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ABSTRACT In this work, we talk about the problem of joint power allocation and user association based
on quality-of-service for non-orthogonal multiple access (NOMA) to downlink networks. The problem is
especially difficult due to its non-convex form and the large number of optimization variables, which are
solved using two different nature-inspired algorithms with low complexity. We investigate the effect of
different network parameters on increasing users. Numerical results show that, for a growing number of
users, the problem is becoming increasingly difficult, which indicates the increasing network resources
required to solve it. The results of the simulations show that using evolutionary algorithms is a fast and
effective way to solve this kind of problem. Moreover, the NOMA advantage over OMA becomes clear
as the number of users increases. Evolutionary techniques outperform randomly generated solutions, as
expected.

INDEX TERMS 5G, 6G, NGIoT, cellular network, NOMA, QoS, optimization techniques

I. INTRODUCTION

THE introduction of NGIoT next-generation Internet of
Things (NG-IoT) creates new research challenges and

priorities. The identified priorities encompass multiple com-
ponents of the IoT stack and thus relate to 6G, Distributed
Ledgers, Big Data, Artificial Intelligence, Cybersecurity, and
Cloud Computing. The deployment of 5G/B5G paves the
way for the NGIoT to become a reality. Due to the increas-
ing popularity of the internet, the number of communication
devices is increasing at an exponential rate. Therefore, mul-
tiple access technology is being highlighted for the provision
of massive access to IoT devices. Moreover, providing a
large amount of intelligent IoT devices within a given

bandwidth while simultaneously ensuring QoS parameters
such as low latency and high throughput can be difficult.
Non-orthogonal multiple access (NOMA) is expected to be
one of the core technologies in fifth-generation (5G) mobile
communication networks and in NGIoT. [1], [2]

In typical orthogonal multiple access (OMA) systems,
users with poor channel conditions are allotted network
resources, but the spectral efficiency of these systems has
deteriorated. But when the power domain NOMA technique
is taken into account, this feature does not applIoT a typical
NOMA scheme, users can cancel the same frequency in
the spectrum domain, the same time in the time domain,
and even the same code in the code domain; however,
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they cannot share the same level of power in the power
domain [3]. The fundamental concept behind this case in
a typical NOMA scheme is the utilization of successive
interference cancellation (SIC) techniques by users with
satisfactory channel conditions in order to mitigate the
interference of users with low-quality channel conditions.
As a result, SIC techniques lead to a considerable reduction
of users’ intra-cell and intra-cluster interference [4]. NOMA
has been proposed as the main technique by several authors
in order to solve the challenge of broadcast and unicast
convergence as well as the convergence between broadband
and broadcast, [5]–[7].

The user association problem in deployed NOMA net-
works exhibits various challenges due to its unique fea-
tures, such as co-channel interference. The authors in [8]
utilize a game-theoretic approach to associate the users of
a NOMA network example in different resource blocks
and group them into orthogonal clusters to address the
user association problem. However, several assumptions and
certain limitations that are derived from the application
of game-theoretic techniques to user association problems
in NOMA networks make this approach rather complex
and difficult to implement. On the contrary, evolutionary
algorithms (EAs) [9] are global optimization techniques that
perform satisfactorily under virtually any given optimization
problem, each with its own restrictions or peculiarities.

The authors in [10], [11] introduced the utilization of EAs
to address both the power allocation and the user association
problems of typical NOMA networks having multiple base
stations (BSs) as a key parameter in network topology.
In [12], the authors study uplink NOMA scenarios with
user association having different quality-of-service (QoS)
requirements, and propose a solution using game theory
techniques. Finally, the authors in [13] consider non-ideal
SIC NOMA schemes with QoS constraints to propose a dis-
tributed cluster formation and a power-bandwidth allocation
approach for downlink heterogeneous networks.

A unified NOMA scheme that encompasses both power
and code domains and provides user association along with
resource allocation in heterogeneous ultra-dense networks
(HUDNs) for 5G mobile communication networks is pro-
posed in [14].

