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Abstract: In this article, the authors introduce and study the performance of two novel parametric families of Nyquist intersymbol
interference-free pulses. Using only two design parameters, the proposed pulses yield an enhanced performance compared to the
sophisticated flipped-inverse hyperbolic secant (asech) filter, which was recently documented in the literature. Although
the construction of parametric families originates from the work of Beaulieu and Damen, the authors’ approach is based
on the concept of ‘inner’ and ‘outer’ functions and for this reason a higher flexibility in the choice of the family members is
achieved. The proposed pulses may decay slower than the original raised-cosine (RC) pulse outside the pulse interval, but
exhibit a more pronounced decrease in the amplitudes of the two largest sidelobes and this accounts for their improved
robustness to error probabilities. It is clearly shown, via simulation results, that a lower bit error rate (BER), compared to the
existing pulses, can be achieved for different values of the roll-off factor and timing jitter. Moreover, a smaller maximum
distortion as well as a more open-eye diagram are attained which further demonstrate the superiority of the proposed pulse
shaping filters.
1 Introduction

It is an indisputable fact that the rapid evolution of wireless
communications over the last few decades has imposed new
demands for better bandwidth reuse and higher error-free
data rates. Since the pioneering work of Nyquist in the late
1920s [1], an extensive amount of research and industry
interest has been devoted to the development of intersymbol
interference (ISI)-free pulses that guarantee the highly
desirable distortionless transmission, that is, minimum
number of errors. Apart from the ISI-free prerequisite, pulse
shaping filters have to exhibit low sensitivity to timing
errors [2]. The most popular pulse that fulfils both
conditions is the so-called raised-cosine (RC) pulse that has
found numerous applications in the area of digital
communications. Nevertheless, in practical receivers the
presence of timing jitter causes the actual sampling points
to deviate from the optimal positions leading to symbol
timing errors. This, in turn, implies that the pulse tails must
decay as quickly as possible outside the pulse interval so
that the undesired effects of jitter are eliminated. In
addition, taking into account that the great majority of
current practical systems are band limited along with the
steadily increasing spectrum congestion [3], it becomes
apparent that the system designer has to convey the highest
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possible error-free data rate within a fixed limited
bandwidth. Normally, a trade-off exists between increased
data rate and time-domain tail suppression [2, 4].

In order to meet all the above-mentioned constraints, a
plethora of alternatives have been reported in the
corresponding literature. For instance, in [5] the so-called
Beaulieu or better than raised-cosine (BTRC) pulse, which
outperforms the RC pulse in terms of larger eye opening
and smaller average symbol error rate, was proposed. This
performance enhancement was observed even though the
tails of BTRC asymptotically decay as 1/t2, whereas those
of RC as 1/t3. This interesting phenomenon can be
attributed to the fact that the two main sidelobes’
amplitudes of BTRC are smaller than the larger sidelobes’
amplitudes of RC. Please note that the BTRC pulse remains
the best-known pulse with an explicit closed-form formula
in the time domain. The authors in [6], developed the so-
called ‘flipped-hyperbolic secant’ (fsech) and ‘flipped-
inverse hyperbolic secant’ (asech) pulses; the latter
performs even better than the BTRC and yields a smaller
maximum distortion and also remains robust to root and
truncation operations. (In the original paper [6], this pulse
was referred to as farcsech. We use the name asech instead
for the continuity of notation throughout the paper.) Please
note that throughout the paper it will be our reference pulse
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since, to the best of our knowledge, yields the best
performance compared to any other pulse available in the
corresponding literature with only two fixed design
parameters.

