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Abstract—The outage probability is an important performance
measure for cooperative diversity schemes. However, in mobile en-
vironments, the outage probability does not completely describe
the behavior of cooperative diversity schemes since the mobility
of the involved nodes introduces variations in the channel gains.
As a result, the capacity outage events are correlated in time and
second-order statistical parameters of the achievable information-
theoretic capacity such as the average capacity outage rate (AOR)
and the average capacity outage duration (AOD) are required to
obtain amore complete description of the properties of cooperative
diversity protocols. In this paper, assuming slow Rayleigh fading,
we derive exact expressions for the AOR and the AOD of three
well-known cooperative diversity protocols: variable-gain amplify-
and-forward, decode-and-forward, and selection decode-and-for-
ward relaying. Furthermore, we develop asymptotically tight high
signal-to-noise ratio (SNR) approximations, which offer important
insights into the influence of various system and channel param-
eters on the AOR and the AOD. In particular, we show that on
a double-logarithmic scale, similar to the outage probability, the
AORasymptotically decays with the SNRwith a slope that depends
on the diversity gain of the cooperative protocol, whereas the AOD
asymptotically decays with a slope of independent of the di-
versity gain.

Index Terms—Average outage duration (AOD), average outage
rate (AOR), cooperative diversity, Doppler effect, Rayleigh fading.

I. INTRODUCTION

T HE capacity outage probability (OP) is an important per-
formance measure in wireless communication systems

with delay constraints operating over slow fading channels
[1], [2]. The OP is the probability that the channel capacity
is smaller than a given transmission rate [3], [4]. Cooperative
diversity is an efficient means to improve the OP of wireless
systems by exploiting spatially distributed nodes (also referred
to as relays) to effectively synthesize a virtual array that em-
ulates the operation of a multiantenna transceiver [5]–[19].

Manuscript receivedMay 05, 2010; revised February 03, 2011; accepted June
15, 2011. Date of current version October 07, 2011. This work was presented
in part at the IEEE International Conference on Communications (ICC), Kyoto,
Japan, June 2011.
N. Zlatanov and R. Schober are with the Department of Electrical and Com-

puter Engineering, University of British Columbia, Vancouver, BC V6T 1Z4
Canada (e-mail: zlatanov@ece.ubc.ca; rschober@ece.ubc.ca).
Z. Hadzi-Velkov is with the Faculty of Electrical Engineering and Informa-

tion Technologies, Ss. Cyril andMethodius University, Skopje 1000,Macedonia
(e-mail: zoranhv@feit.ukim.edu.mk).
G. K. Karagiannidis is with the Department of Electrical and Computer

Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
(e-mail: geokarag@auth.gr).
Communicated by A. Nosratinia, Associate Editor for Communication

Networks.
Digital Object Identifier 10.1109/TIT.2011.2165794

In particular, Laneman et al. developed in [9] several simple
repetition-based cooperative protocols: amplify-and-forward
relaying (AF), decode-and-forward relaying (DF), selection
decode-and-forward relaying (SR), and incremental relaying.
The performance of these protocols was characterized in terms
of the asymptotic OP for high signal-to-noise ratios (SNRs),
and it was shown analytically that, except for DF relaying,
these protocols achieve full diversity.
In systems with mobile nodes, the channel gains are time

varying. In this case, for the OP to be a relevant performance
measure, two conditions have to be fulfilled [20]. 1) The delay
constraint has to be small compared to the channel coherence
time [2]. In other words, for the duration of one codeword, the
channel has to be practically constant. 2) The codewords have to
be sufficiently long such that capacity-approaching codes exist.
Both 1) and 2) involve approximations which, at the expense
of an increase in bandwidth, can be made arbitrarily tight by
shortening the coding block and increasing the number of sym-
bols per coding block, respectively. Nevertheless, the channel
gain and the corresponding instantaneous channel capacity will
change slowly from one coding block to the next. As a result, the
channel capacities in neighboring coding blocks are correlated
in time. Thus, capacity outage events are correlated in time as
well. This correlation is not reflected in the OP itself but is cap-
tured by the average capacity outage rate (AOR) and the average
capacity outage duration (AOD). The notions of AOR and AOD
have initially been introduced for opportunistic relaying sys-
tems in [21]. A similar definition of second-order outage statis-
tics was also used for multiple-input–multiple-output (MIMO)
systems in [22].
The AOR andAOD provide important information for the de-

