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Abstract—In this paper, we analytically investigate Gallager’s
exponent for space-time block codes over multiple-input multiple-
output block-fading channels with Gaussian input distribution.
As a suitable metric of the fundamental tradeoff between com-
munication reliability and information rate, Gallager’s exponent
can be used to determine the required codeword length to achieve
a prescribed error probability at a given rate below the channel
capacity. We assume that the receiver has full channel state
information (CSI), while the transmitter has no CSI and performs
equal power allocation across all transmit antennas. In the follow-
ing, novel exact expressions for Gallager’s exponent are derived
for two well-known channel fading models, namely η-μ and κ-
μ fading models. More importantly, the implications of fading
parameters and channel coherence time on Gallager’s exponent
are investigated. In addition, we present new expressions for
the Shannon capacity, cutoff rate and expurgated exponent for
the above mentioned fading models, while in the high signal-
to-noise ratio regime, simplified closed-form expressions are
also derived. Finally, we highlight the fact that the presented
analysis encompasses all previously known results on Nakagami-
m, Rician, Rayleigh and Hoyt fading channels, as special cases.

Index Terms—Capacity, cutoff rate, expurgated exponent,
MIMO fading channels, random coding exponent.

I. INTRODUCTION

OVER the past few years, multiple-input multiple-output
(MIMO) systems have been well investigated in terms of
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capacity over various types of fading channels (see e.g., [1]–
[4] and references therein). In the related literature, ergodic
Shannon capacity has been used as the typical metric to
evaluate the performance of MIMO systems. However, this
metric gives knowledge only of the maximum achievable
information rate and may not be sufficient to reflect the
fundamental limits of MIMO communication systems. More
specifically, it was shown in [5] that the error probability
tends to zero as the block length tends to infinity, when the
rate is less than the channel capacity. On the other hand, for
most practical scenarios, the block length cannot be too long
because of the limitations on delay and encoding/decoding
complexity. For this reason, this fundamental tradeoff needs
to be thoroughly exploited. As an easily computable lower
bound, an information-theoretic metric, namely Gallager’s
exponent (or reliability function), has been proposed in [6]
to determine the probability of error, Pe, as a function of the
codeword length, L, and the information rate R.

Since then, a number of works have investigated Gallager’s
exponent of various single-antenna communication systems
over Rayleigh flat fading channels [7], [8]. Moreover, there
have been some advances in understanding Gallager’s expo-
nent of multiple-antenna systems as well. In this context,
[9] derived Gallager’s exponent for MIMO Rayleigh block-
fading channels with spatial fading correlation and subject to
an average power constraint, assuming perfect channel state
information (CSI) at the receiver. The relationship between
probability of error, information rate, codeword length and
signal-to-noise ratio (SNR) for fast Rayleigh fading MIMO-
ARQ channels was examined in [10].

Yet, very few results on Gallager’s exponent of multiple-
antenna systems with space-time block codes (STBC) in non-
Rayleigh fading conditions are available. Only recently, [11]
and [12] investigated Gallager’s exponent of STBC systems
operating in Nakagami-m and generalized-K fading chan-
nels, respectively. While these prior works have significantly
improved our knowledge on Gallager’s exponent of STBC
systems, a general analytic framework which will account for
more realistic fading models seems to be missing from the
open literature. In particular, the above fading distributions
rely inherently on the assumption of a homogeneous scattering
environment, which is often unrealistic since the surfaces are
spatially correlated in most propagation environments [13]. To
address such non-homogeneous environments, the η-μ and κ-
μ distributions have been proposed in [14]–[18]. These fading
models can provide better fit to experimental data than the
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Rayleigh, Rician and Nakagami-m fading models [18], [19].
Moreover, the η-μ distribution involves the Hoyt (Nakagami-
q), Nakagami-m and Rayleigh distributions as special cases,
while the κ-μ distribution includes the Rician, Nakagami-m,
and Rayleigh distributions as special cases. Motivated by these
important observations, we herein analytically investigate Gal-
lager’s exponent of STBC systems over η-μ and κ-μ fading
channels.

The contributions of this paper can now be summarized
as follows: We first provide novel, analytical expressions for
Gallager’s exponent of STBC systems over η-μ and κ-μ
fading channels. Note that, although the considered models
incur significant mathematical challenges, all the presented
results can be easily evaluated and efficiently programmed
in most standard software packages (e.g., MATLAB, MATH-
EMATICA). We further elaborate on the Shannon capacity
and cutoff rate, which can be directly derived from Gallager’s
exponent. Additionally, new formulas for the expurgated ex-
ponent over these fading channels are presented to extend
Gallager’s exponent. In order to get additional insights into the
impact of fading parameters, a high-SNR analysis is pursued to
investigate the effects of coherence time and codeword length
error probability. We note that the presented results extend
and complement all previous results on Rayleigh, Rician and
Nakagami-m fading channels [7], [8], [11]. For the sake of
completeness, we provide the link to these previous results
and also present the corresponding results for Hoyt fading
channels which, to the best of our knowledge, have not been
reported elsewhere.

The remainder of the paper is organized as: In Section
II, the MIMO system model and Gallager’s exponent used
throughout the paper are introduced. In Section III, we provide
new, analytical expressions for Gallager’s exponent of STBC
over η-μ and κ-μ MIMO fading channels along with a detailed
high-SNR analysis. Some special cases of interest are also
assessed. A set of numerical results is given in Section III,
while Section IV concludes this paper.

Notation: We use upper and lower case boldface letters to
denote matrices and vectors, respectively. The symbol (·)†
represents the Hermitian transpose, the trace operator of a
square matrix is denoted by tr (·), etr(·) = etr(·), while ‖ · ‖F
denotes the matrix Frobenius norm. The expectation operator
of a random variable is given by E{·}, the matrix determinant
reads as det(·), while �·� denotes the ceiling operation to the
nearest integer.