The pulse family presented in [7] constitutes a radically
new approach to the implementation of ISI-free pulses; in
particular, any member of the proposed family represents a
nth degree polynomial where the asymptotic decay rate is
related to n as ⌊(2n + 5)/3⌋, with the symbol ⌊·⌋ denoting
the floor function. The pulse was shown to outperform
all the aforementioned pulses but, at the same time,
required the optimisation of n design parameters
(polynomial coefficients). As such, there is not a unique,
explicit formula for a pulse which will systematically
outperform BTRC and asech pulses for all values of the
roll-off factor and timing jitter. Likewise, the family of
pulses proposed by Alexandru [8] (superposition of a linear
term with two sine harmonic terms) relies on a rough non-
optimal search to select the best design parameters. We also
refer to the linear combination of the RC and BTRC pulses,
originally proposed in [9], which was demonstrated to
systematically outperform the BTRC and asech pulses but
its advantages diminish as the roll-off factor and sampling
time errors increase.

From the previous discussion it must have become clear
that a pulse with the minimum number of design parameters
that need to be optimised for different values of the roll-off
factor and timing jitter, and the smallest bit error rate (BER)
for any arbitrary value of the roll-off factor and sampling
time error, represents the key goal in the design of practical
receivers. Note that the number of filter parameters affects
only the complexity of the design/optimisation process,
which is carried out offline, and does not intervene with the
digital implementation of such filters. In this light, two
novel parametric ISI-free families are presented herein with
only two design parameters that exhibit better error
performance and a more open eye diagram than the
sophisticated asech pulse. Equally importantly, it is shown
that the latter is a member of the first proposed family
which in practice means that the proposed family represents
a generalisation of the work presented in [6]. In addition,
we demonstrate that most members of the two families offer
an improved performance not only in terms of error rate but
also of maximum distortion and eye diagram. The presented
results complement some of our recent investigations (e.g.
[10, 11]) and provide a systematic theoretical framework for
the design of robust Nyquist pulses.

The starting point of the analysis presented herein has been
the seminal work carried out by Beaulieu and Damen [12]. In
their analysis, the authors proposed a parametric family of
Nyquist ISI-free pulses based on a spline frequency-domain
pattern with the main advantage lying on the high flexibility
in the pulse design. The members of this family have an
even and real frequency spectrum which implies that the
time pulse is real valued and even, respectively. However,
the flexibility in finding the optimum pulse for each specific
158
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application is a result of a third free parameter which
increases the degrees of freedom, thereby making most of
the known ISI-free pulses represent special cases of this
generalised family.

The remainder of the paper is organised as follows: in
Section 2, we introduce the two parametric families of ISI-
free pulses in the frequency domain, whereas Section 3 is
oriented to their time-domain characteristics and in particular
to the decay rate of the filters’ sidelobes. In Section 4, the
performance of both families is evaluated from different
practical perspectives of interest. Finally, Section 5 concludes
the paper and summarises the key findings.

2 Parametric families of ISI-free pulses using
inner and outer functions

The proposed families have been built upon the notions of
inner and outer functions which find numerous applications,
spanning wavelet theory to image compression and
modelling of microwave circuits [13]. As was previously
highlighted, the initial application of composite functions to
the problem of filter design can be found in [12]. In the
present case, the main concept for the filter construction can
be summarised as follows:

1. Choose an outer function g( f ) so that it only needs to be
continuous and differentiable in the frequency interval
B(1 − a) ≤ |f | ≤ B(1 + a) and, most importantly, its
frequency response retains a convex shape in the interval
B(1 − a) , |f | ≤ B and concave in B , |f | ≤ B(1 + a).
The latter prerequisite guarantees the convexity of the
filters’ responses in B(1 − a) , |f | ≤ B that comes in
fundamental contrast with the concave responses of the
conventional filters, like RC and fsech. Two candidate outer
functions that fulfil the aforementioned conditions are the
well-known inverse cosine and inverse hyperbolic secant
functions which can be denoted as g(f ) = acos(f ) and
g(f ) = asech(f ), respectively.
2. Once the outer function g( f ) has been chosen, the different
choices of the inner functions h( f ) represent essentially trade-
offs between the decay rate and the sidelobes’ amplitudes and
for this reason yield different BERs and eye diagrams. Then,
the composite filter response can be written as
G(f ) = g(h(f )). The conditions h( f ), and in turn G(f ), have
to fulfil are the following: (a) the solution of the equation
G(f ) = 0 should be real and different than zero and (b) the
parameter g, defined later in (2), must be real or imaginary
but not complex.

