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Abstract- In this paper we propose a linear decoupling scheme
for multiple-input multiple-output (MIMO) antenna systems
where spatial diversity is exploited through complex orthogonal
(COD) or quasi-orthogonal (CQOD) designs. The proposed
scheme is based on rewriting the space-time block code (STBC) in
an alternative form via generalized permutation matrices (GPM)
and transforming the original system to an equivalent one, where
all the transmitted symbols are decoupled, allowing thus a single
symbol or symbol pair-wise maximum likelihood decoding (MLD)
through a closed form expression (CFE).

Index Terms-Space-time block coding, quasi-orthogonal de-
signs, maximum-likelihood decoding, generalized permutation
matrices, wireless communications.

I. INTRODUCTION

Space-time block codes (STBC) exploit spatial diversity
in multiple transmit antenna wireless systems. Orthogonal
STBC (OSTBC) have been proved a highly attractive mean of
combating fading by providing full-diversity with simple linear
processing at the receiver. Quasi-OSTBC (QOSTBC) ex-
tended the family of orthogonal designs used in multiple-input
multiple-output (MIMO) systems, achieving higher transmis-
sion rates for more than two transmit antennas at the expense
of decoupling complexity, concerning complex symbol trans-
mission. Thus, the issue of simple decoupling strategies of
the transmitted symbols at the receiver has become a matter
of great interest in recent research.

In [1]-[3] the authors introduced full-diversity space-time
block codes for two, three and four transmit antennas achiev-
ing rates 1, 1/2 and 3/4 respectively, giving at the same time
maximum likelihood decoding (MLD) algorithms based only
on linear processing at the receiver. A squaring method for
simplifying the decoding of generalized complex orthogonal
designs that were established in [4] with arbitrary number
of transmit and receive antennas, was proposed in [5]. The
need for STBC involving transmission of complex symbols
with higher rates in multiple transmit antenna systems led
to the ABBA code introduced in [6] and QOSTBC pre-
sented in [7] with decoding algorithms based on iterative
interference cancellation and joint detection of symbol pairs
correspondingly. In [8], [9] a decoding method for the code
proposed in [7] for four transmit antennas was presented,
based on channel matched filtering, leading therefore to two

equivalent subsystems at the receiver part, providing distinct
MLD for each one. Matched filtering with particular noise
whitening was presented in [10], concerning decoding of
QOSTBC that satisfy the construction criteria defined in
[11]. In order to address the issue of decoding complexity
of QOSTBC, the authors in [12] introduced a fast MLD
algorithm that decomposes the original system into parallel
subsystems followed by a sphere decoder for each subsystem
and the maximal ratio combining (MRC) technique for com-
bining the decouplers' outputs from all receiving branches. In
[13], a unified mathematical expression for the decoding of
generalized linear complex orthogonal designs was extracted,
leading to a maximum likelihood (ML) single symbol based
decision rule. General linear transformations of information
symbols for construction of QOSTBC were studied in [14],
that can provide pair-wise real symbol MLD whereas in [15]
a low complexity ML decoder was proposed for QOSTBC
employing four transmit antennas. A practical method for
single symbol or symbol group decoding was mentioned in
[16] for the codes proposed in the same manuscript. Finally,
a pair-wise real symbol decoding was presented in [17] for
ABBA QOSTBC, whereas in [18] the authors gave an efficient
MIMO detection algorithm for codes being extensions of the
Alamouti scheme.

Almost all decoding methods described above, presuppose
the evaluation of the equivalent channel matrix that is charac-
teristic of the structure body of the considered STBC. How-
ever, they don't give insights in its systematic construction,
apart from those techniques concerning decoding of specific
STBC structures. An exception is [13], where a general closed
form decoding expression for STBC that can be written in
linear dispersion (LD) matrices form, was derived.

In this paper, a unified method for transforming the original
system into a linear decoupling scheme, suitable for ML
single symbol or pair-wise symbol detection is described,
regarding the majority of STBC derived from complex orthog-
onal (COD) or quasi-orthogonal (CQOD) designs. A different
approach from [13] is considered here, in order to exploit the
inherent structure of the transmit matrix. Specifically, we make
use of the theory of generalized permutation matrices (GPM),
concluding thus to a general closed form expression (CFE)



for the equivalent channel matrix and the linear decoupling
scheme. MLD can directly be achieved by minimizing the
corresponding squared Euclidean distances between the linear
processed received signals and all possible values of the
transmitted symbols. The application of the proposed method
to a sample of well-known STBC reveals its effectiveness,
while simple matrix manipulations are required.

This paper is organized as follows. Section II establishes the
notation adopted in this manuscript and describes the system
model. Section III proposes the new linear decoupling scheme.
In Section IV, we illustrate our decoupling method through
some examples, while concluding remarks are given in Section
V.