sign of wireless communication systems. For example, in sys-
tems with automatic repeat request (ARQ), the waiting time
before a packet is retransmitted should be chosen larger than
the AOD to avoid unsuccessful retransmissions. In multiuser
systems, a scheduling slot typically comprises several coding
blocks. Making the size of a scheduling slot larger than the
AOD will guarantee a low number of unsuccessful scheduling
attempts of users who were in outage in the previous scheduling
slot. Furthermore, for systems with stringent energy constraints,
the transmitters and receivers can be switched off for at least
the AOD to conserve energy if a packet cannot be decoded suc-
cessfully, as it is unlikely that the following packets would be
decoded successfully. In this case, the AOR indicates the fre-
quency with which the receivers are switched on and off. While
these examples illustrate the usefulness of the AOR and AOD
for the design of general wireless networks, their importance is
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further enhanced in cooperative diversity systems. In particular,
the involvement of multiple network nodes increases the over-
head associated with unsuccessful retransmissions and sched-
uling attempts as well as the amount of energy consumed for
unsuccessful decoding attempts.
In this paper, we present an analytical framework for cal-

culation of the AOR and AOD of cooperative diversity sys-
tems with mobile nodes. Specifically, we derive exact expres-
sions for both parameters for cooperative diversity systems em-
ploying the aforementioned AF, DF, and SR protocols, respec-
tively, which are assumed to operate over slowly time-varying
Rayleigh fading channels. We also derive simple closed-form
high SNR approximations for the AOR and AOD. These ap-
proximations provide significant insight into the dependence of
the AOR and AOD on various system and channel parameters
such as the Doppler frequency and the data rate. This insight
facilitates the design of cooperative diversity systems and the
comparison of different protocols.
The remainder of this paper is organized as follows. In

Section II, we present the system and channel models. The
AOR and AOD are defined in Section III, and exact analytical
expressions for the AF, DF, and SR protocols are provided.
In Section IV, we derive the respective asymptotic high SNR
approximations for the AOR and AOD. In Section V, the AOR
and AOD of the considered cooperative diversity protocols are
compared based on numerical results. Conclusions are drawn
in Section VI.

II. COOPERATIVE DIVERSITY SYSTEMS WITH MOBILE NODES

In this section, we present the system model and the adopted
slow Rayleigh fading channel model.

A. System Model

We consider the same cooperation scenario as in [9], where
a given source–destination pair communicates over a relay
by utilizing one of the three considered half-duplex protocols:
AF, DF, and SR. The source and the destination commu-
nicate over two orthogonal subchannels: the direct subchannel
( link) and the relayed subchannel, which consists of
the link and the link. Orthogonality of the sub-
channels is achieved through a suitable orthogonal multiplexing
scheme such as time-division, frequency-division, or code-divi-
sion multiplexing.
Let us denote the channel gains of the , ,

and links by , , and , respectively, with
average squared channel gains ,

, and ,
respectively. Here, denotes statistical expectation. Since
the average squared channel gains can be arbitrarily chosen, we
assume without loss of generality that and transmit with
equal powers . All nodes are impaired by additive white
Gaussian noise with single-sided power spectral density .
For each of the three considered protocols, broadcasts the

information-bearing signal, and both and receive it. If the
AF protocol is utilized, amplifies the received signal (along
with its own noise) and forwards it to over the link,
and combines the replicas received over the and

links in an attempt to decode. In case of the DF protocol,

receives the information-bearing signal, attempts to decode
the received message, and then re-encodes and retransmits the
estimated message over the link. For the SR protocol,
if the channel gain falls below a certain threshold ,
simply retransmits the same packet over the link while
remains silent; otherwise re-encodes and retransmits the

estimated message over the link.
The transmissions from are organized into coding blocks of

duration , where each coding block is occupied by one code-
word. We assume that the number of symbols per coding block
is sufficiently large such that capacity-approaching codes exist.

B. Channel Model and Mobility of the Nodes

We assume there is no line-of-sight between any of the in-
volved nodes and all links are affected by mutually independent
Rayleigh fading. Thus, at time , the three channel gains follow
the Rayleigh probability density function (pdf)

(1)
with cumulative distribution function (cdf)

(2)

Furthermore, due to the mobility of the nodes, the channel gains
are time varying. Here, we assume that the considered applica-
tion has severe delay constraints such that the coding blocks are
short compared to the coherence time of the channel, i.e.,