For the first proposed family of filters, three different
alternatives (members) are introduced, according to
h(f ) = acos(f ), h(f ) = asech(f ) and h(f ) = log(f ). Then,
the total filter’s frequency response reads as (see (1))
where a denotes the roll-off factor (0 ≤ a ≤ 1), determining
the bandwidth occupied by the pulse and the time-domain
tail suppression, and B = 1/(2T ) is the Nyquist frequency
S1(f ) =

T , |f | ≤ B(1 − a)

T 1 − 1

2g
G g0

2aB
(−|f | + B(1 + a))

( ){ }
, B(1 − a) , |f | ≤ B

T
1

2g
G g0

2aB
(|f | − B(1 − a))

( ){ }
, B , |f | , B(1 + a)

0, B(1 + a) ≤ |f |

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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and T the repetition rate (transmission symbol period). The
parameters g and g0 are defined directly through the inverse
G function according to

g0 = G−1(0) and g = G g0

2

( )
(2)

This choice ensures the continuity of S( f ) within the
considered interval [0, B(1 + a)] and further at the key
transition points

f = B(1 − a), f = B and f = B(1 + a) (3)

the obtained values are, respectively

S(B(1 − a)) = 1, S(B) = 1/2 and S(B(1 + a)) = 0

(4)

It should be noted that the asech pulse is by definition a
special member of this family, obtained directly as
G(f ) = asech(f ). In a similar manner we obtain the acos
pulse as G(f ) = acos(f ), with G(f ) being the inverse
function of cos( f ). Henceforth, each family member will
be denoted via the outer and inner functions, separated by
brackets, that is, acos[acos] and so on. The frequency
responses of all the possible combinations are depicted in
Figs. 1a and b for a roll-off factor a = 0.35.

On the other hand, the second proposed family has only
two members and the exponential function as the inner
function. The main reason behind developing this separate
family was the fact that when h(f ) = exp(f ) we readily
obtain g0 = 0, which leads to the degeneration of (1) into a
rectangular pulse in the interval [2B, B]. Hence, in order to
circumvent this undesired implication, we also propose a
second class of Nyquist filters, that is (see (5))
where g = G(1/2).

The parameters g and g0 are summarised in Table 1. In
addition, the frequency response of the second family is
illustrated in Fig. 2. As was previously mentioned, both
S1(f ) and S2(f ) have a convex shape in the interval
B(1 − a) , |f | ≤ B and concave in the interval
B , |f | ≤ B(1 + a), in order to allow for an amount of
energy to be transferred in the high spectral region. The
only exception is the asech[log] pulse whose response is
semi-convex and semi-concave in the corresponding
regions. (This can be visually seen by considering the
straight line connecting (B(1 − a), 1) with (B(1 + a), 0).)
We recall that the RC pulse as well as the fsech pulse [6]
have reversely a convex shape in B(1 − a) , |f | ≤ B and
concave in B , |f | ≤ B(1 + a). This key difference
accounts for the proposed pulses exhibiting weaker
sidelobes in the time domain and therefore offering an
improved robustness against the time-jitter effects,
compared to the conventional pulses.
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3 Time-domain characteristics

In this section, the time-domain characteristics of the two
considered families are explored with a view to their decay
rate and tail suppression. In order to estimate how rapidly
the tails of the pulses decay in time, we start with a
theorem introduced previously in [12], which is rewritten
here for the sake of completeness.

Theorem 1 ([12]): If the first m − 1 derivatives of
Si(f ) (i = 1, 2) are continuous and the mth derivative of
Si(f ) has one or more amplitude discontinuities then |si(t)|
decays as 1/|t|m+1 when |t| is large.