II. SYSTEM MODEL AND GALLAGER’S EXPONENT

A. System model

We consider a single-user MIMO system with Nt transmit
antennas and Nr receive antennas whose complex input-output
relationship can be expressed as

Y = HX+N (1)

where H ∈ CNr×Nt denotes the fading channel matrix with
entries hi (i = 1, 2, . . . , NtNr), while X ∈ CNt×Nc is the
transmit matrix containing Nc symbols. Also, Y ∈ CNr×Nc

represents the received signal matrix and N ∈ CNr×Nc

is the complex zero-mean additive white Gaussian noise
(AWGN) matrix with the variance of its elements being N0.
Considering Nb independent coherence intervals, the block
codeword length of a reliable communication link is NbNc.
Moreover, the input signal matrix is subject to an average
power constraint of the form E

{
tr
(
XX†)} = Nctr (Q) ≤

NcP , where Q is the Nt × Nt positive semidefinite input
covariance matrix and P is the total transmit power. Assuming
that the transmitter has no CSI, it is meaningful to assume
that uniform power allocation is being performed across the
transmit antennas, such that Q = P

Nt
I.

For STBC, the MIMO channel can be represented as Nt ×
Nr parallel single-input single-output channels for each data
symbol [20]. Thus, the effective output symbol SNR is given
by [4, Eq. (4)], [12, Eq. (7)]

γo =
γ

Nt
‖H‖2F (2)

where γ = P
RcN0

is the effective transmit SNR, and Rc is
the information code rate. Hereafter, we assume, for the sake
of clarity and without significant loss of generality, full-rate
STBC such that Rc = 1.

B. Gallager’s exponent

1) Random coding exponent: With maximum-likelihood
decoding, an upper bound on the error probability of MIMO
channels with continuous inputs and outputs is given by [6]

Pe ≤
(
2erδ

ξ

)2

exp (−NbNcEr (pX (X) , R,Nc)) . (3)

The above bound is given in terms of several arbitrary param-
eters, namely r ≥ 0, δ ≥ 0, which are defined as

ξ ≈ δ√
2πNbσ2

ξ

(4)

σ2
ξ =

∫
X

[
tr
(
XX†)−NcP

]2
pX (X) dX. (5)

To achieve a desired error probability at an information rate
R, the codeword length can be obtained by solving for Nb

in (3) with L = Nc × �Nb�. The random coding exponent is
defined as [6]

Er (pX (X) , R,Nc)

� max
0≤ρ≤1

(
max
r≥0

E0 (pX (X) , ρ, r,Nc)−ρR
)

(6)

where E0 (pX (X) , ρ, r,Nc) is given in (7) at the bottom of
this page.

E0 (pX (X) , ρ, r,Nc) � − 1

Nc
ln

(∫
H

pH (H)

∫
Y

(∫
X

pX (X) er[tr(XX†)−NcP ]p(Y|X,H)
1

1+ρ dX
)1+ρ

dYdH

)
. (7)
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In general, it is very difficult to minimize the upper bound
by optimizing the input probability density function (p.d.f.)
pX (X). Subject to the considered power constraint, we choose
the capacity-achieving Gaussian distribution for pX (X) as [6]

pX (X) = π−NtNc det (Q)
−Ncetr

(−Q−1XX†) . (8)

This choice of the input distribution may facilitate the
solution of (7), though it is optimal for the random coding
exponent calculation only when the rate R approaches the
channel capacity. Then, (7) becomes

Ẽ0 (ρ, β,Nc)
Δ
= E0

(
P

Nt
INt , ρ, r,Nc

)∣∣∣∣
β=Nt−rP

= (1 + ρ) (Nt − β) +Nt (1 + ρ) ln (β/Nt)︸ ︷︷ ︸
A(ρ,β)

− 1

Nc
ln

(
E

{
det

(
INr +

γHH†

β (1 + ρ)

)−Ncρ
})

. (9)

Then, the random coding exponent can be written as

Er (R,Nc) = max
0≤ρ≤1

(
max

0≤β≤Nt

Ẽ0 (ρ, β,Nc)− ρR

)
. (10)

As in [21], the error probability is given by

Pe ≤ 8π

Nt
(Nt−β∗ (ρ))2NbNce

(2−NbNcEr(R,Nc)) (11)

where β∗ (ρ) is the value of β that maximizes Ẽ0 (ρ, β,Nc),
defined in (9) for each ρ, and is in the range 0 < β ≤ Nt.

2) Shannon capacity: From [22], the information rate R
can be expressed as

R =
∂Ẽ0 (ρ, β

∗ (ρ) , Nc)

∂ρ
. (12)

Note that R becomes identical to Shannon capacity, 〈C〉, for
ρ = 0 and β∗ (0) = Nt, such that

〈C〉 � ∂Ẽ0 (ρ, β
∗ (ρ) , Nc)

∂ρ

∣∣∣∣∣
ρ=0,β∗(0)=Nt

. (13)

3) Cutoff rate: As an important information-theoretic met-
ric, the cutoff rate R0 determines a lower bound to the
Shannon capacity and the corresponding value of the zero-rate
random coding exponent. By setting ρ = 1 and β∗ (1) = Nt

in (9), the cutoff rate becomes [21]

R0 = − 1

Nc
ln

(
E

{
det

(
INr +

γHH†

2Nt

)−Nc
})

. (14)

4) Expurgated exponent: The random coding exponent is
defined by selecting the unbiased codeword based on the input
distribution. Therefore, the good and bad codewords have
equal contribution to the average error probability. Another
error metric, namely expurgated exponent, is proposed by
expurgating the bad codewords and is given by [6]

Eex (pX (X) , R,Nc)

� max
ρ≥1

(
max
r≥0

Ex (pX (X) , ρ, r,Nc)−ρR
)

(15)

where Ex (pX (X) , ρ, r,Nc) is expressed in (16) at the bottom
of this page. The expurgated exponent with Gaussian input
distribution and equal power allocation is given by [6]

Eex (R,Nc) = max
ρ≥1

(
max

0≤β≤Nt

Ẽx (ρ, β,Nc)− ρR

)
(17)

where

Ẽx (ρ, β,Nc) � 2ρ (Nt − β) + 2ρNt ln (β/Nt)︸ ︷︷ ︸
A′(ρ,β)

− 1

Nc
ln

(
E

{
det

(
INr +

γHH†

2ρβ

)−Ncρ
})

.

