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Abstract—Conventional machine learning techniques are con-
ducted in a centralized manner. Recently, the massive volume of
generated wireless data, the privacy concerns and the increasing
computing capabilities of wireless end-devices have led to the
emergence of a promising decentralized solution, termed as
Wireless Federated Learning (WFL). In this first of the two parts
paper, we present the application of WFL in the sixth generation
of wireless networks (6G), which is envisioned to be an integrated
communication and computing platform. After analyzing the key
concepts of WFL, we discuss the core challenges of WFL imposed
by the wireless (or mobile communication) environment. Finally,
we shed light to the future directions of WFL, aiming to compose
a constructive integration of FL into the future wireless networks.

Index Terms—Wireless Federated learning, Distributed Artifi-
cial Intelligence, 6G Networks

I. INTRODUCTION

THE sixth generation of wireless networks (6G), which
is envisioned to be the evolution of wireless networks

from “connected things” to “intelligent things”, can be seen
as an integrated communication and computing platform,
with the capability to serve a vast amount of heterogeneous
internet-of-things (IoT) applications, e.g, autonomous vehicles,
augmented and virtual reality, smart grids, intelligent industry,
smart farming, etc. Thus, 6G is expected to heavily rely
on ubiquitous artificial intelligence services and gradually
overwhelm the capabilities of the fifth generation (5G) of
wireless networks. To this direction, the main pillar is the
twofold use of artificial intelligence, both as a means to
efficiently orchestrate the wireless networks and as the core
of the operation of most applications. This separation steers
the research in different directions, namely: i) the optimization
of wireless networks performance by using machine learn-
ing (ML) techniques and ii) the enhancement of data-driven
applications that are based on ML, by the joint design and
optimization of communication and computing networks [1].
This work mainly focuses on the second direction, although
the use of techniques from the first direction is also considered.

Nowadays, the standard ML techniques are based on a
centralized concept, where the data are uploaded and processed
on a single entity, e.g., a central server. However, the strict
latency requirements and the data privacy assurance, renders
the centralized configurations impractical for forthcoming 6G-
enabled applications, such as smart grids, autonomous vehi-
cles, and augmented reality. Hence, the combination of the
aforementioned limitations with the growing computational
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capabilities of devices, paves the way towards implementing
distributed frameworks for the construction of learning models.
In the decentralized solutions, devices collaboratively train
a model by leveraging their local computational resources.
Among the decentralized approaches, federated learning (FL)
has been proposed as a promising solution for providing
distributed artificial intelligence services, while protecting the
data privacy and meeting the low-latency demands [2], [3],
which are key requirements of 6G networks.

The prominent feature of FL is the retention of the training
dataset in the source of generation, i.e., the device. More
specifically, each learner performs the model training through
its local dataset individually, and forwards only the training
parameters to the central server, instead of sending the overall
raw data. In this manner, the central unit has no explicit
access to privacy-sensitive data. Following that, the server
aggregates the received parameters, updates the global model,
and finally broadcasts it to the learners, while the considered
process is repeated until the convergence of the global model.
The principal advantages that FL is capable of providing, in
accordance with the multilateral demands of 6G networks, are
discussed below.

• Privacy: As mentioned previously, users do not share
their raw data with the server or any of the residual par-
ticipants. Therefore, the privacy-preserving mechanism
constitutes an inherent characteristic of FL.

• Very low Latency: Since no raw data is sent to the cloud,
the amount of information transmitted into the network
is reduced, which also decreases the communication
cost. Furthermore, decisions and model training can be
executed locally on the end devices, instead of being sent
to the server, leading to decreased latency.

• System Heterogeneity: The devices participating in the
learning process, might present heterogeneity in terms
of computational, communication resources, and data
heterogeneity, which deals with non-independent and
identical distribution (non-i.i.d.) of data among users. FL
has the potential to tackle with the former issues.

Although recent works have successfully discussed the chal-
lenges imposed by FL and its future trends [4], [5], our
contribution lies in elaborating on the wireless aspect of FL,
while also shedding light on the future research directions of
wireless federated learning (WFL), which are highly connected
with the 6G vision. In general, the performance of WFL
heavily depends on the performance of the utilized wireless
communication network, while improving its performance
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Fig. 1. Reference architecture of WFL.

requires the joint optimization of the communication and
computing resources.

Next, the general WFL reference architecture is presented,
which is the basis of the considered core WFL applications, as
well as the analysis presented in the second part of this work.