Using this theorem as a starting point we show that the
following lemma is fulfilled

Fig. 1 Frequency-domain responses of the first parametric family
(acos and asech filters) with roll-off factor a ¼ 0.35

a Acos filters
b Asech filters
S2(f ) =

T , |f | ≤ B(1 − a)

T 1 − 1

2g
G 1

2aB
(|f | − B(1 − a))

( ){ }
, B(1 − a) , |f | ≤ B

T
1

2g
G 1

2aB
( − |f | + B(1 + a))

( ){ }
, B , |f | , B(1 + a)

0, B(1 + a) ≤ |f |

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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Table 1 Design parameters g and g0 of all filters

Pulse g0 g

acos 1 p/3

acos[acos] cos(1) = 0.5403 acos acos
cos(1)

2

( )( )
≃ 0.7531eȷp/2

acos[asech] sech(1) ≃ 0.6481 acos asech
sech(1)

2

( )( )
≃ 1.188eȷp/2

acos[log] e acos log
e

2

( )( )
≃ 1.2589

asech 1 asech(1/2)

asech[acos] cos(1) ≃ 0.5403 asech asech
cos(1)

2

( )( )
≃ 0.6906eȷp/2

asech[asech] sech(1) ≃ 0.6481 asech asech
sech(1)

2

( )( )
≃ 0.9791eȷp/2

asech[log] e asech log
e

2

( )( )
≃ 1.8501

acos[exp] 1 acos
��
e

√( )
≃ 1.085eȷp/2

asech[exp] 1 asech
��
e

√( )
≃ 0.9191eȷp/2
Lemma 1: The decay rate of the pulse-family in (1) is 1/t2

when a = 0 and 1/|t| when a = 0.

Proof: In the following, we examine the time-domain
properties of acos[acos]. A similar procedure can be
applied to all family members under investigation leading
to exactly the same conclusion and therefore it is omitted
for the sake of brevity. Let us first assume that a = 0; in
this case, it is trivial to show that the derivative of S1(f )
reads (see (6))

For positive frequencies, there are only three transition
points that discontinuities may occur, that is f = B,
f = B(1 − a) and f = B(1 + a) and therefore it suffices to

Fig. 2 Frequency-domain responses of the second parametric
family with roll-off factor a ¼ 0.35
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show that

lim
f �B(1+a)−

S′
1(f ) = lim

f �B(1+a)+
S′

1(f ) (7)

Taking into account that by definition

lim
f �B(1+a)+

S′
1(f ) = 0 (8)

we can directly focus on the left-hand side term of (7). In
other words, let us assume that

lim
f �B(1+a)−

S′
1(f ) = T

g0

2aB

1

2g
G′(g0)

{ }
= 0 (9)

which leads to G′(g0) = 0. For the acos[acos] pulse we have

G(f ) = acos(acos(f )) (10)

and thus we can readily obtain

G′(f ) = 1�������
1 − f 2

√ ��������������
1 − acos(f )2

√ (11)

It can now be observed that

g0 = G−1(0) = cos (1) (12)

which directly yields G′(g0) � 1. The last equation implies
that a discontinuity occurs at

f = B(1 + a) (13)
S′
1(f ) =

0, |f | ≤ B(1 − a)

T
f

|f |

( )
g0

2aB

( ) 1

2g
G′ g0

2aB
(−|f | + B(1 + a))

( ){ }
, B(1 − a) , |f | ≤ B

T
f

|f |

( )
g0

2aB

( ) 1

2g
G′ g0

2aB
(+|f | − B(1 − a))

( ){ }
, B , |f | , B(1 + a)

0, B(1 + a) ≤ |f |

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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and therefore (7) is satisfied. On the other hand, when a = 0
the frequency response degenerates into

S1(f ) = T , 0 ≤ |f | ≤ B
0, B , |f |

{
(14)

which is inherently independent of G′(f ) and its time-domain
response becomes

s(t) = sinc(t/T ) (15)

where sinc(x) = sin x/x is the well-known sinc function
which decays as 1/|t| according to [1, 12]. A

Lemma 2: The members of the pulse family in (5), exhibit
exactly the same time-domain characteristics as the pulse
family in (1).