(18)

III. GALLAGER’S EXPONENT ANALYSIS IN η-μ AND κ-μ
FADING CHANNELS

In this section, we present a detailed Gallager’s exponent
analysis for η-μ and κ-μ fading channels. Note that only inde-
pendent and identically distributed (i.i.d.) fading is considered
here; however, we can address the cases of non-identically
distributed or correlated fading using the similar methodology
as described below.

A. η-μ fading channels

The η-μ distribution models the small-scale variation of
the fading signal in a non-homogeneous environment with the
p.d.f. of the instantaneous SNR given by [18, Eq. (26)]

fη−μ (ω)=
2
√
πμμ+1

2hμωμ−1
2

Γ (μ)Hμ−1
2Ωμ+1

2

e(−
2μhω

Ω )Iμ−1
2

(
2μHω

Ω

)
where Iv (x) is the v-th order modified Bessel function of
the first kind [23, Eq. (8.445)], Γ (x) is the Gamma function
[23, Eq. (8.310.1)], and Ω = E {ω} denotes the average
power. The parameters h and H related to η are different
in two formats. More specifically, according to format 1,
h =

(
2 + η−1 + η

)/
4 and H =

(
η−1 − η

)/
4, where 0 <

η <∞ is the scattered-wave power ratio between the in-phase
and quadrature components. For format 2, h = 1

/(
1− η2

)
and H = η

/(
1− η2

)
, where −1 < η < 1 represents the

Ex (pX (X) , ρ, r,Nc) � − 1

Nc
ln

∫
H

pH (H)

{∫
X′

∫
X

pX (X) pX (X′) er[tr(XX†)+tr(X′X′†)−2NcP ]

×
[∫

Y

√
p (Y|X,H) p (Y|X′,H)dY

]1/ρ
dXdX′

}ρ

dH. (16)
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correlation coefficient between the scattered-wave in-phase
and quadrature components of each cluster of multipath. In
both formats, the parameter μ denotes the half number of
multipath clusters. Note that the η-μ distribution includes the
Hoyt (Nakagami-q) distribution as special case for μ = 0.5
and η = q2. We also note that the Nakagami-m distribution
can be obtained by setting μ = m and η → 0 or η → ∞
in format 1 of the η-μ distribution. Moreover, the Rayleigh
distribution is obtained by setting μ = 0.5 and η = 1 in
format 1 or μ = 0.5 and η = 0 in format 2. Alternatively, it
can be attained by setting μ = m/2 and η → 1 in format 1 or
η → 0 in format 2 [18]. Without significant loss of generality,
we only consider format 1 in the following analysis.

According to [18], [24], it is known that the sum of M i.i.d.
squared η-μ RVs with parameters η, μ, and Ω is also an η-μ
RV with parameters η, Mμ and MΩ. As such, we can easily
obtain the p.d.f. of z =

∑NtNr

i=1 |hi|2 as follows,

pη−μ (z) =
2
√
πhμNtNr

Γ (μNtNr)

(
μ

Ω

)μNtNr+
1
2
(
z

H

)μNtNr− 1
2

× exp

(
−2μhz

Ω

)
IμNtNr− 1

2

(
2μHz

Ω

)
. (19)

By using the representation of Iv (x) in terms of a general-
ized hypergeometric function pFq (·) [23, Eq. (9.238.2)] and
[25, Eq. (6.1.18)], we can obtain an alternative expression as

pη−μ (z) =
z2μNtNr−1hμNtNr

Γ (2μNtNr)

(
2μ

Ω

)2μNtNr

e(−
2μ(h+H)

Ω z)

× 1F1

(
μNtNr; 2μNtNr;

4μH

Ω
z

)
. (20)

1) Random coding exponent analysis: Based on the the-
oretical analysis presented in Section II, we first obtain the
exact random coding exponent as follows:

Proposition 1: The random coding exponent of STBC over
η-μ MIMO fading channels can be expressed as in (21) at the
bottom of this page, where U(·) is the Tricomi hypergeometric
function [25, Eq. (13.1.3)].

Proof: We can directly substitute (19) into (9) and there-
after use the infinite series representation of Iv (x) from [23,
Eq. (8.445)]. The involved integral is evaluated with the help
of the following identity

∞∫
0

(1 + ax)
−v

x1−qepx
dx =

pv−q

av
Γ (q)U

(
v; v − q + 1;

p

a

)
(22)

which is a combination of Kummer’s transformation [26,
Eq. (07.33.17.0007.01)] and [3, Eq. (39)]. Then, the proof
concludes after invoking [25, Eq. (6.1.18)] and appropriate
simplifications.

In order to assess the convergence of the infinite series
in (21), we assume that T0 − 1 terms are used; hence, the
associated truncation error Ξ0 can be upper bounded as

Ξ0 =
∞∑

l=T0

Γ (μNtNr + l)

l!

(
H

h

)2l

× U

(
Ncρ;Ncρ− 2μNtNr − 2l + 1;

2μhβ (1 + ρ)

Ωγ

)
< U

(
Ncρ;Ncρ−2μNtNr−2T0+1;

2μhβ (1+ρ)

Ωγ

)

×
∞∑

l=T0

Γ (μNtNr + l)

Γ (l+ 1)

(
H

h

)2l

= U

(
Ncρ;Ncρ− 2μNtNr − 2T0 + 1;

2μhβ (1 + ρ)

Ωγ

)

×

⎛
⎜⎝ Γ (μNtNr)(

1− (Hh )2)−μNtNr
−

T0−1∑
l=0

Γ (μNtNr + l)

Γ (l + 1)

(
H

h

)2l

⎞
⎟⎠

(23)

where we have used the fact that U (a; b− n; z) is a mono-
tonically decreasing function in n.