A. Wireless federated learning reference architecture

FL refers to training a shared model in a distributed manner,
by exploiting the collected data of the mobile devices without
those being intervened by the server. Hence, each device
contributes to the construction of the model by performing
local training on its dataset, while the server’s role is to
aggregate, update, and redistribute the updated model back
to the users. As a result, each user benefits from the local
datasets of the residual participants, with the aid of a central
server, while the data privacy is preserved.

As shown in Fig. 1, we consider a WFL network, which con-
sists of N users indexed as n ∈ N = {1, 2, ..., N} and a BS-
server. Each user n has a local dataset Dn = {xn,k, yn,k}Dn

k=1,
where Dn = |Dn| are the data samples, xn,k ∈ Rd is the k-th
input data vector of user n, while yn,k is the corresponding
output. The whole dataset is denoted as D = ∪

n∈N
Dn, while

the size of all training data is D =
∑N

n=1Dn. Also, the local
loss function on the data set Dn, defined as

Fn(w) ,
1

Dn

∑
k∈Dn

f(w,xn,k, yn,k), ∀n ∈ N , (1)

where f(w,xn,k, yn,k) captures the error of the model pa-
rameter w for the input-output pair {xn,k, yn,k}. The training
process aims to find the global model parameter w which
minimizes the loss function on the whole data set, which is
given by J(w) = 1

D

∑N
n=1DnFn(w).

The whole training process is divided in an arbitrary number
of communication rounds, denoted by i. Thus, during the
first round the server initializes w0, while the i-th round is
described by the following steps [3]:

i) The BS broadcasts wirelessly the global parameter wi to
all users during the considered round.

ii) After receiving the global model parameter, each user n ∈
N , train its local model by applying a few steps of the
gradient descent method, i.e., wi+1

n = wi − η∇Fn(w
i),

where η is the learning rate, and then uploads the local
parameter wi+1

n to the server. It is noted that alternative

methods could be also employed for the local training,
such as stochastic gradient descent (SGD).

iii) After receiving all the local parameters, the server aggre-
gates them, in order to update the global model parameter,
by applying wi+1 = 1

D

∑
n∈N Dnw

i+1
n .

The above process is repeated until a required global accuracy
is achieved.

B. Applications of wireless federated learning

The range of WFL applications is quite large and not
fully explored yet. Next, three core applications in the era
of 6G are discussed, emphasizing on their particularities and
requirements.

1) Smart grids: Smart grids can be seen as the super-
position of electricity and communication networks, which
enables the two-way flow of power and data, facilitating the
active participation of all users in the energy management, the
precise prediction of energy consumption, the avoidance of
security risks, the self-healing procedure, etc. This approach
leads to the generation and the requirement of processing
of an enormous amount of data, which might be difficult
or even impossible to be stored and processed centrally [6].
Also, despite the important benefits of the electricity networks
intellification, the exchange of information between different
entities and the processing of data at the cloud, exposes the
smart grids to potential security and privacy risks. To overcome
these challenges, the iterative local processing of data by
the smart meters and aggregators at the edge and the global
exploitation of the corresponding output in a collaborative
manner via WFL can be particularly useful [7].

2) Unmanned mobility: Autonomous vehicles are an
emerging application which is envisioned to be realized with
the aid of 6G wireless networks. In order to support co-
ordination among vehicles and satisfy the requirements of
unmanned vehicular networks, machine learning-based tech-
niques constitute a significant tool. Relevant applications are
the collaborative autonomous driving, collision avoidance sys-
tems, visual object detection and traffic congestion control.
Usually, the model training is performed at a central cloud in
an off-line manner. However, such approaches cannot adapt to
the dynamic system changes. Therefore, WFL could alleviate
this burden, as a highly adaptive technique which monitors
the environmental changes in real-time. Furthermore, each
vehicle could benefit from the rest vehicles’ observations, in
a collaborative manner, leading to increased environmental
knowledge [8]. At last, FL has the potential to reduce the data
traffic, which is vital for latency-critical applications such as
autonomous vehicles.

3) Augmented reality (AR): In the past years, AR technol-
ogy has received significant attention. AR provides an interac-
tive experience to the user, by combining virtual contents with
the real world [9]. Traditionally, AR models are trained in a
centralized manner. However, the latency-sensitive AR appli-
cations impose new challenges, while the centralized machine
learning approach becomes non applicable. Therefore, FL is
capable of providing low-latency for object detection tasks and
classification problems. Also, in [9], the FL concept has been
combined with mobile edge computing (MEC), in order to
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exploit the computing capabilities of edge nodes and reduce
the computational power consumption at the end device during
the WFL process.