Proof: The same procedure can be followed with the only
difference lying in the derivative of the frequency response
which is now given as (see (16))

In a similar manner, from (8) and (9), it suffices to show
that

G′(0) = 0 (17)

For the acos[exp] we have

G′(f ) = − exp(f )�������������
1 − exp(2f )

√ (18)

while for the asech[exp]

G′(f ) = tanh(f )������������
1 − exp(f )

√ (19)

In both cases G′(0) � 1 which concludes the proof. A

It is worth mentioning that the proposed pulses may decay
slower than the RC pulse (1/t3) but this is not essentially a
drawback. More specifically, it has been theoretically
shown that if the amplitudes of the two largest sidelobes are
lower, we can achieve lower BERs for higher values of the
excess bandwidth and symbol timing errors [5, 8].

In Figs. 3 and 4, the time-domain responses of both
families are, respectively, depicted for a roll-off factor of
0.35. We underline the fact that the pulses defined in the
frequency domain in (1) and (5) do not have a closed-form
representation in time domain and therefore can be
evaluated only numerically.
IET Signal Process., 2011, Vol. 5, Iss. 2, pp. 157–163
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4 Performance evaluation

In this section, our main focus is on evaluating the
performance of the proposed families using different
common figures of merit. We begin with the comparison of
the eye diagrams that are a means of visually assessing the
vulnerability of transmission systems to the problem of ISI
[2]. Owing to space limitations, we consider only the eye
diagrams of the first parametric family combined with the
acos filters. The corresponding eye patterns, which
were generated by superimposing 29 distinct binary pulse
sequences and observing two consecutive symbol periods,
can be seen in Fig. 5; we note that for the sake of clarity,
only the inner and outer contour boundaries, corresponding
to minimum and maximum distortion have been plotted.

Fig. 3 Time-domain responses of the first parametric family (acos
and asech filters) with roll-off factor a ¼ 0.35

a Acos filters
b Asech filters
S′
2(f ) =

0, |f | ≤ B(1 − a)

T
−f

|f |

( )
1

2aB

( )
1

2g
G′ g0

2aB
(+|f | − B(1 − a))

( ){ }
, B(1 − a) , |f | ≤ B

T
−f

|f |

( )
1

2aB

( )
1

2g
G′ g0

2aB
(−|f | + B(1 + a))

( ){ }
, B , |f | , B(1 + a)

0, B(1 + a) ≤ |f |

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(16)
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The largest eye opening is offered by the acos[log], whereas a
marginally reduced eye opening is provided by the
acos[asech] pulse, which implies a higher level of ISI and,
consequently, an increased sensitivity to synchronisation
errors [2]. In order to obtain a thorough understanding, the
eye width of all the proposed pulses has been estimated at a
timing offset of t/T = 0.5, as in [12]. The obtained results
are depicted in Table 2 (columns 2 and 5). It is interesting
to note that, as anticipated, the highest eye opening is
offered by the acos[log] pulse followed by the asech[log]

Fig. 4 Time-domain responses of the second parametric family
with roll-off factor a ¼ 0.35

Fig. 5 Eye diagrams of the first parametric family combined with
acos filters for roll-off factor a ¼ 0.35
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pulse. The reference asech pulse may perform better than
the majority of the proposed pulses in terms of eye opening
but, as it will be shown in the following, it falls short of
offering a satisfactorily low BER.