As was previously mentioned, our analysis elaborates also
on the Shannon capacity, cutoff rate and expurgated compo-
nent of STBC systems. We now present new results for these
metrics over η-μ fading channels.

Corollary 1: The Shannon capacity of STBC over η-μ
MIMO fading channels can be expressed as

〈C〉 =
exp
(

2μhNt

Ωγ

)
Γ (μNtNr)hμNtNr

∞∑
l=0

Γ (μNtNr + l)

l!

(
H

h

)2l

×
2μNtNr+2l∑

n=1

E2μNtNr+2l+1−n

(
2μhNt

Ωγ

)
(24)

where En (x) =
∫∞
1

e−xt

tn dt, n = 0, 1, 2, . . . and Re(x) > 0
denotes the exponential integral function of order n [25, Eq.
(5.1.4)].

Proof: By plugging (19) into (13), we end up with the
following integral expression

〈C〉 = 2
√
πhμNtNr

Γ (μNtNr)

∞∑
l=0

H2l(μ/Ω)
2μNtNr+2l

l!Γ (μNtNr + l + 1/2)

×
∞∫
0

ln

(
1 +

γz

β (1 + ρ)

)
z2μNtNr+2l−1e(−

2μhz
Ω )dz. (25)

With the aid of [3, Eq. (40)] and [9, Eq. (46)], we can evaluate
the integral in (25) and arrive at the desired result in (24).

Er (R,Nc, η, μ) = max
0≤ρ≤1

max
0≤β≤Nt

(
A (ρ, β)− 1

Nc
ln

(
h−μNtNr

Γ (μNtNr)

(
2μhβ (1 + ρ)

Ωγ

)Ncρ ∞∑
l=0

Γ (μNtNr + l)

l!

(
H

h

)2l

× U

(
Ncρ;Ncρ− 2μNtNr − 2l+ 1;

2μhβ (1 + ρ)

Ωγ

)))
− ρR. (21)
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As for Proposition 1, we can prove the convergence of the
infinite series in (24). By assuming T1− 1 terms are used, the
associated truncation error Ξ1 can be upper bounded as

Ξ1 =

∞∑
l=T1

Γ (μNtNr + l)

l!

(
H

h

)2l

×
2μNtNr+2l∑

n=1

E2μNtNr+2l+1−n

(
2μhNt

Ωγ

)

< νEν

(
2μhNt

Ωγ

)(
Γ (μNtNr)

(
1−
(
H

h

)2
)μNtNr

−
T1−1∑
l=0

Γ (μNtNr + l)

Γ (l+ 1)

(
H

h

)2l
)

(26)

where ν = 2μNtNr+2T1−2, and we have exploited the fact
that En(x) is a monotonically decreasing function in n.

Corollary 2: The cutoff rate R0 of STBC over η-μ MIMO
fading channels can be expressed as

R0 = − 1

Nc
ln

(
h−μNtNr

Γ (μNtNr)

(
4μhNt

Ωγ

)Nc ∞∑
l=0

Γ (μNtNr + l)

l!

×
(
H

h

)2l

U

(
Nc;Nc + 1− 2μNtNr − 2l;

4μhNt

Ωγ

))
.

(27)

Proof: The proof follows a similar line of reasoning as
in Proposition 1, by plugging (19) into (14) and using (22).

Corollary 3: The expurgated exponent of STBC over η-μ
MIMO fading channels can be expressed as in (28) at the
bottom of this page.

Proof: Substituting (19) into (18) and also using the
integral identity (22), the desired result can be obtained after
some algebra.

2) High-SNR analysis: We now investigate Gallager’s ex-
ponent in the high-SNR regime and present closed-form
expressions for all related figures of merit.

Corollary 4: The random coding exponent of STBC over
η-μ fading channels at high SNRs and for Ncρ < 2μNtNr

can be expressed as in (29) at the bottom of this page.
Proof: By considering the initial expression (9) and

keeping only the dominant term therein as γ → ∞, we can

obtain the desired result in (29) with the aid of (20) and the
following integral identity [23, Eq. (7.522.9)]

∞∫
0

xσ−1e−ax
1F1 (α;β;λx) dx =

Γ (σ)

aσ
2F1

(
α, σ;β;

λ

a

)
(30)

where Re (σ) > 0, Re (a) > Re (λ). Note that the condition
on the arguments of (30) is satisfied in our setting by taking
Ncρ < 2μNtNr.

Corollary 5: The Shannon capacity of STBC over η-μ
MIMO fading channels at high SNRs can be expressed as

〈C〉∞ =

∞∑
l=0

Γ (μNtNr + l)H2l

l!Γ (μNtNr)hμNtNr+2l

×
(
ψ (2μNtNr + 2l)− ln

(
2μhNt

Ωγ

))
(31)

where ψ(·) is Euler’s digamma function [23, Eq. (8.360.1)].
Proof: The proof follows by taking γ large in (25), then

using the integral identity [23, Eq. (4.352.1)] and simplifying
the resulting expression.

Corollary 6: The cutoff rate of STBC over η-μ MIMO
fading channels at high SNRs and for Nc < 2μNtNr can
be expressed as

R∞
0 = − ln

(
2μNt

(
1 + η−1

)
Ωγ

)

−
ln
(

Γ(2μNtNr−Nc)
Γ(2μNtNr) 2F1

(
μNtNr, Nc; 2μNtNr; 1− 1

η

))
Nc

.

(32)

Proof: The proof concludes by following a similar line
of reasoning as in Corollary 4.

Corollary 7: The expurgated exponent of STBC over η-μ
MIMO fading channels at high SNRs and for Ncρ < 2μNtNr

can be expressed as in (33) at the top of next page.
Proof: By taking γ large in (18), the proof boils down

to the computation of E

{(
γz
2ρβ

)−Ncρ
}

. Combining (20) with

the expectation operation, the proof concludes by invoking
(30). We also set Ncρ < 2μNtNr to satisfy the condition on
the arguments of (30).