. Thus, we can assume that the channel gains ,
, and are practically constant for the duration of one

coding block but change slowly from one coding block to the
next.
As usual, we model the channel gains , , and

as time-correlated random processes. The degree of variability
(and the coherence time) of the channels depends on the power
spectral density (a.k.a. “Doppler spectrum”) of the channel
gains, which is determined by the scattering environment
and the mobility of the involved transmitters and receivers.
Here, we consider a 2-D isotropic scattering environment and
mobility of , , and , such that the , , and

links can be modeled as independent mobile-to-mobile
Rayleigh fading channels. Such channels have been extensively
studied in [23] and [24] and the autocovariance function and
Doppler spectrum of the channel gains are specified in [23, eq.
(35)] and [23, eq. (41)], respectively. It is worth noting that
when the transmitter or the receiver is static, the mobile-to-mo-
bile channel model simplifies to the “classical” Jake’s fading
channel model [25], [26].
In the following, we will make use of the fact that the time

derivatives of the gains of the mobile-to-mobile channels ,
, and are independent from the respective gains ,
, and themselves and follow a zero-mean Gaussian

pdf [24], [25]. The variance of the derivatives of the channel
gains is given by [24]

(3)
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where , , and
. Here, , , and denote the

maximumDoppler rates introduced by the mobility of , , and
, respectively. Since the coherence time of the channel is re-

ciprocal to the maximum Doppler frequency [20], the condition
implies

(4)

For a more detailed discussion of the mobile-to-mobile channel
model we refer the interested reader to [23] and [24].

III. CAPACITY OUTAGE RATE AND DURATION

In this section, we derive exact expressions for the AOR and
AOD for the considered cooperative diversity protocols. How-
ever, first, we develop general formulas for the AOR and AOD.

A. Derivation of the AOR and AOD

At a given time , the instantaneous mutual information be-
tween the signals at the input and the output of the considered
cooperative diversity systemswith equivalent end-to-end fading
channel is given by

(5)

where denotes the transmit SNR (also referred to as the SNR
without fading), defined as .
A capacity outage event occurs when the mutual information
drops below some fixed target spectral efficiency [20],

, or, equivalently, if

(6)

where is the outage threshold, given by
. Thus, the occurrence of a “deep fade”

in the equivalent end-to-end channel yields a capacity
outage event of the cooperative system, because this channel
cannot support reliable communication between and at the
desired information rate .
Based on (6), the OP of the cooperative diversity system

equals the cdf of evaluated at the outage threshold

(7)

The asymptotic OPs for the considered AF, DF, and SR pro-
tocols have been determined in [9] for high transmit SNR,
whereas, in this paper, as a byproduct of the derivation of the
AOD, we provide the respective exact expressions valid for
arbitrary transmit SNR. In this context, we emphasize again
that for (7) to be a meaningful performance measure, each
coding block has to accommodate a sufficiently large number
of symbols such that capacity-approaching codes exist, and
each coding block has to be sufficiently short such that
is approximately constant over the entire codeword. Since the
equivalent channel gain is a protocol-dependent function
of the channel gains

(8)

and , , and satisfy (4), is also a slowly
time-varying random process with negligible variability during
each coding block. Thus, an outage event (6) in the equiva-
lent end-to-end channel affects at least one coding block. How-
ever, an outage event can also affect several consecutive coding
blocks. Thus, in general, a capacity outage event lasts (sec-
onds), where .
Let us consider a time interval of duration , which spans

many channel coherence times, i.e., , and assume
that capacity outage events occur during this interval. The
AOR is defined as the occurrence rate of the capacity outage
events during the considered interval, i.e.,

(9)

Considering (5) and assuming is a stationary random
process, (9) can be computed using Rice’s formula [25], [26,
eq. (2.101)]. In other words, the AOR can be estimated from
the level crossing rate (LCR) of random process evaluated
at , yielding

(10)

where denotes the time derivative of random process , and
is the joint pdf of and .1

Furthermore, let us denote the respective durations of the
capacity outage events in the considered time interval of du-
ration by , , and . Since the AOD is by
definition the average duration of the observed capacity outage
events, we have

(11)

Since the numerator and the denominator of the right-hand side
of (11) are the OP and the AOR, respectively, we obtain for the
AOD

(12)

Thus, once the OP and the AOR are computed from (7) and (10),
respectively, the AOD can be determined from (12). In the re-
mainder of this section, we exploit these relations to compute
the AOR and the AOD of AF, DF, and SR relaying. However,
first, we briefly consider direct transmission to establish a refer-
ence for the considered cooperative diversity schemes.