II. PRELIMINARIES

A. Notations
z C cm x defines a complex m x n matrix with
elements {zij j e2' n C.

*[.] [.]T, [.]H denote the conjugate, transpose and con-
jugate transpose of a matrix correspondingly.

* If Z, C Cp x q (i = 1, 2,.. ., m) then diag(Zi) =
diag(Zli,Z2,. ..,Zm) denotes an mp x mq diagonal
block matrix with elements {6ijZi j='12 ' 'mm} C
<px q where 3i is the Kronecker delta.

. If S = {i: i C N; i < m} and Si C P (S), where P (S)
is the powerset of S, and Si' is the complement of Si in
S, then for the complex matrix z C Cm x n we define
the following operator:

As, (Z) A SiS,121t~ ~ ~ Z( ={ 1iES,t2,. n ; Zij j= 12,...,n}-
Obviously, the action of this operator on Z gives the
same matrix but with those rows included in the subset
Si conjugated. We have to note that in this manuscript,
operator As, (-) is applied to block matrices as well.

Useful Properties of As, (-):
The following properties of As, (-) derive straightforwardly

from its definition:
1) If A, B C Cm x n then As, (A + B) = AS (A) +

As%(B).
2) If G C Rn x n thenAs, (G) = G.
3) If A GCe m x n and L1 C Rn X q, L2 C RPx

then As, (AL1) = As, (A) L1 and As, (L2A) =

L2AS (A).
4) If A, B are diagonal matrices, then As, (AB) =

AS, (A) AS, (B).
5) If A Cnm x n then As, (As, (A))= A2, (A)= A.
6) If A Cnm x n then (As, (A))H = As, (AH).

B. System Model
We consider a MIMO system equipped with NT antennas

at the transmitter and NR antennas at the receiver. Suppose
the information data at the input of the encoder is represented
by a set of k symbols {sl, s2,--- , Sk}. After the modulation,
a row vector xc = [x1 x2 ... xk] consisting of constellation

symbols is mapped into the transmit matrix (or code matrix)
X C CN x NT, where N is the block length (number of time
slots). Therefore, the rate R of the space-time code is defined
by R = k/N.

The data transmission is considered over a quasi-static
channel and the channel gain from transmit antenna i to
receive antenna j is denoted as hij. Hence, the entries of
the channel matrix H C CNT x NR remain constant over a
block of N time slots and change independently from one
block to another. The channel gains experience independent
and identically distributed (i.i.d.) flat fading for all pairs (i, j).

The received matrix R C CN x NR can be modeled as

R= XH+N, (1)
where N C CN x NR is an additive white Gaussian noise
(AWGN) matrix with entries nij modeled as independent
samples of zero-mean complex Gaussian random variables
with variance No/2 per real dimension. It is further assumed
that the transmitter has no channel state information (CSI),
whereas the receiver has perfect CSI.

III. THE DECOUPLING SCHEME

A. Code matrix and GPM
We focus on STBC where at each time-slot all k symbols are

transmitted via NT = k different transmit antennas. Hence, all
rows of the code matrix X can be considered as permutations
of either x, or xc entries, since many complex orthogonal
or quasi-orthogonal STBC have one or more of their rows
conjugated including both signed and unsigned entries of xc.
Recalling from linear algebra that a GPM G is defined as a
product of a nonsingular diagonal matrix D and a permutation
matrix P, the code matrix X can be written as

xcl G,

X = xc G I

LXCNGNJ

(2)

where Gi C Rk'x , i = 1, 2,..., N are trinary GPM of
order k with entries within the set {o, 1, -1}. The 1 x k
row vectors xc i = 1, 2,..., N can be either xc or xc, de-
pending on their index. Specifically, if S = {i: i C N; i < N}
and Si C S is the set of X rows involving the entries of xc,
then we can rewrite X in the following form

- xclG, Xl

0

X = xcs5 Gsi 0

0

aXCNG NN -

= diag (xct )N eG,

o o 0

° 0 0
o X,5i 0

0
0

0
0 0

o G

0

o Gs,

0
XCN - GN

(3)
where we have substituted the row indices of X included
in Si with Si index notation, in the sense that for these



indices x,s = XC whereas for all the others included in the
complement set S = S -Si it holds that xc = xc. The
Nk x k real matrix G depends on the general distribution
of {X1, +X2,-- , +Xk} entries in the structure body of
the code. We can continue by using the operator As, (.)
determined in Section II

xc 0 0 0 0

X 00XO 0 OG

0 00 .0
L0 0 0 0 xc

/ xc ° °

= As, ([ CO5

As, (diag (xc))G.)
B. Predecoding

The alternative forms of the code matrix X derived above,
can help us to manipulate the equation describing the system
model in (1), so as to extract an equivalent system model
suitable for ML decoding. To do this, we first expand (1) in
element-wise form