Eex (R,Nc, η, μ) = max
ρ≥1

(
max

0≤β≤Nt

(
A′ (ρ, β)− 1

Nc
ln

(
h−μNtNr

Γ (μNtNr)

(
4μhβρ

Ωγ

)Ncρ

×
∞∑
l=0

Γ (μNtNr + l)

l!

(
H

h

)2l

U

(
Ncρ;Ncρ+ 1− 2μNtNr − 2l;

4μhβρ

Ωγ

)))
− ρR

)
. (28)

E∞
r (R,Nc, η, μ) = max

0≤ρ≤1

(
max

0≤β≤Nt

(
A (ρ, β)− ρ ln

(
μβ
(
1 + η−1

)
(1 + ρ)

Ωγ

)

− 1

Nc
ln

(
Γ (2μNtNr −Ncρ)

Γ (2μNtNr)
2F1

(
μNtNr, Ncρ; 2μNtNr; 1− η−1

)))− ρR

)
. (29)
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E∞
ex (R,Nc, η, μ) = max

ρ≥1

(
max

0≤β≤Nt

(
A′ (ρ, β)− ρ ln

(
2μρβ

(
1 + η−1

)
Ωγ

)

− 1

Nc
ln

(
Γ (2μNtNr −Ncρ)

Γ (2μNtNr)
2F1

(
μNtNr, Ncρ; 2μNtNr; 1− η−1

)))− ρR

)
. (33)
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Fig. 1. Analytical and simulated random coding exponent against information
rate for STBC systems over η-μ fading channels (Nt = Nr = 4, η = 0.5,
μ = 1, Ω = 2.5, and γ = 15 dB).

3) Numerical results: In this subsection, the above the-
oretical analysis is validated through a set of Monte-Carlo
simulations. We first generate 106 random realizations of the
small-scale fading matrix H according to (19), and thereafter
obtain the simulated random coding exponent, Shannon capac-
ity, cutoff rate and expurgated exponent via the corresponding
expressions (21), (24), (27), and (28), respectively.

In Fig. 1, the simulated random coding exponent is plot-
ted along with the analytical expression (21). Note that the
random coding exponent decreases monotonically with the
parameter Nc, which means a less reliable communication
can be achieved for a larger coherence time. Moreover, it is
impossible to transmit any information at a positive rate with
arbitrary small error probability when Nc → ∞. As expected,
the Shannon capacity is independent of Nc and represents the
upper bound of R.

In order to get more insights into the effects of η and μ on
coding requirements for STBC systems, the codeword length
L required to achieve a fixed error probability and rate, i.e.,
Pe ≤ 10−6, R = 4 bits/symbol, is tabulated in Table I. We
observe from Table I that for each value of γ, the codeword
lengths for channels with small values of η and μ are much
longer than those for channels with large values of η and
μ. This is due to the advantages of having more multipath
clusters. For example, the required codeword length for the
case of η = 0.2 and μ = 0.2 is almost 5.4 times the codeword
length for the case of η = 0.5 and μ = 1 for γ = 12.5 dB.

Figure 2 illustrates the simulated, analytical (27) and high-

TABLE I
REQUIRED CODEWORD LENGTHS OF STBC SYSTEMS OVER η-μ FADING

CHANNELS AT A RATE R = 4 BITS/SYMBOL (2.77 NATS/SYMBOL) WITH

Pe ≤ 10−6 , Nt = Nr = 2, Ω = 2.5, AND Nc = 5

SNR γ μ = 0.2 μ = 0.5 μ = 1
(dB) η = 0.2 η = 1 η = 0.5

10 460 110 70
12.5 160 45 30
15 85 30 20

17.5 55 20 15
20 35 15 10
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case: a,b,c

d

a : η = 0.5, μ = 1.5,Nc = 10
b : η = 0.5, μ = 0.75,Nc = 10
c : η = 0.2, μ = 0.75,Nc = 10
d : η = 0.2, μ = 0.75,Nc = 1000

 

 
Analytical
Simulation
High−SNR approximation

Fig. 2. Analytical, simulated and high-SNR approximation cutoff rate against
the transmit SNR for STBC systems over η-μ fading channels (Nt = Nr = 4
and Ω = 2.5).

SNR approximation (32) cutoff rate as a function of the
transmit SNR for STBC over η-μ MIMO fading channels with
different η, μ and Nc. It can be seen that the cutoff rate is
a monotonically increasing function of γ, η and μ. Note that
the effect of μ on the cutoff rate is more pronounced than
that of η. We also note that as Nc increases, R0 reduces to
zero, while the Shannon capacity is independent of Nc. This
difference reveals that the cutoff rate is more useful than the
Shannon capacity in reflecting the reliability of block-fading
channels, which is consistent with the results in [6], [21].

In Fig. 3, the random coding (21) and expurgated exponents
(28) are plotted as a function of R for different values of η
and μ. As expected, a performance improvement is observed
as μ increases, which corresponds to more multipath clusters.
Likewise, we also observe that Gallager’s exponent increases
when η increases from 0.2 to 0.5, which indicates that a
shorter code is required to achieve the same level of reliable
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Fig. 3. Analytical and simulated results for both random coding and
expurgated exponents against information rate, R, for STBC systems over
η-μ fading channels (Nt = Nr = 2, Nc = 20, Ω = 2.5, γ = 15 dB).

communications. However, the impact of μ on Gallager’s
exponent is more pronounced than that of η.

B. κ-μ fading channels

The κ-μ distribution models the small-scale variation of
the fading signal in a non-homogeneous environment. In a
physical κ-μ fading model, the phases of the scattered waves
are random and have similar delay times, while the spreads
of different clusters are relatively large within each cluster. It
is assumed that each cluster has a dominant component with
arbitrary power, and that the clusters of multipath waves have
scattered waves with identical powers. The p.d.f. of the κ-μ
SNR is given by [18, Eq. (10)]

pκ−μ (ω) =
μ(1 + κ)

μ+1
2 ω

μ−1
2

exp (μκ)κ
μ−1
2 Ω

μ+1
2

exp

(
−μ (1 + κ)ω

Ω

)

× Iμ−1

(
2μ

√
κ (1 + κ)ω

Ω

)
(34)

where κ denotes the ratio between the total power of the
dominant components and the total power of the scattered
waves, while μ is related to the number of the multipath
clusters. Note that the κ-μ distribution includes the Rician
and Nakagami-m distributions as special cases for μ = 1 and
κ→ 0, respectively.