II. CHALLENGES

A. Resource allocation and participants selection

In a wireless FL environment, one of the major issues that
needs to be addressed is the management of the available com-
putation and wireless resources that users share. Recent archi-
tectures of machine learning models consist of million weight
parameters, while their transmission to the server could cause
significant delay. Thus, optimal resource allocation strategies
can lead to decreased latency per round and subsequently to
fast convergence of the global FL model. Firstly, the scarce
spectrum resources ought to be efficiently allocated among
users. Furthermore, since many devices are energy-limited, the
power control and the computation energy consumption of the
devices have to also be considered. Therefore, in order to meet
the strict latency, energy and training efficiency requirements,
the bandwidth allocation, the transmission power control and
the devices’ central processing unit (CPU) frequency clock
speed adjustment issues, need to be jointly orchestrated. It is
worth noting, that the resource allocation problem is highly
related with the multiple access protocol selection, which we
will discuss later on this work. For instance, authors in [10]
minimized the total energy consumption of all users during an
FL task, under latency constraints, by optimally managing the
available computation and communication resources.

Besides resource management, the number of participating
users in the FL task has to be tactfully selected. During a
communication round, the server waits until all participants
terminate the update and upload of their locally trained mod-
els. Therefore, the delay of a round is determined by the
slowest device. As a result, devices with limited computation
capabilities or poor wireless channel conditions, termed as
stragglers, are responsible for the occurrence of long delays
and can negatively affect the convergence speed. In addition
to this, the limited number of resource blocks may not be
adequate to support an increased number of devices. Moreover,
active devices may be obligated to drop out the training
process in an arbitrary time instant, due to connectivity issues
related with bad channel conditions or energy-intensive tasks.
Furthermore, the non-i.i.d. level of the overall dataset among
users, impacts the number of selected clients. As a conse-
quence, only a subset of the eager-to-participate users may be
scheduled for participation. Thus, device scheduling policies
become crucial for satisfying the underlying latency con-
straints, accelerating the model convergence and improving the
model performance. Finally, to circumvent those challenges,
asynchronous communication schemes may be considered,
where the server does not necessarily wait for all participants
to finish the parameter transmission [11].

B. Tradeoff between latency per round and number of rounds

In a FL task, one of the objective goals is to minimize
the convergence time, in order to achieve a certain global
accuracy. The convergence time is a function of the total
number of rounds and the latency per round, which is subject

to both computation and communication delay. As a matter of
fact, during the local model training process, the number of
local iterations that each device performs has to be wisely
selected. Increased number of local iterations may lead to
decreased number of required rounds, in the expense of
energy consumption and larger latency per round. On the
other hound, the execution of few local iterations are energy-
saving and achieve smaller latency per round, however an
increased number of total communication rounds may be
enforced, in order to achieve the required global accuracy.
Moreover, the considered tradeoff is also present during the
participant selection procedure. By scheduling a large amount
of users for participation, an increased latency per round is
expected owing this to the straggler effect and the reduced
bandwidth allocation. On the contrary, by selecting a few users
to participate, it is more likely that the latency per round
is decreased. However, in such case, the convergence speed
and the model accuracy might be negatively affected, since a
limited number of scheduled users contributes with a smaller
dataset throughout the training process.

C. Tradeoff between model performance and convergence
speed

Apart from convergence rate, global model accuracy is of
paramount importance, since it is the primary goal of the
training process. The inherent unreliability of wireless links
can impact the quality of the WFL performance. Motivated
by such considerations, authors in [12] investigated the ef-
fect of packet transmission errors, aiming to improve the
FL performance, by jointly optimizing the computation and
radio resources, as well as the user selection. Furthermore, in
[13], the global loss function of the FL model is minimized
subject to convergence time constraints. Emphasis is given
to the bandwidth allocation and the user scheduling policy.
Moreover, the non-i.d.d. level among the local datasets has be
shown to significantly impact the user selection decisions, for
a timely-efficient model performance improvement. Finally,
the number of local updates that each device executes can
affect the global model performance. By performing a few
local iterations, a decreased global performance may occur.
Reversely, the local over-optimization, i.e., large number of
local updates, could lead to divergence and deterioration of
the global model accuracy [3]. As a matter of fact, a balanced
number of local updates should be selected, while the tradeoff
between convergence speed and model accuracy should be also
considered.