Expanding the work of [8], the authors in [15] intro-
duced a new formulation for the user association problem
in NOMA cellular networks. They grouped the users of
the given cellular network into orthogonal clusters and
associated them with different physical resource blocks by
utilizing a game-theoretic technique. In their work, the
authors provide all the main parameters of their proposed
formulation, including the complexity, convergence, stabil-
ity, and optimality of their solution.

Moreover, in [16] the authors examine the power con-
sumption minimization problem for a generic multi-cell
multiple input and single output non-orthogonal multiple
access (MISO-NOMA) system. They use an iterative dis-
tributed methodology to solve the optimization problem of

the associated joint user grouping, beamforming (BF), and
power control problems. Additionally, the joint subcarrier
and power allocation problem for the downlink of a multi-
carrier nonorthogonal multiple access (MC-NOMA) system
is studied in [17]. The problem of joint power and sub-
carrier allocation for the NOMA system in multi-cell is
studied in [18]. The authors in [18] propose a polyblock
optimization-based algorithm for obtaining a globally opti-
mal solution.

Moreover, the authors in [19] examine NOMA and cogni-
tive radio (CR) benefits to vehicle-to-everything (V2X) as a
spectrum-efficient application. The application of NOMA in
IoT networks in combination with mobile edge computing
(MEC) is reported in another paper in [20].

In hybrid networks, the different kinds of technologies
that are used are one of the important factors in the
user association problem. To this end, the authors in [21]
investigate a complex, yet practical, indoor scenario, by in-
corporating visible light communication (VLC) technology
and radio frequencyultra-denseology in a hybrid NOMA
network. Furthermore, the authors of [22] investigate the
effects of a VLC NOMA system on the provided QoS by
proposing a QoS-based virtual user association scheme with
adaptation.

The authors in [23] propose a deep learning framework
to handle user association, as well as subchannel and power
allocation problems in NOMA networks. The authors focus
on game-theoretic system energy efficiency (EE) under
QoS constraints. Additionally, in [24] the authors address
the problem of optimizing both power control and user
association using a convex optimization framework subject
to total transmit power and user-specific quality-of-service
constraints.

The user association problem for NOMA-based fog
radio access networks (F-RANs) is studied in [25], by
analysing its performance characteristics. The authors apply
a stochastic geometry tool to provide closed-form analytical
results. They presented two different algorithmic approaches
based on evolutionary games and reinforcement learning,
respectively, to address the user association problem in
NOMA-based F-RANs. Moreover, the energy efficiency
maximization problem was analysed in [26], by consider-
ing a downlink NOMA multicell heterogeneous network
under imperfect CSI for specific QoS constraints, such as
maximum transmit power, small-cell users, and cross-tier
interference.

The authors in [15] proposed a new framework for
NOMA cellular networks, namely the FDH-NOMA frame-
work, that combines NOMA schemes and Full-Duplex
(FDH) techniques. For the user association problem, they
proposed two different modes, the selection criterion mode
and the NOMA pairing scheme mode. Moreover, to max-
imize the sum-rate of the NOMA network system, the
authors in [27] employed a coalition game approach that
allows cooperation between the small base stations and pro-
posed two distinguished algorithms to address this problem.
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NOMA techniques are combined with mobile edge com-
puting (MEC) in [28]. The authors proposed a new for-
mulation to address a complex optimization problem, by
combining the individual problems of user association,
resource allocation, and transmitting power control. To
address this complex problem, they employed a matching-
coalition approach.