Similar conclusions can be drawn after estimating the
maximum distortion experienced by each separate pulse
which is, in general, a more quantitative measure of
performance (see columns 3 and 6 in Table 2). From a
mathematical viewpoint, the maximum distortion is the
magnitude of the largest possible ISI sample at any given
time instant. In all cases, the point of maximum distortion
occurs at t/T = +0.5 and the best performance is offered
by the acos pulse with the associated value being 1.4387.
For the second family, asech[exp] yields a value of 1.5093
and, hence, outperforms acos[exp]. The reference asech
pulse yields a maximum distortion of 1.4880, which makes
it be outperformed by acos[asech], acos[log] and
asech[acos] while the rest pulses yield a relatively higher
value of distortion.

The last step of the evaluation process comprises the
computation of the average BERs in the presence of time
sampling errors. We recall that the BER probability is the
ultimate measure of performance that includes the effects of
noise, synchronisation and distortion [14]. The error rates
have been computed according to [15] for binary antipodal
signalling and 29 interfering symbols. A system signal-to-
noise ratio of 15 dB has been assumed while we have set
M = 45, N1 = −100, N2 = 100 in [15, equation (41a)]
since a further increase in the number of samples does not
alter the final results. A theoretical justification for this
choice is given in [15]. Note that a similar procedure was
also employed in [5–11]. The obtained results are tabulated
in Table 3. Generally speaking, timing jitter raises the
values of average BER since ISI is a result of the receiver
eye being sampled off centre [5]. It can also be easily
observed that for the great majority of the values of a and
timing jitter, all the proposed pulses yield a smaller BER
than asech. This trend is more pronounced for small and
moderate values of a and t/T, as commonly encountered in
practice.

More importantly, by inspection of Tables 2 and 3, it can
be inferred that the best pulse is acos[log] since it yields not
only the largest eye opening but also outperforms asech, in
terms of average BER, for all the 12 considered cases and
maximum distortion. On the other hand, the asech[log] is
systematically outperformed by asech and this phenomenon
can be attributed to the higher time-domain sidelobes of the
former (see Fig. 3a) and also to its semi-convex/semi-
concave frequency response (see Fig. 1a). The rest pulses
offer a superior performance for either eleven (acos,
acos[acos], acos[asech] and acos[exp]) or ten cases
(asech[acos], asech[asech] and asech[exp]), thereby
indicating the improved robustness of the proposed families
of filters.
Table 2 Eye width and maximum distortion of eye diagrams of all filters

Pulse Eye width Max distortion Pulse Eye width Max distortion

acos 0.5365 1.4387 asech 0.5983 1.4880

acos[acos] 0.5211 1.4923 asech[acos] 0.4922 1.4809

acos[asech] 0.5663 1.4770 asech[asech] 0.5113 1.5132

acos[log] 0.6105 1.4663 asech[log] 0.6051 1.5193

acos[exp] 0.4990 1.5256 asech[exp] 0.6030 1.5093
IET Signal Process., 2011, Vol. 5, Iss. 2, pp. 157–163
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Table 3 Bit error probability of both families of filters for N ¼ 29 interfering symbols and SNR ¼ 15 dB