B. Direct Transmission

For direct transmission between and the maximum av-
erage mutual information is given by [9, eq. (10)]

(13)

1We drop the time index , whenever this is possible without causing
ambiguity.
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A capacity outage event occurs when the mutual information
drops below the target spectral efficiency , or, equivalently,
if

(14)

with the outage threshold . Thus, the OP
for direct transmission is given by

(15)
Furthermore, based on (10), the AOR is obtained as

(16)

The AOD is obtained by inserting (15) and (16) into (12).

C. Variable-Gain AF Relaying

Variable-gain AF relays set the amplification gain to
, where , in order to fix the power

of the retransmitted signal to . Thus, based on [9], (12), and
(13), is given by

(17)

Theorem 1: The OP of a cooperative diversity system uti-
lizing variable-gain AF relaying is given by

(18)

where is the modified first-order Bessel function of the
second kind [27, eq. (9.6.2)].

Proof: See Appendix A.
Note that the integral in (18) can be efficiently and accurately

evaluated by applying the Gauss–Legendre numerical quadra-
ture rule [27, eq. (25.4.29)–(25.4.30)].

Theorem 2: The AOR of a cooperative diversity system uti-
lizing variable-gain AF relaying is given by

(19)

Proof: See Appendix A.
The double integral in (19) can be evaluated efficiently and

accurately by a product of two quadrature rules: a Gauss–Le-
gendre rule [27, eq. (25.4.29)–(25.4.30)] for integration over
variable and a Gauss–Laguerre rule [27, eq. (25.4.45)] for in-
tegration over variable .
The AOD of variable-gain AF relaying is obtained by in-

serting (18) and (19) into (12).

D. DF Relaying

When DF relaying is considered, an exact expression for the
maximum average mutual information can be obtained only
under the assumption of repetition coding and full decoding of
the source message by the relay [9], [11, eq. (15)]. In this case,

is given by

(20)

where is an auxiliary random process, defined as

(21)

The OP of a cooperative diversity system employing DF re-
laying is given by

(22)

where [29]

(23)

and

(24)

From the time derivative of both sides of (20)

(25)

and the independence of the channel gains and , the joint
pdf of and is determined as

(26)
Applying (26) in (10) yields the following expression for the
AOR:

(27)
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where and are given by (23) and
(24), respectively. In (27), is the LCR of Rayleigh
random process , which is well known and given by [24,
eq. (2)]

(28)

whereas is the LCR of random process , which is
given in the following theorem.

Theorem 3: The LCR of random process is given by

(29)

where is the incomplete Gamma function, defined in [27,
eq. (6.5.3)], and is defined as

(30)

Proof: See Appendix B.
When , according to Appendix B, (29) simplifies

to

(31)

where and are given by (3).
When and then ,

and the limit operation can be applied in (31) to
obtain

(32)

A closed-form expression for the AOR of the DF protocol
is obtained by inserting (23), (24), (28), and (29) [or (31) or (32)]
into (27). Furthermore, the AOD is obtained by inserting (22)
and (27) into (12).

E. Selection DF Relaying

The selection DF relaying protocol activates the relay only if
the measured channel gain is above a given threshold
such that the received codeword can be successfully decoded.
If the relay is activated, it decodes the message and forwards it
over the link to the destination; otherwise retrans-
mits the message. Thus, based on [9, eq. (19)], for the case of
repetition coding at the relay, is obtained as

(33)

where is defined in (21).
The OP of a cooperative diversity system utilizing SR re-

laying can be expressed as

(34)

where

(35)

(36)

and is calculated from (23).
By carefully analyzing the conditions for downward cross-

ings of random process of the outage threshold , the
following four independent downward crossing events can be
identified:
i) downward crossing of , if ;
ii) downward crossing of , if ;
iii) downward crossing of when switches from

condition to condition , but only
if and ;

iv) downward crossing of when switches from
condition to condition , but only
if and .

Thereby, event i) occurs with probability , event
ii) occurs with probability , event iii) occurs with
probability , and event iv) occurs
with probability . Thus, the AOR of
a cooperative diversity system employing SR relaying is given
by

(37)

Using (16), is obtained as

(38)
Furthermore, it can be shown that

(39)

and

(40)
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A closed-form expression for the AOR of a cooperative
diversity system employing SR relaying can be obtained by ap-
plying (28), (35), and (38)–(40) in (37). We note that typically

is adopted [9].
The AOD is obtained by inserting (34) and (37) into (12).