Researchers have also used evolutionary algorithms to
solve a number of optimization problems that have been
written about. There is a vast number of open-source
software packages and libraries that can be used for this
purpose [29]. Several papers can be found in the literature
using swarm intelligence approaches for solving optimiza-
tion problems in wireless communications [30]–[32]. In [33]
an evolutionary approach is employed for joint channel
estimation and turbo multiuser detection in the context of
orthogonal frequency-division multiplexing multiple-access
systems. In the same context, the authors in [34] solve
the Unmanned aerial vehicles (UAVs) localization problem
using an improved Particle Swarm Optimization (PSO)
algorithm. Furthermore, the authors in [35] address the prob-
lem of jointly optimizing the computation offloading and
resource management of ultradense mobile devices using an
approach of both genetic algorithms and PSO. Additionally,
the authors in [36] apply both PSO and GWO for cell
planning in 4G cellular networks. The problem of predicting
the outage probability for mobile IoT networks is addressed
by the authors in [37] by applying a combination of an
improved GWO algorithm and and Elman neural network
The motivation of our work stems from the above-mentioned
discussion and from the fact that we want to provide a
global solution methodology that does not use relaxation
or other approximation techniques. In this work, we look
at the problems of power allocation and user association
in the downlink connections of a typical NOMA commu-
nication network with a single base station and multiple
physical resource blocks (PRBs). One of the parameters that
increases considerably the complexity of the given problem,
which is an optimization one, is the power control. In a
common approach, the power of the users in the network
is controlled by the power coefficient, i.e., one coefficient
for each user, and these are considered constants for the
whole network [8]. In our proposed approach, we compute
the power coefficient for each user of the NOMA network
by utilizing EAs, as a suitable technique to solve this
kind of optimization problem [9]. In detail, we utilize the
Whale Optimization Algorithm (WOA) [38] and the Grey
Wolf Optimizer (GWO) [39], as representative examples of
EAs, to address the given optimization problem. The main
contributions of this work are summarized as follows:

• Formulation of the QoS aware joint power allocation
and user association problems for downlink NOMA
cellular networks.

• Problem solution using optimal power coefficients in-
stead of constant ones.

FIGURE 1. Network topology

• Introduce an evolutionary optimization framework for
solving the QoS aware joint power allocation and user
association problems.

• Develop a specific heuristic algorithm for forming the
fitness function.

• Apply two nature inspired algorithms, namely the
GWO and the WOA optimizers.

• Study the effect of varying different network parame-
ters to overall QoS.

• Compare the results of two algorithms with randomly
generated solutions.

To the best of the author’s knowledge, this is the first time
that evolutionary algorithms have been applied to address
and solve the given problem. The computed results reveal
network performance for various cases and demonstrate the
benefits of the NOMA approach. Moreover, it seems that
WOA clearly outperforms GWO in all cases. An evolution-
ary approach proves to be more efficient than producing
random solutions.

II. SYSTEM MODEL
In general, let’s think about a single base station (BS) in a
cell network that serves several mobile users using NOMA
techniques. Moreover, the BS uses physical resource blocks
(PRBs) to transmit its data (Fig 1). Thus, we consider a
downlink NOMA network that is being utilized by U =
{1, 2, · · · , Nu} set of users, while |U| = Nu denotes the
set cardinality or the number of users. Additionally, we
consider V = {1, 2, . . . VRB}, which denotes the the set of
PRBs with cardinality |V| = VRB . Hence, VRB orthogonal
clusters exist. If PRB v is associated with a set of users,
then this is denoted Ov with cardinality |Ov| = Ov . One
PRB is assigned to one user in OMA systems. However,
several users share the same PRB with varying power levels
in NOMA networks. In this case, SIC in user receivers is
used to eliminate the intra-cluster interference.

We make the assumption that all users in each cluster
use the NOMA techniques. Hence user q in any cluster Ov
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receives the signal that is expressed by

Y vq = hvq
√
pvqsq + nq︸ ︷︷ ︸

desired signal

+ hvq

|Ov|∑
i=1,i̸=q

√
pvi si︸ ︷︷ ︸

intra−cluster interference

(1)

where hvq denotes the channel coefficient among user q and
PRB v that is assigned by the BS, sq represents the trans-
mitted signal, pvq denotes the power allocation coefficient,
and nq denotes the noise.