We start our analysis by invoking [18], which showed that
the sum of M i.i.d. squared κ-μ RVs with parameters κ, μ,

and Ω is also a κ-μ RV with parameters κ, Mμ, and MΩ.
Then, we can obtain the p.d.f. of z =

∑NtNr

i=1 |hi|2 as

pκ−μ (z) =
∞∑
l=0

(μκNtNr)
l

l!Γ (μNtNr + l) z

(
μ (1 + κ) z

Ω

)μNtNr+l

× exp

(
−μκNtNr − μ (1 + κ) z

Ω

)
(35)

where we have used [23, Eq. (8.445)]. Note that the infinite
series expression in (35), although is not in closed-form, is
more amenable to mathematical manipulations.

1) Random coding exponent analysis: We first present
analytical results on Gallager’s exponent, Shannon capacity
and cutoff rate of STBC over MIMO κ-μ fading channels.

Proposition 2: The random coding exponent of STBC over
κ-μ MIMO fading channels can be expressed as in (36) at the
bottom of this page.

Proof: Following a similar line of reasoning as in Propo-
sition 1, the proof concludes by substituting (35) into (9) and
using (22).

Note that the convergence of the infinite series in (36), can
be trivially demonstrated following the technique of (23).

Corollary 8: The Shannon capacity of STBC over MIMO
κ-μ fading channels can be expressed as

〈C〉 = exp

(
(1+κ)μNt

Ωγ
− μκNtNr

) ∞∑
l=0

(μκNtNr)
l

l!

×
μNtNr+l∑

n=1

EμNtNr+l+1−n

(
(1+κ)μNt

Ωγ

)
. (37)

Proof: Following a similar line of reasoning as in Corol-
lary 1, we can conclude the proof after some basic algebraic
manipulations.

Corollary 9: The cutoff rate of STBC over MIMO κ-μ
fading channels can be expressed as

R0 = − 1

Nc
ln

(
exp (−μκNtNr)

(
2μNt (1+κ)

Ωγ

)Nc

×
∞∑
l=0

(μκNtNr)
l

l!
U

(
Nc;Nc−μNtNr−l+1;

2μNt (1+κ)

Ωγ

))
.

Proof: The proof is trivial and therefore omitted.
Corollary 10: The expurgated exponent of STBC over κ-

μ MIMO fading channels can be obtained as in (38) at the
bottom of next page.

Proof: The proof follows a similar line of reasoning as
in Corollary 3.

Er (R,Nc, κ, μ) = max
0≤ρ≤1

(
max

0≤β≤Nt

(
A (ρ, β)− 1

Nc
ln

(
exp (−μκNtNr)

(
μ (1+κ)β (1 + ρ)

Ωγ

)Ncρ

×
∞∑
l=0

(μκNtNr)
l

l!
U

(
Ncρ,Ncρ− μNtNr − l + 1,

μ (1+κ) β (1 + ρ)

Ωγ

)))
− ρR

)
. (36)
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2) High-SNR analysis: In order to obtain additional in-
sights, we now elaborate on the high-SNR regime. We begin
with the following result:

Corollary 11: The random coding exponent of STBC over
MIMO κ-μ fading channels at high SNRs and for Ncρ <
μNtNr can be expressed as in (39) at the bottom of this page.

Proof: We first take γ → ∞ in (9) and keep only the
dominant term. Then, the desired result in (39) can be obtained
with the help of [23, Eq. (9.212.1)] and the following integral
identity [27, Eq. (3.15.2.5)]

∞∫
0

xne−pxIv
(
a
√
x
)
dx

=
Γ
(
n+ v

2 + 1
)

Γ (v + 1)

(v2 )
v

pn+
v
2+1 1F1

(
n+

v

2
+ 1; v + 1;

a2

4p

)
(40)

where Re (2n+ v) > −2,Re (p) > 0. Note that the condition
on the arguments of (40) requires Ncρ < μNtNr.

Corollary 12: The Shannon capacity of STBC over κ-μ
MIMO fading channels at high SNRs can be written as

〈C〉∞ = exp (−μκNtNr)

∞∑
l=0

(κμNtNr)
l

l!

×
(
ψ (μNtNr + l)− ln

(
μ (1 + κ)Nt

Ωγ

))
. (41)

Proof: The proof follows by applying a similar method-
ology as in Corollary 5.

Corollary 13: The cutoff rate of STBC over κ-μ MIMO
fading channels at high SNRs and for Nc < μNtNr can be

expressed as

R∞
0 (R,Nc, κ, μ) = − ln

(
2μNt (1 + κ)

Ωγ

)
− 1

Nc
ln

(
Γ (μNtNr−Nc)

Γ (μNtNr)
1F1 (Nc;μNtNr;−μκNtNr)

)
.

(42)

Proof: The proof concludes by following a similar line
of reasoning as in Corollary 11.

Corollary 14: The expurgated exponent of STBC over κ-μ
MIMO fading channels at high SNRs and for Ncρ < μNtNr

can be expressed as in (43) at the bottom of this page.
Proof: The proof follows by applying a similar method-

ology as for the random coding exponent results presented in
Corollary 7.

3) Numerical results: Table II shows the required codeword
length L for MIMO κ-μ fading channels with Nt = Nr = 2,
Ω = 2.5, and Nc = 5 at Pe ≤ 10−6 when γ varies from 10
to 20 dB. It is clear from Table II that there is a considerable
reduction in the required codeword length when the values of
κ and μ increase. This is expected since for large values of κ,
the dominant components of signals have more power, thereby
reducing the signal’s envelope fluctuations.