IV. ASYMPTOTIC BEHAVIOR OF AOR AND AOD

While the analytical expressions for the AOR and AOD de-
rived in the previous section are exact and easy to evaluate,
they do not provide much insight into the impact of the various
channel and system parameters on system performance and de-
sign. Thus, in this section, we provide simple high SNR approx-
imations for the AOR and AOD of the considered cooperative
diversity protocols, which reveal the influence of the rate ,
the mean squared channel gains , , , and the Doppler
frequencies , , . We note that in the subsequent
analysis the condition is equivalent to the condition

, since is assumed to be fixed.

A. Direct Transmission

For high SNRs, the OP (15) simplifies to the well-known
asymptotic expression [9]

as (41)

where means that and are asymptoti-
cally equivalent; cf. Appendix C.
The high SNR approximation of the AOR can be obtained

from (16) by using only the first term of the Maclaurin series in
(C.2). This leads to

(42)

Combining (12), (41), and (42), we obtain for the AOD the
high SNR approximation

(43)

B. Variable-Gain AF Relaying

For high SNR, the OP in (18) simplifies to the known asymp-
totic result [9]

(44)

The corresponding high SNR approximation for the AOR is pro-
vided in the following theorem.

Theorem 4: For high SNR, the AOR of a cooperative diver-
sity system employing variable-gain AF relaying can be approx-
imated as

(45)

Proof: See Appendix C.
Assuming , (45) simplifies to

(46)

A high SNR approximation of the AOD is straightfor-
wardly obtained by inserting (44) and (45) [or (46)] into (12).

C. DF Relaying

For high SNRs, the OP in (22) simplifies to the known asymp-
totic result [9, eq. (18)]

(47)

Theorem 5: The AOR of a cooperative diversity system em-
ploying DF relaying can be approximated as

(48)

Proof: See Appendix D.
A high SNR approximation of the AOD is obtained by

inserting (47) and (48) into (12).

D. Selection DF Relaying

For high SNR, (34) simplifies to the known asymptotic result
[9, eq. (22)]

(49)

Theorem 6: The AOR of a cooperative diversity system em-
ploying SR relaying can be approximated as

(50)

Proof: The theorem is proved straightforwardly by ex-
ploiting the asymptotic equivalence

(51)

along with (D.1), (D.2), and (D.5).
A high SNR approximation of the AOD is obtained by

inserting (49) and (50) into (12).
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TABLE I
HIGH SNR APPROXIMATIONS OF AOR AND AOD FOR A SYMMETRIC COOPERATIVE DIVERSITY NETWORK UTILIZING THE AF, DF, AND SR PROTOCOLS,

RESPECTIVELY. IS THE AVERAGE RECEIVED SNR AT THE THREE MOBILE NODES THAT INTRODUCE THE SAME MAXIMUM DOPPLER
FREQUENCY , I.E., AND . FOR COMPARISON, WE ALSO PROVIDE RESULTS FOR

DIRECT TRANSMISSION WITH A SINGLE RECEIVE ANTENNA (DIRECT) AND TWO RECEIVE ANTENNAS ( SIMO)

Assuming , (50) simplifies to

(52)

A summary of the OPs, AORs, and AODs of symmetric net-
works with and
is provided in Table I. Besides the results for the three con-

sidered cooperative diversity protocols, Table I also includes the
results for direct transmission with one and two receive antennas
[22]. In the latter case, we have a single-input–multiple-
output (SIMO) system with independent identically distributed
(i.i.d.) Rayleigh fading branches and maximal ratio combining.

E. Diversity Gain

Based on the high SNR approximations derived in
Sections IV-A–IV-D, the asymptotic AOR and AOD of
the considered cooperative diversity protocols can be expressed
as

as

(53)

as (54)

where ( AF, DF, or SR) denotes the diversity gain of
the protocol, i.e., , , and [9]. For
direct transmission, is valid. The SNR-independent
functions and in (53) and (54), respectively, can
be determined straightforwardly for each of the three proto-
cols from (44), (45), and (47)–(50). These functions depend on
the maximum Doppler frequencies of the mobile nodes

and the mean squared channel gains
.