Furthermore, the channel power gain is expressed as

|hvq |2 = |ĥvq |2GPL(dq) (2)

where ĥvq ∼ CN (0, 1) denotes the circular-symmetric com-
plex Gaussian zero-mean noise from PRB v to user q,
GPL(dq) denotes the propagation path loss. The propagation
path loss between user q and the BS is modeled with path
gain (loss) GPL(d). In this work, we will use a propagation
model from [40]. This is an outdoor macro cell line-of-sight
(LOS) model and it is defined by

GPL(dq) = −128.1− 37.6 log10(dq) (dB) (3)

where dq denotes the distance among the user q and the BS
expressed in km.

The power allocation coefficients satisfy in any cluster
Ov: ∑|Ov|

j=1
pvj ≤ 1. (4)

Moreover, we consider that a maximum number of Q
NOMA users can be connected to each PRB. If q-user needs
to decode its own signal, then it is necessary to decode
and remove intra-cluster interference from the previous user.
The SIC technique employed by the u-th user is considered
ideal. Therefore, in this case for perfect SIC the necessary
condition for u > v is given by

Q(Ov)
△
=|hvOv

|2 ≥, ...|hvu|2 ≥ |hvq |2...,≥ |hv1|2 (5)

. We can assume that the Q − th user in each cluster is
well-served. The q-th user’s receiver in Ov detects the j-th
user’s signal as noise (q < j) and decodes its own signal
based on the signal-to-interference-plus-noise ratio (SINR)
given below

γvq =
|hvq |2pvq

|hvq |2
|Ov|∑
j=q+1

pvi +
N0WPRB

Pv

, (6)

where WPRB is the bandwidth of a PRB, Pv denotes the
transmit power, and N0 denotes the noise power spectral
density. We specify the transmit signal-to-noise ratio (SNR)
as ρ = Pv

N0WPRB
. Additionally, the receiver at the Ov-th user

removes intra-cluster interference with SIC and decodes its
own signal with SINR:

γvOv
= ρ|hvOv

|2pvOv
(7)

Therefore, in the case of a NOMA scheme, we can express
the data rate at the user q assigned to PRB v as

RNOMA
q,v = log2(1 + γvq )

where WPRB is the bandwidth of a PRB in KHz.
The admission control variable of the i-th user with v-th

PRB is denoted with another binary variable, svi formulated
as

siv =

{
1, if user i is assigned to PRB v
0, otherwise. (8)

We can then, formulate the QoS aware joint admission
control and power allocation problem for downlink NOMA
scheme as

max
{s,a}

∑
i∈U

H(max (0, Ri −Ri,min))

s.t. C1 :suv ∈ {0, 1},∀u ∈ U ,∀v ∈ V,

C2 :
∑VRB

v=1
suv = 1,∀u ∈ U ,

C3 :
∑Ov

u=1
suv ≤ Q,∀v ∈ V,

C4 :
∑Ov

i=1
siva

v
i ≤ 1∀v ∈ V,

(9)

where H() denotes the Heaviside step function given by

H(ρ) =

{
0, ifρ < 0,

1, ifρ ≥ 1.
(10)

where a and s are the set of all indicators a and s,
respectively. The constraint C1 describes whether user u and
PRBs v are associated or not. The constraint C2 expresses
the unique association of one user u with one PRB v.
Furthermore, constraint C3 indicates that in any PRB, a
maximum of Q users can be handled. Constraint C4 states
that each cluster’s total power allocation coefficients should
be less than or equal to one. The problem presented above
is non-convex and difficult to solve.

III. OPTIMIZATION ALGORITHMS
In this study, we have applied to the Qos aware joint ad-
mission control and power allocation problem two different
low-complexity, nature-inspired algorithms. These are the
whale optimization algorithm (WOA) [38], and the grey
wolf optimizer (GWO) [39]. WOA uses math to model
how humpback whales interact with each other, while GWO
is based on how grey wolves hunt. There are no control
parameters in either algorithm. As a result, they don’t
require any further settings except the maximum number
of iterations or generations and the population size.