D. Privacy and security

Guaranteeing the privacy of the local datasets is a funda-
mental driving factor for implementing WFL, which can also
materialize the 6G vision, as an enhanced privacy preserving
architecture. Although in WFL the participants do not share
their raw data, sensitive information may still be revealed to
malicious third-partys or the central server e.g., with gradient
leakage attacks to steal the devices’ local data. The privacy in
FL systems can be classified into the following two categories:
global privacy and local privacy. Global privacy requires
that no third party can access the global model during each
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communication round, while local privacy requires that the
updates of the model are also private to the server. Differential
Privacy (DP) techniques [14], have been proposed to protect
gradient information, while they can be used for ensuring
both global and local privacy. DP is based on the addition of
artificial noise in the training parameters by using a differential
privacy-preserving randomized mechanism. Although DP can
enhance privacy, it may sacrifice the model performance.

Moreover, FL faces security issues, such as data and model
poisoning attacks. Malicious participant can send incorrect
information or false models in order to undermine the training
efficiency and degrade the global model performance. Thus,
protection mechanisms should be constructed, which aim to
detect abnormal user behavior and finally prevent malicious
users from participating into the training process.

III. FUTURE RESEARCH DIRECTIONS

A. Advanced multiple access for WFL

During the model transmission phase in each communica-
tion round, all devices upload their locally trained results to
the central server. Thus, the efficient integration of WFL in
6G depends on the utilized multiple access scheme. In the
recent literature, mostly orthogonal multiple access (OMA)
schemes are selected for the considered uplink transmission,
such as frequency division multiple access (FDMA) and time
division multiple access (TDMA). In the former scheme, each
user occupies a sub-channel from the available bandwidth,
while in TDMA, users are transmitting their messages in
non-overlapping time slots by utilizing the whole available
bandwidth. Moreover, over-the-air FL has been proposed as an
efficient method for fast model aggregation, which exploits the
superposition property of the wireless multiple access channel
for computing the global model, resulting in reduced latency.
However, this scheme is based on an analog transmission,
which may be a limiting factor for modern wireless systems.

In the last years, non-orthogonal multiple access (NOMA)
has drawn considerable attention, as a spectral-efficient mul-
tiple access technique [15]. Apart from spectral efficiency,
NOMA is capable of increasing the number of served devices
and also providing fairness among users. Thus, NOMA-based
schemes are considered a promising alternative for the next-
generation multiple access schemes, which are necessary in
order to meet the connectivity requirements of 6G [16]. Due
to the aforementioned capabilities, NOMA has the potential to
reduce the communication cost during the WFL task. In this
direction, a NOMA paradigm is investigated in the second
of the two parts, where the Compute-then-Transmit NOMA
(CT-NOMA) protocol is introduced and optimized. Accord-
ing to CT-NOMA the users terminate concurrently the local
model training and then simultaneously transmit the trained
parameters to the central server [17]. It should be highlighted
that hybrid NOMA/OMA configurations are also worth of
investigation, aiming to further reduce the latency and meet
the WFL demands, by capitalizing on both the orthogonal and
non-orthogonal aspects of multiple access and their underlying
advantages. An example of the later considerations, could be
the scheduling of few devices in the same orthogonal resource
block, combined with the utilization of NOMA.

B. WFL over fog radio access networks
In order to satisfy the versatile requirements of 6G wireless

networks, fog radio access networks (FRANs) have been
proposed as a promising network architecture to provide low
latency, massive connectivity and scalability. The edge nodes
provided by the FRANs, which are empowered with powerful
computation capabilities, could be an effective tool for as-
sisting the training process during WFL. Firstly, FRANs can
decongest the local devices from computationally-intensive
tasks. Secondly, the provision of massive connectivity can lead
to reduced communication cost, while it can also scale up
the number of participating devices. Therefore, the FRAN is
visualized as an intermediate layer between the participants
and the cloud server, aiming to improve the training efficiency,
by contributing with computational power and dealing with
device density and connectivity issues.