a Pulse t/T = +0.05 t/T = +0.1 t/T = +0.2 t/T = +0.3

0.1 acos 1.1074 × 10−7 5.4642 × 10−6 2.0389 × 10−3 4.5484 × 10−2

acos[acos] 1.0917 × 10−7 5.3024 × 10−6 1.9764 × 10−3 4.5015 × 10−2

acos[asech] 1.1083 × 10−7 5.4734 × 10−6 2.0425 × 10−3 4.5507 × 10−2

acos[log] 1.1407 × 10−7 5.8218 × 10−6 2.1749 × 10−3 4.6428 × 10−2

asech 1.1484 × 10−7 5.9066 × 10−6 2.2068 × 10−3 4.6639 × 10−2

asech[acos] 1.0802 × 10−7 5.1873 × 10−6 1.9316 × 10−3 4.4662 × 10−2

asech[asech] 1.0805 × 10−7 5.1896 × 10−6 1.9326 × 10−3 4.4669 × 10−2

asech[log] 1.2292 × 10−7 6.8472 × 10−6 2.5495 × 10−3 4.8699 × 10−2

acos[exp] 1.1125 × 10−7 5.5185 × 10−6 2.0597 × 10−3 4.5635 × 10−2

asech[exp] 1.0878 × 10−7 5.2639 × 10−6 1.9615 × 10−3 4.4900 × 10−2

0.35 acos 3.3527 × 10−8 3.9249 × 10−7 6.5764 × 10−5 4.1127 × 10−3

acos[acos] 3.2753 × 10−8 3.7964 × 10−7 6.4348 × 10−5 4.0152 × 10−3

acos[asech] 3.3558 × 10−8 3.9255 × 10−7 6.5582 × 10−5 4.1067 × 10−3

acos[log] 3.5470 × 10−8 4.3365 × 10−7 7.3486 × 10−5 4.5509 × 10−3

asech 3.5970 × 10−8 4.4581 × 10−7 7.6204 × 10−5 4.6951 × 10−3

asech[acos] 3.2264 × 10−8 3.7363 × 10−7 6.4494 × 10−5 4.0024 × 10−3

asech[asech] 3.2255 × 10−8 3.7275 × 10−7 6.4110 × 10−5 3.9850 × 10−3

asech[log] 4.2145 × 10−8 6.2866 × 10−7 1.2567 × 10−4 7.0123 × 10−3

acos[exp] 3.3806 × 10−8 3.9786 × 10−7 6.6617 × 10−5 4.1638 × 10−3

asech[exp] 3.2591 × 10−8 3.7775 × 10−7 6.4445 × 10−5 4.0128 × 10−3

0.5 acos 2.0431 × 10−8 1.3300 × 10−7 1.4717 × 10−5 1.2578 × 10−3

acos[acos] 2.0054 × 10−8 1.3014 × 10−7 1.5328 × 10−5 1.3642 × 10−3

acos[asech] 2.0438 × 10−8 1.3273 × 10−7 1.4563 × 10−5 1.2421 × 10−3

acos[log] 2.1559 × 10−8 1.4514 × 10−7 1.4987 × 10−5 1.2082 × 10−3

asech 2.1875 × 10−8 1.4917 × 10−7 1.5345 × 10−5 1.2253 × 10−3

asech[acos] 1.9865 × 10−8 1.2958 × 10−7 1.6248 × 10−5 1.4975 × 10−3

asech[asech] 1.9845 × 10−8 1.2902 × 10−7 1.6057 × 10−5 1.4781 × 10−3

asech[log] 2.6157 × 10−8 2.1763 × 10−7 2.5364 × 10−5 1.8850 × 10−3

acos[exp] 2.0583 × 10−8 1.3446 × 10−7 1.4657 × 10−5 1.2385 × 10−3

asech[exp] 1.9992 × 10−8 1.3005 × 10−7 1.5658 × 10−5 1.4094 × 10−3
5 Conclusion

In this paper, two novel parametric families of ISI-free pulses
were proposed that systematically outperform the recently
proposed asech pulse. Apart from their improved
performance in terms of BER and maximum distortion for
the great majority of cases, an important advantage of these
families is their high flexibility when it comes down to the
construction of a specific pulse shaping filter. Using the
acos and asech as the outer functions, it was clearly
demonstrated that a plethora of alternatives can be obtained
by simply changing the inner functions. All the considered
pulses, decay asymptotically as 1/t2 unless the roll-off
factor is equal to zero when the rate becomes 1/|t|. While
this rate is slower than that of the RC pulse (i.e. 1/t3), an
improved performance is achieved since the amplitudes of
the two higher sidelobes are lower and this results in a
smaller BER. We finally highlight that the proposed pulse
families require less computational complexity during the
design process thanks to the low number of filter parameters.
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