A. PROBLEM MODELING ALGORITHM
To tackle the Qos aware joint admission control and
power allocation problem using evolutionary algorithms,
we need first to model properly the objective function

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3262117

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Sotirios K. Goudos et al.: Joint QoS Aware Admission Control and Power Allocation in NOMA Downlink Networks

and the decision vector of the unknown variables. To do
this, we make a new heuristic algorithm that computes
the value of the objective function and deals with the
different constraints. This is presented in Algorithm 1,
which returns the fitness value, for a possible solution
vector z. The solution vector is defined in the form z =
(s1v, s2v, .., siv, .., sNuv, a

v
1, a

v
2, .., a

v
i , .., a

v
Nu

)

Algorithm 1 Calculate objective function value
1: Input a possible solution vector z
2: Set Ncover = 0, the users served by the BS, fitness =

0
3: for i=1 to Nu do
4: for v=1 to VRB do
5: if users in VRB = Q then
6: Continue
7: else
8: Assign user i to PRB v, siv = 1
9: Assign power value avi to user i

10: end if
11: if user i assignment is feasible according to (9)

then
11: Calculate rate Ri for the i-th user
12: if Ri ≥ Ri,min then
13: if the BS can support the user desired rate,

QoS is feasible then
14: Ncover = Ncover + 1,
15: end if
16: end if
17: else
18: fitness = fitness+ 1020

19: end if
20: end for
21: end for
22: fitness = fitness− (Ncover/Nu) ∗ 100
23: Return fitness value

B. GREY WOLF OPTIMIZER FOR NOMA USER
ASSOCIATION
The GWO method is based on mathematical models of
grey wolf hierarchy and hunting behavior in the wild. Its
major feature is the preservation of search space information
during the iteration process. GWO does not require any
additional control settings to be configured. The GWO algo-
rithm classifies the wolf vectors into four groups. The alpha
(alpha), beta (beta), and delta (delta) categories are the
first three best vectors of association and power values. The
omega (omega) category contains all unclassified solutions.
In a wolf pack, as a social behavior group hunting (optimiza-
tion process) is oriented by the aforementioned population
categories (alpha, beta, delta). The following formulas give
a mathematical representation of the encirclement of prey
during the hunting process:

V⃗x,G = |C⃗2 · P⃗x,G − W⃗x, G| (11)

W⃗x,G+1 = P⃗x,G − C⃗1 · V⃗x,G (12)

where the position vector of the prey is denoted by P⃗x, the
coefficient vectors are denoted as C⃗1 and C⃗2, W⃗ models the
position vector of the grey wolf (e.g. the position vector, in
this case, corresponds to the size 2×Nu vector of association
and power values), and the current generation is denoted by
G. The vectors C⃗1 and C⃗2 are given by (13) and (14):

C⃗1 = 2u⃗ · v⃗1 − u⃗ (13)

C⃗2 = 2 · v⃗2 (14)

where u⃗ ∈ [2, 0] and v⃗1, v⃗2 ∈ [0, 1] are randomly obtained
vectors from uniform distribution. The GWO algorithm’s
hunting process, like the social behavior of a grey wolf pack,
can be described as the formulation below.

V⃗α = |C⃗2
1 · W⃗α − W⃗ |

V⃗β = |C⃗2
2 · W⃗β − W⃗ |

V⃗δ = |C⃗2
3 · W⃗δ − W⃗ |

(15)

W⃗1 = W⃗α − C⃗1
1 ·

(
V⃗α

)
W⃗2 = W⃗β − C⃗1

2 ·
(
V⃗β

)
W⃗3 = W⃗δ − C⃗1

3 ·
(
V⃗δ

) (16)

W⃗G+1 =
W⃗1 + W⃗2 + W⃗3

3
(17)

The pseudo code of GWO algorithm is outlined in algorithm
2.