For high SNR and on a double-logarithmic scale, both the
AOR and the AOD decay linearly with the SNR ; cf. (53)
and (54). Thereby, the asymptotic slopes of the AOR and AOD
curves are given by and , respectively. Thus,
similar to the OP, whose asymptotic slope is [9], the AOR
strongly benefits from an increased diversity order . There-
fore, the OP and the AOR of the AF and SR protocols decay
much faster with increasing SNR than that of the DF protocol
and direct transmission. In contrast, the asymptotic slope of the
AOD curves is independent of the diversity order and the AOD
curves for all considered cooperative diversity protocols and di-
rect transmission are parallel for high SNR. In other words, the
large decrease in OP with increasing SNR achieved by the AF
and SR protocols compared to the DF protocol and direct trans-
mission is mainly due to a decrease in the frequency of outage
events (which is manifested in the AOR) as opposed to a de-
crease in the duration of individual outage events (which is man-
ifested in the AOD).
We note that the fact that the AOD does not benefit from the

diversity gain is not limited to cooperative diversity systems
but also applies to conventional SIMO systems with maximal
ratio combining; cf., Table I.

F. Outage Rate Versus Outage Probability

Based on (53) and (54), we can establish the following high
SNR relationships between the OP and the AOR and AOD

as (55)

as (56)

where the function can be determined straightforwardly
for each of the three considered protocols by combining (44),
(45), and (47)–(50), respectively.
Interestingly, while the AOR decays faster with decreasing
if the diversity order is increased from one to two, the

opposite is true for the AOD. Thus, if a certain target is re-
quired and can be achieved with different system architectures
(at different SNRs), an architecture with (DF, direct
transmission) will lead to a larger AOR and a smaller AOD than
an architecture with (AF, SR). In systems with strict
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Fig. 1. Normalized AOR versus transmit SNR of symmetric cooperative di-
versity systems with AF, DF, and SR relaying and direct transmission

.

delay constraints, more frequent outages of shorter durations
may be preferable, whereas in systems that conserve energy by
completely switching off the receiver, less frequent, longer out-
ages may be preferable to avoid frequent switching between the
on and off modes.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we study the AOR and AOD of some example
networks using AF, DF, and SR relaying. To this end, we eval-
uate the analytical expressions developed in Sections III and IV,
respectively. All results shown in this section have been vali-
dated by computer simulations. We omit the simulation results
here for clarity of presentation. Throughout this section, we as-
sume and show results for the nor-
malized AOR and normalized AOD , respec-
tively. Furthermore, we set the target rate to 0.5 b/s/Hz,
i.e., the system operates in the low-spectral efficiency regime,
where cooperative diversity has been shown to have significant
performance benefits [9].
In Figs. 1 and 2, we show, respectively, the normalized AOR

and AOD versus the transmit SNR , for the consid-
ered diversity protocols and direct transmission. A symmetric
network with is assumed. Besides the
exact AORs and AODs, we also show the asymptotic approxi-
mations derived in Section IV.
Figs. 1 and 2 confirm the tightness of these approximations

for sufficiently high SNR. As predicted in Section IV-E, the di-
versity gain of the AF and SR protocols is reflected in the AOR
but not in the AOD. Nevertheless, the AF and SR protocols still
achieve a lower AOD than the DF protocol and direct transmis-
sion for high SNR. As an example, we consider a system with

and an SNR of 20 dB. In this case, Fig. 1 sug-
gests that on average for the SR protocol, the AF protocol, the
DF protocol, and direct transmission an outage event happens
every , , , and
coding blocks, respectively. At the same time, Fig. 2 shows that
on average these outage events last 13, 14, 28, and 18
coding blocks, respectively. This example nicely illustrates that

Fig. 2. Normalized AOD versus transmit SNR of symmetric cooperative di-
versity systems with AF, DF, and SR relaying and direct transmission

.

while the differences in the AOD between the different cooper-
ative diversity schemes are relatively small, the differences in
the AOR are major, i.e., as mentioned in Section IV, the large
OP gains achievable with the SR and AF protocols compared
to direct transmission are mainly due to a decrease in the fre-
quency of outage events rather than a decrease in the duration
of individual outage events. Furthermore, if, for example, the
considered cooperative diversity systems employ ARQ, the re-
sults in Fig. 2 show that the interval between retransmissions
should be at least 13, 14, and 28 coding blocks for the SR, AF,
and DF protocols, respectively.
Next, we consider a network with a comparatively strong di-

rect link (scenario 1) and a network with a comparatively weak
direct link (scenario 2). The corresponding AORs and AODs
are shown in Figs. 3 and 4, respectively. While the strength
of the direct link does not have any influence on the asymp-
totic slope of the AOR and AOD curves, it does affect the rel-
ative performance. For example, for a strong direct link, direct
transmission achieves practically the same AOD as SR and AF
relaying, i.e., in this case, the direct link dominates the per-
formance of these relaying protocols. In contrast, in case of
a weak direct link, all considered cooperative diversity proto-
cols achieve a substantially lower AOD than direct transmis-
sion, as intuitively expected. Interestingly, at high SNR, both
the AOR and the AOD of DF relaying are not significantly af-
fected by the strength of the direct link, i.e., the performance
limiting factor of DF relaying is the relayed link. It is inter-
esting to connect the AOR and AOD to the coherence time of
the channel . Assuming , we have

