ble, to be solved in closed form. An alternative and mathematically more
tractable solution is to employ an infinite series representation for Im−1 (·)
[Gradshteyn and Ryzhik, 2000, eq. (8.445)]. Following this approach, us-
ing [Wolfram, 2006, eq. (03.04.21.0009.01)], and after some mathematical
manipulations, the cdf of R can be obtained as
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with ξ = m (1 − ρ)−1λ
−1/2
1 .
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Fig. 1. The pdf of the product of two correlated GG rvs for β = 1.5, 3 and m = 2, 3.

2.2 Bound for the distribution of the sum

Let K be a rv defined as

K △
= X1 + X2. (6)

Based on an inequality between the arithmetic, A, and geometric, G, mean

[Abramowitz and Stegun, 1972, eq. (3.2.1)], A ≥ G, with A △
= 1

2 (X1 + X2)

and G △
= (X1 X2)

1/2
, respectively, K can be lower bounded as

K ≥ 2
√
R. (7)

Using (3), (5), and (7), it can be easily seen that the cdf of K can be upper
bounded as FK(x) ≤ FR[(x/2)2]. Hence, a union upper bound for the cdf of
K yields as
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Fig. 2. The cdf of the product of two correlated GG rvs for β = 1.5, 3 and m = 2, 3.

In Figs. 1 and 2, the pdf and the cdf of R are plotted as a function of
x, respectively. These results have been obtained for several values of the
shaping parameters m, β and for ρ = 0.5, λ1 = 0.99. Also, the effects of β
and m on the cdf of R are illustrated in Fig. 2. Moreover, in Fig. 3 a bound
for the cdf of K is plotted as a function of x for the same values of m, β, ρ,
and λ1. In the same figure, computer simulation results are also included,
for the exact cdf of K for the same set of parameters as in Figs. 1 and 2.
From the comparison, it can be easily verified the tightness of the proposed
bounds. The higher the m and β are, the the tighter the bounds are.

3 Distribution of the ratio

Let D be a rv defined as

D △
=

X1

X2
. (9)

By using (1) and (9) with [Papoulis, 2001, eq. (6-43)]), and after a lot of
algebraic manipulations, the pdf of D can be expressed in terms of standard
functions as

fD(x) =
2β 22 m−1

√
π (1 − ρ)−m

Γ (m + 1/2)

Γ (m)

x2β m−1
(

x2β + λ2

)

[

(x2β + λ2)
2 − 4 ρ λ2 x2β

]m+1/2
(10)

with λ2 = a1/a2.
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Fig. 3. The cdf of the sum of two correlated GG rvs for β = 1.5, 3 and m = 2, 3.

In Fig. 4 a few curves for the pdf of D are plotted for the same parameters
as those in Figs. 1 and 2, with λ2 = 1.222.

Starting from (10), the derivation of the cdf of D needs the calculation of
the integral FD(y) =

∫ y

0
fD(x) dx, where two integrals of the form

y2β
∫

0

xm

√

R2m+1(x)
dx

need to be solved, with R(x) > 0 being a quadratic polynomial having a
negative discriminant. The above type of integrals can be recursively solved
for integer values of m using [Gradshteyn and Ryzhik, 2000, eqs. (2.263/1)
and (2.263/4)].

4 Conclusions

The pdf and the cdf of the product of two correlated GG rvs, originated by
Gaussian rvs, were derived. Based on an inequality between the arithmetic
and geometric means, a union upper bound for the cdf of the sum of two
correlated GG rvs was extracted. Moreover, the pdf of the ratio of two
correlated GG rvs was obtained in closed form.
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Fig. 4. The pdf of the ratio of two correlated rvs for β = 1.5, 3 and m = 2, 3.
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