C. WHALE OPTIMIZATION ALGORITHM FOR NOMA
USER ASSOCIATION
The WOA is a swarm-based nature-inspired algorithm [38].
WOA is based on humpback whales’ hunting and social
behavior. Whales can detect the location of prey in the
wild and make particular maneuvers to encircle them. The
prey is represented by WOA as the best solution identified
in each iteration. All members of the population (user
associations and power vectors) aim to get as near as
possible to the optimum solution. Then they update their
position vectors appropriately. The following equations can
be used to express the whale behavior and in particular the
prey encirclement part in WOA:

Qd =
∣∣Ud × xbestd,G − xbd,G

∣∣ (18)

xbd,G+1 = xbestd,G − SdQd (19)

where xbd,G denotes the b − th vector of association and
power values in the d− th dimension, and xbestd,G denotes the
best solution found in current iteration G. Moreover, the
coefficient vectors in the d − th dimension (the d − th di-
mension refers to the vector of association and power values
containing the unknowns in the optimization problem) are
denoted by Ud, Sd, while Qd corresponds to the distance
vector of the current whale position to the prey position.
The following equations show how the latter vectors are
calculated:
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Algorithm 2 GWO algorithm for NOMA User Association
1: Initialize a population of association variables and

power values of size 2Nu ×NP W⃗i(i = 1, 2, · · · ,NP)
2: Set up u⃗, C⃗1, and C⃗2

3: for each vector W⃗i of the population do
4: Calculate the fitness value F (W⃗i) using Algorithm 1

and find the user association vector if W⃗i is feasible
5: end for
6: Compute the position vectors for each wolf type: W⃗α,
W⃗β , and W⃗δ

7: while (t < MaxNumIter) do
8: for each vector of the population do
9: Calculate new position vector W⃗i of the current

member using (17) and update its value
10: end for
11: Calculate u⃗, C⃗1, and C⃗2

12: for each vector W⃗i of the population do
13: Calculate the fitness value F (W⃗i) using Algorithm

1 and find the user association vector W⃗i is feasible
14: end for
15: Compute the position vectors of all population mem-

bers
16: Renew W⃗α, W⃗β , and W⃗δ

17: Increase t by one
18: end while
19: Return the best feasible solution vector of association

variables and power values

Sd = 2sdrd − ad (20)

Ud = 2rd (21)

where sd is a variable ∈ [2, 0], that decreases linearly over
iteration, and rd denotes a random number from a uniform
distribution ∈ [0, 1].

The whale bubble-net behavior is modeled mathemati-
cally in WOA as the exploitation phase of the algorithm.
This is achieved by the integration of two distinct move-
ments, the first one is an encircling movement with a
reducing radius and the second one is a spiral trajectory
updating position. This type of spiral trajectory movement
in WOA is modeled by a spiral equation that replicates
humpback whales’ helix-shaped movements. It is written
as:

xbd,G+1 = Lde
gscos(2πl) + xbestd,G (22)

where Ld represents the the distance vector of the b − th
vector of association and power values to the best solution
(i.e the d − th coordinate of L), g is a fixed value that
determines the shape of the logarithmic spiral, and l is a
random number ∈ [−1, 1] from a uniform distribution.

Humpback whales follow a spiral-shaped path in a circle
with a decreasing radius while performing two separate
mechanism actions at the same time. This type of movement

is modeled by the WOA authors using a 50% probability
distribution, which is mathematically expressed as:

xbd,G+1 =

{
xbestd,G − SdQd, if rb < 0.5

Lde
kscos(2πl) + xbestd,G , otherwise

(23)

where rb denotes a random number ∈ [0, 1].
Additionally, the whales follow a random pattern when

looking for prey. The WOA exploration phase is denoted
by this type of behavior, and is defined by:

Qd =
∣∣Ud × xrd,G − xbd,G

∣∣ (24)

xbd,G+1 = xrd,G − SdDd (25)

where r, with r ̸= b denotes a randomly selected vector of
association and power values that the b − th member will
follow.