, which denotes the average number of capacity outage
events that occur within a single channel coherence time, or
equivalently , which denotes the average
separation between two consecutive capacity outage events ex-
pressed in terms of the number of channel coherence times. Sim-
ilarly, the normalized AOD denotes the av-
erage duration of an outage event in terms of the coherence time
of the channel. For example, we observe from Fig. 3 that for SR
relaying and an SNR of 20 dB, an outage event occurs on av-
erage every 8.3 and 30 coherence times if the
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Fig. 3. Normalized AOR of asymmetric cooperative diversity systems with
AF, DF, and SR relaying and direct transmission. Scenario 1 (strong direct link):

, , and . Scenario 2 (weak direct link): ,
, and .

Fig. 4. Normalized AOD of asymmetric cooperative diversity systems with
AF, DF, and SR relaying and direct transmission. Scenario 1 (strong direct link):

, , and . Scenario 2 (weak direct link): ,
, and .

direct link is strong and weak, respectively. Fig. 4 shows that
the duration of these outage events is and

coherence times for the strong and the weak direct
link, respectively.
Finally, in Fig. 5, we investigate the relationship between the

AOR and the OP; cf. Section IV-F. As expected from (55), for
sufficiently small OPs, on the double logarithmic scale of Fig. 5,
the AOR becomes a straight line with slope . In other
words, for small (practical) OPs, (55) and (56) can be used to
quickly estimate the AOR and AOD, respectively, from the OP.
For example, Fig. 5 shows that for an OP of , an outage
event occurs roughly every 1000 and 100 channel coherence
times if SR (AF) relaying and DF relaying (direct transmis-
sion) are used, respectively. Correspondingly, the duration of
these outage events is roughly and channel coher-
ence times for SR (AF) relaying and DF relaying (direct trans-
mission), respectively.

Fig. 5. AOR versus OP of asymmetric cooperative diversity systems with AF,
DF, and SR relaying and direct transmission .

VI. CONCLUSION

In this paper, we have analyzed the AOR and the AOD of
cooperative diversity systems employing AF, DF, and SR re-
laying in Rayleigh fading channels with mobile nodes. In con-
trast to the OP, the AOR and theAOD provide information about
the temporal correlation of capacity outage events in slowly
time-varying channels. Besides exact analytical expressions, we
also developed asymptotically tight high SNR approximations
for the AOR andAOD,which provide significant insight into the
influence of the Doppler frequencies of the nodes, the relative
strength of the involved links, the SNR, and the target transmis-
sion rate. In particular, we show that for high SNR and a double
logarithmic scale, both the AOR and the AOD depend linearly
on the SNR. However, while the slope of the AOR curves is af-
fected by the diversity gain of the channel in a similar manner
as the OP, the slope of the AOD curves is equal to inde-
pendent of the adopted cooperative protocol.
The derived AOR and AOD expressions are useful for all

system design problems that are influenced not only by the OP
itself but also by the frequency and duration of outage events.
Such design problems include the dimensioning of the retrans-
mission interval of ARQ systems, the scheduling slot duration
of multiuser systems, and the duration of the sleep mode of en-
ergy saving receivers.

APPENDIX A
PROOFS OF THEOREMS 1 AND 2

Based on (17) the OP of AF relaying can be expressed as

(A.1)
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where is given in (1) and the cdf of random variable
at threshold is given by [28,

eq. (14)]

(A.2)

Substitution of (A.2) into (A.1) and applying the change of vari-
ables yields (18), thus completing the proof of
Theorem 1.
In order to determine the LCR of in (17), we first find

its time derivative

(A.3)
Conditioned on and , the joint pdf is
given by

(A.4)
where and are the pdfs of the independent channel
gains and of the relayed path, respectively. The conditional
joint pdf can be expressed as

(A.5)
where is the conditional pdf of , given
and . Applying a simple random variable (RV) transfor-
mation, we obtain

for (A.6)

In (A.5), is the conditional pdf of , given

, , and . Hence, is a linear combination of
three independent zero-mean Gaussian RVs, , , and , with
variances given by (3). Thus, is also a Gaussian RV with zero
mean and variance

(A.7)

Exploiting (A.4) and (A.5) in (10), and changing the order of
integration, we obtain

(A.8)

where the innermost integral is computed as

(A.9)

Now, using (1), (A.6), (A.7), and (A.9) in (A.8), and introducing
the change of variables , we obtain

(A.10)

Equation (19) is obtained after applying another change of vari-
ables , thus completing the proof of Theorem 2.