A promising technique which leverages the aforementioned
architecture is the Hierarchical Federated Learning (HFL) [18].
According to HFL, users update their local model and send
the them to the fog nodes wirelessly. At this stage, the local
models are aggregated by the fog nodes, i.e., a local averaging
of the models is performed by the edge nodes. Following that,
each fog node forwards the local averaged model to the central
cloud via fronthaul links. Finally, the cloud server acts as
a global aggregator and generates the global average model,
which is reported to the users through the fog nodes, while the
process is repeated until convergence. The considered multi-
level configuration, could offer an efficient model exchange
compared to the classical client-cloud architecture. However,
the ubiquitous challenges of WFL, such as the straggler effect
and device scheduling, still need to be resolved.
C. Asynchronous communication

Communication bottleneck is a significant burden for the
WFL implementation, leading to increased delay, while 6G
networks require ultra-low latency. In the conventional syn-
chronous communication protocol, the latency of each round is
determined by the slowest device. Thus, the latency per round
and subsequently the model convergence speed is susceptible
to the straggler effect. Furthermore, in case of clients’ task
completion failure, the progress of the model is wasted. To
mitigate those phenomena, the asynchronous FL has been
proposed as a promising solution [11]. The asynchronous con-
figuration allows participants to join the FL task in an arbitrary
time instant, even if a training round is still in progress.
Hence, the server immediately updates the global modal after
receiving a new local update by any user, justifying the term
asynchronous, with respect to the model updates. The con-
sidered salient characteristic of asynchronous communication
is representative of a practical WFL implementation, while it
could further enhance the scalability of WFL. However, the
bounded-delay assumption which is usually made, is unreal-
istic for practical FL systems. Therefore, novel asynchronous
communication schemes should be developed, which also take
into account users’ behavior, the unreliability of wireless links
and the efficient utilization of the radio resources.
D. Towards intelligent WFL implementation

In order to ensure an efficient FL implementation over 6G
wireless networks, a plethora of performance metrics should

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on December 25,2021 at 09:59:18 UTC from IEEE Xplore.  Restrictions apply. 



1089-7798 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2021.3121071, IEEE
Communications Letters

5

be considered and optimized. Hence, the network management
and orchestration in a WFL setting, constitute an overriding,
yet demanding issue to tackle with. More specifically, the
optimization problems corresponding to the network control in
WFL systems, such as resource allocation, power control, user
scheduling, etc., are usually non-convex due to the coupling
of several optimization variables. Moreover, the considered
problems are often of a combinatorial nature. Thus, even
by applying convex transformations, the solution might come
along with high computational complexity, which is a major
limitation and can significantly increase the overhead. Thus,
conventional optimization techniques may be impractical for
the realization of WFL. To alleviate this burden, machine
learning techniques could be employed, to deal with non-
convexity and retain low levels of computational complexity.

Deep Reinforcement Learning (DRL) is a auspicious ma-
chine learning technique, which could be exploited for the
FL network optimization. It deals with agents who learn
from the interaction with a dynamic environment. The agent
aims to maximize a cumulative reward, which can refer to
any figure of merit. Thus, the agent learns how to make
better decisions, by observing the evolution of the considered
reward. Therefore, DRL could be a powerful tool for resource
management and decision making in WFL systems, aiming to
solve complex problems in a near-optimal fashion and provide
computationally tractable solutions.

Apart from leveraging ML techniques for enhancing the
performance of WFL, federating learning itself, could also
contribute as an intelligent tool for the self-optimization and
orchestration of 6G networks. Therefore, WFL could lever-
age the data heterogeneity to model the network’s behavior
and optimize its performance through data-driven approaches,
specially when privacy issues arise.

E. WFL in the next-generation internet-of-things (NGIoT)
WFL has the potential to directly contribute to most of the

foundational challenges of the NGIoT, including reliability,
energy sustainability, scalability, future-proof security and
trust, privacy-by-design, etc [19]. To this direction, several
interesting trade-offs can be investigated, such as between
model accuracy and energy consumption at the mobile devices
in the training process. On the other hand, one of the key
challenges for the NGIoT is “the development of IoT data
sharing and monetization enabling models and technologies”
[19], which also remains a challenge when FL is used.
Thus, the motivation and potential economic benefits from the
participation in the training of the FL model, as well as the
sharing of the model’s output between different stakeholders
is a particularly interesting topic. In this context, a promising
ledger technology is the blockchain, which refers to a public
and trusted ledger, operating on a peer-to-peer network without
any third party being involved. Thus, WFL could benefit from
blockchain in terms of security and privacy improvement,
since it eliminates the need of a central server, while the
participants are collaboratively building the global learning
model through a consensus mechanism [20]. Finally, WFL can
facilitate the construction of digital twin models of IoT devices
in a distributed manner, which has also been recognized as a
research priority for the NGIoT [19], [21].
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