[ *-- rlNi

rNl *-- rNNJ_
hll 1.. hlNr n[l nlN,

~~~~. + .1
[hNl ... hNNr [nNl ... nNN,J

For the sake of simplicity, we will continue on the prede-
coding scheme examining each receiving antenna separately.
Consequently, the subsystem concerning jth receiving antenna

(j = 1, 2, ..., Nr) is

rj = Xhj + nj. (5)

We apply As, (-) operator on both sides of (5) considering
(3) and the properties presented in Section II

As, (rj) As, (Xhj + nj)
-xclGlhj

As, Xc5 GA5 hj + As, (nj).

9 XCNGNhj_ )
Having into mind that As, (-) conjugates those rows with

indices being included in Si, we continue with the following
matrix manipulations

As (rj) = [XcGihj xcGs,h* xCGNhj]T
+As, (nj),

where we considered (xcGihj<T = X,Gihj since each
entry (xcGihj)i=1 2.N is a complex number rather than
a submatrix. Therefore, it holds that

As, (rj) (xc [Glhj Gs,h* GNhjI)T
+As, (nj)
[Glhj Gs,h* GNhjI XC

+As, (nj)
or

As, (rj) = H<X + As, (nj). (6)

Obviously, the structure and properties of H are of great
importance since they affect the decoupling of the equivalent
scheme. For this reason, we will analyze it further

H ([G1 Gs, GN] As, (diag (hj )N))T
As, (diag (hT4)NG).G GS,. GN]
As, diag (hT)N)GT (7)

with G the k x Nk appended matrix of all the GPM related
to the construction pattern of the code matrix X shown in (2).
Let us now compare the structure of the two matrices X and
H, as these derived in (4) and (7)

X A= s (diag (xC)N) G S

N

and

H A5t (diag (hT)N) GT

As mentioned above, the GPM (Gi)i=l,2.N can be
written as Gi = DiPi, where Pi k x k permutation
matrices satisfying orthogonality PPT = PTP,= Ik [19]
and Di nonsingular diagonal k x k matrices with diag-
onal elements included in our case in the set {1, 1}.
Therefore, Di*Di diag (f{1})k diag (k{1}) =
diag ({(1)2}) diag(1)k Ik (in the same

way Di[*Di Ik) and GiG. DiPi (DiPi) =
DiPP[TD[T = Di*DT = Ik (in the same way G[TGi
I). Consequently, (Gi)i= 2,. and (Gi 12.N are
orthogonal matrices. This realization gives evidence that X
and H obtain similar patterns. Hence, given that X is a
QOSTBC, it follows that H stems from a quasi-orthogonal
design (QOD) as well. Thus, the product HHH gives a matrix
that according to QOD theory can be rearranged into a block
diagonal matrix. In the same way, if X is orthogonal then
fjHf gives a scaled identity matrix. Therefore, the next linear



processing step for the receiver is to apply a matched filter
H3j = fH = GAs, (diag (hJ)N) to the signal As, (rj)
shown in (6), in order to separate groups of symbols (or single
symbols in the orthogonal case) for ML joint decoding

H3jAs, (rj) (Hjp) XC + H3 AS, (nj)
GjXT + H3 As, (nj),

(8)

The related GPM to the structure of code matrix XAL are

GA4L [o 1],G2L [
0 1]

Thus,

GrAL=[GAL G1IA= 1 2
1 0 ° 1

Lo0 1 -1 0
with Gj being

Gj = ~A,GA (diag (hj)) As (diag (hf)N) dT(9

= GAAs (diag (h*hf)N) dT.

Equation (8) represents the equivalent linear decoupling
scheme concerning jth receiving antenna, written as rj
GxjT + iij with rj = Hj4As, (rj) and ij = H3 As, (nj )
where HjR is the conjugate transpose of the equivalent channel
matrix concerning jth receiving antenna. Now, if we take into
consideration the rest of receiving branches as well, then the
linear processing is completed by just superimposing all the
vectors ij associated with them. Thus, the CFE describing the
system model after predecoder is given by

Nr

Rt= 1: j
j=1

Nr

j=1

N,

+ S ny

j1

- T

GXC +N,

with G the k x k matrix related to the diversity gain achieved
by the specific STBC, given as

G= GAS, diag
(N

j=1
hehf) ) GT

and the output of the predecoder deriving from (12) is