APPENDIX B
PROOF OF THEOREM 3

In order to determine the LCR of random process , we
first note that based on (21) the time derivative of is given
by

(B.1)

Conditioned on , the joint pdf is determined as

(B.2)

where is the pdf of channel gain . The conditional joint
pdf can be expressed as

(B.3)

where is the conditional pdf of for a given .
This conditional pdf is given by

(B.4)
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In (B.3), is the conditional pdf of , given

and . Because of the conditioning, is a Gaussian RV
with zero mean and variance

(B.5)

Introducing (B.2) and (B.3) into definition (10), and changing
the order of integration, we obtain

(B.6)

where the innermost integral yields

(B.7)

We obtain (29) and (31) by inserting (1), (B.4), (B.5), and (B.7)
into (B.6), and then integrating with respect to variable . More
particularly, (29) is obtained by introducing the change of vari-
ables in (B.6) and then applying
the definition of the incomplete Gamma function [27, eq.
(6.5.3)]. For , (B.6) reduces to an elementary integral,
directly yielding (31). This completes the proof of Theorem 3.

APPENDIX C
PROOF OF THEOREM 4

For the high SNR analysis (as ) in Appendixes C
and D, we adopt the Landau small- notation which describes
the asymptotic relation between two functions and
as [30]. Thereby, , as ,
means that . Two functions and

are said to be asymptotically equivalent as ,
if . This asymptotic equivalence is
denoted by , as , or, alternatively

as (C.1)

For example, using this notation we can express as

as (C.2)

which will be exploited in the following.
For the high SNR approximation of (19), we set

, which simplifies (17) to

(C.3)

Using a derivation similar to that in Appendix A, the AOR is
obtained as

(C.4)

where . After some algebraic manipulations of the inner
integral in (C.4) and the change of variables , (C.4)
becomes

(C.5)

where

(C.6)

(C.7)

and . Since and , the exponential
functions in (C.5) can be approximated by using only the first
term on the right-hand side of (C.2), yielding

as (C.8)

The second factor in (C.7) is upper bounded by

(C.9)

from which we conclude that can be tightly lower and
upper bounded as

(C.10)

Coefficient in (C.10) is chosen to match the behavior of
at infinity

(C.11)
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whereas coefficient is chosen to match the behavior of
at

(C.12)

In order to satisfy (C.10), coefficients and can be chosen
to have an appropriate positive value depending on the parame-
ters , , , and . However, these coefficients do not have
to be specified in the following derivation.
Applying bounds (C.10) in the integral in (C.6), we obtain

(C.13)
where , , and are determined in closed form as

(C.14)

(C.15)

(C.16)

where and are the modified zeroth- and first-order
Bessel functions of the second kind [27, eq. (9.6.2)], respec-
tively. From [27, eq. (9.6.8)–(9.6.9)], we have

as (C.17)

and

as (C.18)

and (C.14)–(C.16) can be simplified. To solve the integral in
(C.8), we integrate over these simplified versions of ,

, and , which leads to

(C.19)

(C.20)

(C.21)

as . Using , (C.20) is reduced to

as (C.22)

Thus, the lower and the upper bounds in (C.13) converge to
as . Hence, (C.8) is finally

simplified to

as (C.23)

Applying (3) in (C.23) yields (45), thus completing the proof of
Theorem 4.

APPENDIX D
PROOF OF THEOREM 5

To arrive at a high SNR approximation for (27), we assume
. Furthermore, we replace the exponential functions

appearing (23), (24), (28), and (29), by the first two terms of
the series expansion in (C.2). Thus, (23) simplifies to

, whereas (24) yields

(D.1)

To approximate (28), it is sufficient to use only the first term of
(C.2) yielding

(D.2)

To approximate in (29), we utilize the power series
expansion of the incomplete Gamma function [27, eq. (6.5.3),
(6.5.4), and (6.5.29)]

(D.3)

yielding

(D.4)

where ; cf. (30). Using (D.4) and (C.2) in (29)
yields

(D.5)
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Applying (D.1), (D.2), and (D.5) in (27), we obtain

(D.6)

Combining (3) and (D.6) yields (48), which completes the proof
of Theorem 5.
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