TABLE II
REQUIRED CODEWORD LENGTHS OF STBC OVER κ-μ MIMO FADING

CHANNELS AT A RATE R = 4 BITS/SYMBOL (2.77 NATS/SYMBOL) WITH

Pe ≤ 10−6 , Nt = Nr = 2, Ω = 2.5 AND Nc = 5

SNR γ κ = 0 κ = 5 κ = 10
(dB) μ = 1 μ = 0.5 μ = 2

10 110 80 40
12.5 45 40 20
15 30 25 15

17.5 20 20 10
20 15 15 10

Eex (R,Nc, κ, μ) = max
ρ≥1

(
max

0≤β≤Nt

(
A′ (ρ, β)− 1

Nc
ln

(
exp (−μκNtNr)

(
2ρμβ (1+κ)

Ωγ

)Ncρ

×
∞∑
l=0

(μκNtNr)
l

l!
U

(
Ncρ;Ncρ− μNtNr − l + 1;

2ρμβ (1+κ)

Ωγ

)))
− ρR

)
. (38)

E∞
r (R,Nc, κ, μ) = max

0≤ρ≤1

(
max

0≤β≤Nt

(
A (ρ, β)− ρ ln

(
μβ (1 + κ) (1 + ρ)

Ωγ

)

− 1

Nc
ln

(
Γ (μNtNr −Ncρ)

Γ (μNtNr)
1F1 (Ncρ;μNtNr;−μκNtNr)

))
− ρR

)
. (39)

E∞
ex (R,Nc, κ, μ) = max

ρ≥1

(
max

0≤β≤Nt

(
A′ (ρ, β)− ρ ln

(
2ρμβ (1 + κ)

Ωγ

)

− 1

Nc
ln

(
Γ (μNtNr −Ncρ)

Γ (μNtNr)
1F1 (Ncρ;μNtNr;−μκNtNr)

))
− ρR

)
. (43)
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Fig. 4. Analytical, simulated and high-SNR approximation cutoff rate against
the transmit SNR for STBC systems over κ-μ fading channels (Nt = Nr = 4
and μ = 0.5).
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Fig. 5. Analytical, simulated and high-SNR approximation random coding
exponent against the transmit SNR for STBC systems over κ-μ fading
channels (Nt = Nr = 4, Nc = 5, R = 4 nats/symbol and Ω = 1).

In Fig. 4, it can be seen that the analytical cutoff rate of
STBC over κ-μ MIMO fading channels exhibit a good match
with the simulation result. The high-SNR approximation (42)
remains sufficiently tight across a wide SNR range. Note that
an increase in κ and Ω leads to higher values of cutoff rate.
As reflected in Fig. 2, the cutoff rate reduces to zero when
Nc increases to infinity.

The accuracy of the high-SNR approximation (39) for the
random coding exponent of STBC over κ-μ MIMO fading
models is illustrated in Fig. 5. We have assumed an informa-
tion rate R = 4 nats/symbol and that the minimum SNR for
reliable communication should be more than 12 dB. Clearly,
the high-SNR expressions become sufficiently tight even at
moderate SNRs and can accurately predict the random coding
exponent for most practical SNR values. Note that the values
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Fig. 6. Analytical and simulated results for both random coding and
expurgated exponents against information rate, R, for STBC systems over
κ-μ fading channels (Nt = Nr = 2, Nc = 5, Ω = 2.5, γ = 15 dB).

of random coding exponent increase when κ and μ increase,
whilst the effect of μ is more pronounced than that of κ. This
is line with the conclusions drawn from Fig. 3.

In Fig. 6, the random coding and expurgated exponent are
depicted as a function of the SNR with different fading param-
eters. The outputs of a Monte-Carlo simulator are compared
with the exact expressions of Proposition 2 and Corollary
10, respectively. Once more, the match between theory and
simulation is excellent for all cases under consideration. Note
that the expurgated exponent is the lower bound of random
coding exponent in all cases considered here. Both exponents
are monotonically increasing functions in κ and μ, which
implies that the error probability of communication system
is lower with larger values of fading parameters, which also
coincides with the conclusions of Table II. Alternatively,
increasing the power of the dominant component requires a
smaller information rate to achieve the same value of error
exponent.

C. Special cases

In this subsection, we provide simplified analytical expres-
sions for a few of widely used fading channel models, namely
Nakagami-m, Rician, Rayleigh, and Hoyt, respectively. Note
that all subsequent results are presented with no proof since
the mathematical manipulations involved are straightforward.
The link to previously reported results, where available, is also
provided.

1) Nakagami-m fading channels: By setting μ = m/2 and
η = 1 in the η-μ distribution, we can obtain the Nakagami-m
distribution. Then, the random coding and expurgated expo-
nents of Nakagami-m fading channels in (21) and (28) reduce
to (44) and (45) at the bottom of next page, respectively.
Note that (44) coincides with [11, Eq. (23)] after applying
the transformation [28, Eq. (8.4.46.1)]. We can also derive
the Shannon capacity and cutoff rate expressions of STBC
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over Nakagami-m fading channels as:

〈C〉 = exp

(
mNt

Ωγ

)mNtNr∑
n=1

EmNtNr−n+1

(
mNt

Ωγ

)
(46)

R0 = −2mNt

Ωγ
−

ln
(
U
(
Nc;Nc −mNtNr + 1; 2mNt

Ωγ

))
Nc

.

(47)

Note that (47) coincides with [11, Eq. (30)] after applying
the transformation [28, Eq. (8.4.46.1)]. Note that the above
expressions can be alternatively derived from the κ-μ formu-
lations by setting κ→ 0 and μ = m.

2) Rician fading channels: The Rician distribution can be
obtained by setting μ = 1 in the κ-μ distribution. Then,
the random coding and expurgated exponents of κ-μ fading
channels in (36) and (38) reduce to (48) and (49) at the
bottom of this page, respectively. Similarly, we can derive the
expressions of the Shannon capacity and cutoff rate for STBC
systems over Rician fading channels

〈C〉 = exp

(
(K+1)Nt

Ωγ
−KNtNr

)

×
∞∑
l=0

(KNtNr)
l

l!