The pseudo-code is presented in Algorithm 3 to better
understand the WOA functionality. The WOA generates a
set of random vectors of association variables and power val-
ues during initialization. The location vectors and distance
vectors to the pey are then calculated at each iteration either
in terms of a random search pattern or the best fitness values
achieved thus far. The sd parameter regulates the algorithm’s
exploitation and exploration phases. Finally, the rb option
toggles between an encircling process with a reducing radius
and a spiral trajectory updating position mechanism.

The time complexity of the both GWO and WOA algo-
rithms is comparable to that of other swarm intelligence
algorithms, that is at the end of each iteration given by
O(NpNcD + NpNcf), where D denotes the search space
dimension and f denotes the time complexity of the fitness
function.

D. CONVERGENCE ANALYSIS OF THE GWO
ALGORITHM FOR NOMA ADMISSION CONTROL
The theoretical analysis of the evolutionary algorithms pre-
sented in the previous section can be made according to the
framework presented in [41]–[43]. The convergence analysis
is based on the two conditions reported in [41].

If we define the optimization problem ⟨S, f⟩, an objective
function f and a feasible solution space S. A new solution
xn+1 is obtained after an evolutionary algorithm A iterates
for n iterations. This solution is found by the previous
iteration solution xn by

xn+1 = A(xn, η), (26)

where algorithm A obtains the solution set η during the
iterative process.

The essential infimum of f on S is defined as [41]

β = inf{n : u[x ∈ S|f(x) < n] > 0}, (27)

where u[X] is the measure ot X . This has the meaning that
there exist non-empty subsets in the search space and the
objective function value that corresponds to the element in
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Algorithm 3 WOA for NOMA User Association
1: Initialize a population of vectors of association variables

and power values of size 2Nu ×NP
2: for each vector x⃗i of the population do
3: Calculate the fitness value F (x⃗i) using Algorithm 1

and find the user association vector if x⃗i is feasible
4: end for
5: Obtain the best user association solution xbestj

6: while (G < Gmax) do
7: for (j = 1 : 2Nu) do
8: Compute sj , rj , Sj , Uj
9: for (i = 1 : NP ) do

10: if (rb < 0.5) then
11: if (|Sj | ≥ 1) then
12: Calculate the distance vector Qj using (18)
13: Calculate the position vector xij,G+1 using

(19)
14: Calculate the fitness value F (x⃗iG+1) using

Algorithm 1 and find the user association
vector if x⃗iG+1 is feasible

15: else
16: Compute distance vector Qj using (24)
17: Compute position vector xij,G+1 using (24)
18: Calculate the fitness value F (x⃗iG+1) using

Algorithm 1 and find the user association
vector if x⃗iG+1 is feasible

19: end if
20: else
21: Compute position vector xij,G+1 using (22)
22: Calculate the fitness value F (x⃗iG+1) using

Algorithm 1 and find the user association
vector if x⃗iG+1 is feasible

23: end if
24: end for
25: end for
26: Increase G by one
27: end while
28: Return the best feasible solution vector of association

variables and power values

the non-empty subset can be infinitely close to β. Hence,
the neighbourhood or optimality region is defined as

Rε,K =

{x ∈ S|f(x) < β + ε}, −∞ < β <∞,

{x ∈ S|f(x) < K}, β = −∞,
(28)

where ε > 0 and K < 0. We can assume that if an
evolutionary algorithm obtains a point in Rε,K , then the
algorithm obtains either the global optimal solution or an
approximation of that global optimal solution.