RAL GALAS, (diag (h1)N) As, (ri)

+GALAS, (diag (h2)N) As, (r2)
([h1 0 1

0

h21 0 ~ [rii h22 0 'r12i
GAL 11hl0 hi,l [r2J+ 0 h12 [r22J

o h2lJ 0 h22

Eh11r1l + h*2rl2 + h2lr2l + h22r221

hh21rll + h22rl2 -hllr2l -hl2r222

where we considered Si {2}, since XAL involves the conju-
gate entries of x, in its second row. Furthermore, code matrix
is orthogonal and therefore the symbols have to be completely
decoupled after the linear processing at the receiver. Indeed,
if we evaluate GAL matrix by using (11), we realize that is
diagonal with form given by

GAL=
a 0

, a= hh11 2 + h12 2 + h21l2 + h22 2.[g a]'
B. Tirkkonen [6] - Rate 1

In the ABBA code (NT = 4, NR = 1)

The linear processing required at the receiver for achieving
single symbol or symbol pair-wise ML decoding is

Nr

R= EZHjAs, (rj)
j=l

N,

G: EA5 (diag (hj)N) As, (rj).
4-1J =-

XABBA =[

Xl
x2
X3

x4

(12) its structural decoupling information can be expressed through
Si= {2,4} and

IV. APPLICATIONS

In the following indicative examples, three typical cases of
STBC, including both orthogonal and quasi-orthogonal block
codes, are decoupled. For the sake of simplicity, we will
consider multiple receive antennas (NR = 2) only in the first
example (Alamouti case).

A. Alamouti [1] - Rate 1

The constellation vector xc = [Xl x2], is transmitted via
two antennas (NT = 2) in a frame of two time-slots (N = 2).
The received signal vector, considering two receive antennas
(NR =2), is equal to

Erll r121[ x1 x2 1 [hll h121 + [n1l n212
'r21 r22] [ X2 X1 ] h21 h22] [n21 n222

XAL

GABBA

-1 0 0 0
0 1 0 0
O 0 1 0
O O 0 1
O 0 1 0
O O 0 1

1. 0 0 0
0 1 0 0

Hence, the predecoder output is

h*ri + h2r2 + h3r3 + hr4l

h2rl- hl1r2 + h4r3 -h3r4
RABBA = h3ri + h4r2 + h*r3 + h2r4,

h4rl -h3r2 + h2r3 -hlr4

X3

x4
xl

x2

Xn4

x3
X2

1

X22
xl1
Xz4
x3 I

1
0
0
0

0
0
0
-1

0
-1
0
0
0
0
0
-1

0
0
1
0

0
-

0

0
0
1
0

0

0

0 I



given that H = [hi h2 h3 h4] T is the channel matrix,
whereas the decoupling matrix is given as

a O b 0
- 1BA= 0 a 0 b a =hi12 + h2 + h3 12 + h4 12GABBA= b 0 a 0 ' b = hlh3+ h*h3 + h2h4 + h2h4

[0 b O a

C. Jafarkhani [7] - Rate 1

For the Jafarkhani code (NT = 4, NR = 1)

xJ=
2

-.*3
X4

x2

1

-.*4
-X3

X3
-.*4

1

-X2

x4

3

2

x1 1:
the inherent decoupling information obtained in Xj is con-

veyed via Si= {2, 3} and

I 0 0 0

..i 0 1 0 0
GJ ~= 0 1 O

L O 0 1

0 1
-1 0
0 0

0 0

0

0

-1
0

0

0

0

-1

0

0

0

0

1
0

0

0

0

0

1

0 0

0 0

0 1
-1 0

0

0

-1
0

0

-1
0

0

0

0

0
I

The linear processing at the receiver part results in the
following vector

[hiri + h2r2 + h3r3 + h4
hrl- h1r2* + h4r3*-h*r4

J h*rl + h4r -h1r'-+hir4J
Lh*rl -h3r2*-h2r* + h*r4

given that H = [hi h2 h3 h4] T is the channel matrix.
Thus, symbol groups are decoupled according to the matrix

a O O b
O a -b O

GJ = -b a O

Lb O O a

a =hlh 12 + Ih2 +h 12 + h 12
b = hh4 + hh4 -h2h3 -h2h3

V. CONCLUSION

In this paper, we derived a CFE for the equivalent channel
matrix and the linear decoupling scheme of a MIMO system
that exploits spatial diversity via STBC constructed from
COD and CQOD, considering the requirements presented in
Section III. For illustration, in Section IV we presented some

application examples of the proposed method to three well-
known in the literature STBC. Nonetheless, we note that
these codes constitute just a representative sample of all the
STBC categories this method can be applied to. For instance,
the proposed scheme can decouple successfully the QOSTBC
codes M4, M5 and M6 presented in [20].
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