NtNr+l∑
n=1

ENtNr+l−n+1

(
(K+1)Nt

Ωγ

)

R0 = − 1

Nc
ln

(
exp (−KNtNr)

(
2Nt (1 +K)

Ωγ

)Nc

×
∞∑
l=0

(KNtNr)
l

l!
U

(
Nc;Nc−NtNr−l+1;

2Nt (1+K)

Ωγ

))
.

3) Rayleigh fading channels: We now turn our attention
to the classical Rayleigh fading model. When considering the
Rayleigh distribution, we simply set μ = 0.5 and η = 1 in the
η-μ distribution.

Therefore, the random coding and expurgated exponents of
η-μ fading channels in (21) and (28) reduce respectively to

Er (R,Nc)= max
0≤ρ≤1

max
0≤β≤Nt

(
A (ρ, β)− 1

Nc
ln

((
β (1+ρ)

Ωγ

)Ncρ

× U

(
Ncρ;Ncρ−NtNr + 1;

β (1 + ρ)

Ωγ

)))
− ρR

Eex (R,Nc)=max
ρ≥1

max
0≤β≤Nt

(
A′ (ρ, β)− 1

Nc
ln

((
2βρ

Ωγ

)Ncρ

× U

(
Ncρ;Ncρ−NtNr + 1;

2βρ

Ωγ

)))
− ρR.

Note that the Shannon capacity and cutoff rate expressions for
STBC over Rayleigh fading channels can be simply written
as

〈C〉 = exp

(
Nt

Ωγ

)NtNr∑
n=1

ENtNr−n+1

(
Nt

Ωγ

)
(50)

R0 = − 1

Nc
ln

((
2Nt

Ωγ

)Nc

U

(
Nc, Nc −NtNr + 1,

2Nt

Ωγ

))
.

Note that (50) coincides with [29, Eq. (20)] after some
algebra.

4) Hoyt fading channels: By setting μ = 0.5 and η = q2

in the η-μ distribution, the random coding and expurgated
exponents of Hoyt fading channels can be expressed as in
(51) and (52) at the bottom of next page, respectively.

In the same way, the expressions for the Shannon capacity
and cutoff rate of STBC systems over Hoyt fading channels

Er (R,Nc,m) = max
0≤ρ≤1

max
0≤β≤Nt

(
A (ρ, β)− 1

Nc
ln

((
mβ (1+ρ)

Ωγ

)Ncρ

U

(
Ncρ;Ncρ−mNtNr+1;

mβ (1+ρ)

Ωγ

)))
−ρR

(44)

Eex (R,Nc,m) = max
ρ≥1

max
0≤β≤Nt

(
A′ (ρ, β)− 1

Nc
ln

((
2mhβρ

Ωγ

)Ncρ

U

(
Ncρ;Ncρ−mNtNr + 1;

2mhβρ

Ωγ

)))
− ρR.

(45)

Er (R,Nc,K) = max
0≤ρ≤1

max
0≤β≤Nt

(
A (ρ, β)− 1

Nc
ln

(
exp (−κNtNr)

(
β (1+κ) (1 + ρ)

Ωγ

)Ncρ

×
∞∑
l=0

(κNtNr)
l

l!
U

(
Ncρ;Ncρ−NtNr − l + 1;

β (1 + κ) (1 + ρ)

Ωγ

)))
− ρR (48)

Eex (R,Nc,K) = max
ρ≥1

max
0≤β≤Nt

(
A′ (ρ, β)− 1

Nc
ln

(
exp (−κNtNr)

(
2ρβ (1+κ)

Ωγ

)Ncρ

×
∞∑
l=0

(κNtNr)
l

l!
U

(
Ncρ;Ncρ−NtNr − l + 1;

2ρβ (1+κ)

Ωγ

)))
− ρR. (49)
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are given by

〈C〉 =
exp
(

(1+q2)
2
Nt

4Ωγq2

)
Γ
(
NtNr

2

) (
1+q2

2q

)NtNr

∞∑
l=0

Γ
(
NtNr

2 + l
)

l!

(
1− q2

1 + q2

)2l

×
NtNr+2l∑

n=1

ENtNr+2l−n+1

(
(1 + q2)

2
Nt

4Ωγq2

)

R0=− 1

Nc
ln

(
1+q2

2q

)−NtNr
(

(1+q2)2Nt

2Ωγq2

)Nc

Γ
(
NtNr

2

) ∞∑
l=0

Γ
(
NtNr

2 + l
)

l!

×
(
1− q2

1 + q2

)2l

U

(
Nc;Nc −NtNr − 2l + 1;

(1 + q2)2Nt

2Ωγq2

)
.

IV. CONCLUSION

In this paper, a detailed Gallager’s exponent analysis of
MIMO systems employing STBC was presented in order to
investigate the fundamental tradeoff between communication
reliability and information rate. In particular, we considered
the η-μ and κ-μ fading models, which have been exhaustively
used in the performance analysis of wireless communication
systems. For the considered models, new analytical expres-
sions for the exact random coding exponent were derived that
extend and complement several previous results on Rayleigh
and Nakagami-m fading channels. Note that all the special
functions in our results can be efficiently evaluated in stan-
dard software computer packages, such as MATLAB and
MATHEMATICA. Moreover, we elaborated on the expurgated
exponent, Shannon capacity and cutoff rate for which new
analytical formulas were deduced. By exploring Gallager’s
exponent, we were able to derive the required codeword
length to achieve a certain level of error probability and
draw significant insights into the reliability-rate tradeoff in
MIMO systems. Finally, we presented simplified high-SNR
closed-form expressions of the above performance metrics and
obtained additional physical insights into the implications of
several parameters (e.g., fading parameters, coherence time)
on the required codeword lengths for a prescribed error
probability. For example, we noticed that larger values of μ, η
and κ tend to increase Gallager’s exponent or communication
reliability.
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