Thus, we may consider two conditions that are needed to
ensure that global optimality can be obtained:

Condition 1. The condition that the sequence {f(xn)}∞n=0

is converging to the infimum of f on S should be satisfied

by an optimization algorithm A. This means that if there is
f(A(x, η)) ≤ f(x), and η ∈ S then f(A(x, η)) ≤ f(η)

Condition 2. For all subsets ∀D ∈ S subject to v(D) > 0,
we have

∞∏
n=0

(1− vn(D)) = 0, (29)

where vn(D) denotes the probability measure of the n-th
iteration best result of the evolutionary algorithm A on D.

The guaranteed global convergence of any evolutionary
algorithm or any stochastic optimization method is based
on the criteria listed in [41]–[43]

Criterion 1. Assuming that f is measurable and the feasible
solution space S is a measurable subset of Rn, and the
evolutionary algorithm A satisfies both Condition 1 and
Condition 2. If {xn}∞n=0 denotes a sequence generated
by the algorithm A then the following relation should be
satisfied

lim
n→∞

P (xn ∈ Rε,K) = 1, (30)

where P (xn ∈ Rε,K) denotes the probability that the found
after n iterations or generations by algorithm A is in the
subset Rε,K .

This means that if the number of iterations is high enough,
the evolutionary algorithm will certainly converge, or we
may say that the evolutionary algorithm can have almost
guaranteed global convergence. So in order to prove that
the GWO algorithm converges, we need to prove that GWO
may satisfy the above criterion. Without loss of generality,
we may express the update equation of GWO of the i-th
vector after n+ 1 iterations as

wn+1
i = 1

3 [(w
n
a − rn1 |rn2wna − wni |)+

+
(
wnβ − rn3

∣∣∣rn4wnβ − wni

∣∣∣)+

+(wnδ − rn5 |rn6wnδ − wni |)]
(31)

where rnm,m = 1, 2, . . . , 6 are uniform random numbers
from the distribution U(0, c) on [0, c] where c is positive
constant.

The states of grey wolves and the state space is expressed
as below:

Definition 1. The grey wolf individual x position, historical
best position wα, historical second best position wβ , and
historical third best position wδ , creates the state or status,
which can represented by ζ = (x,wα, wβ , wδ), where
x,wα, wβ , wδ ∈ S.

Moreover, it is also f(wα) ≤ f(wβ) ≤ f(wδ) ≤ f(x).
Thus, we consider that the set of all possible states of all
grey wolf vectors create a state space for vectors, which can
be expressed as
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Z =
{
ζ = (x,wα, wβ , wδ)|x,wα, wβ , wδ ∈ S, (32)

f(wα) ≤ f(wβ) ≤ f(wδ) ≤ f(x)
}
. (33)

Additionally, we may define the states and state space of
the grey wolves population by the following:

Definition 2. We call the grey wolves group set of all N grey
wolves vector. Moreover, The states of this grey wolf group
are represented by ψ = (ζ1, ζ2, . . . , ζN ). We also define the
grey wolves group status space as the set of all possible
grey wolves group states and this is denoted by

Ψ =
{
ψ = (ζ1, ζ2, . . . , ζN ), ζi ∈ Z(1 ≤ i ≤ N)

}
. (34)

It is clear from the above that the best solution vector is
included in the grey wolves status Ψ. Additionally, we define
the state transition for the grey wolves’ positions modeling
solutions by the following:

For ∀ζi = (xi, wiα, w
i
β , w

i
δ) ∈ Z and ∀ζj =

(xj , wjα, w
j
β , w

j
δ) ∈ Z during the iterations of the GWO

algorithm, we denote the state transition from ζi to ζj as

Aζ(ζi) = ζj , (35)

where Aζ denotes the transition function from ζi to ζj in
the state space Z.

Correspondingly, for ∀ψi = (ζi,1, ζi,2, . . . , ζi,N ) ∈ S and
∀ψj = (ζj,1, ζj,2, . . . , ζj,N ) ∈ S, the iterative process of the
GWO algorithm essentially, the grey wolves’ group states
are transferred from ψi to ψj . This is

Aψ(ψi) = ψj . (36)

In the GWO algorithm, the grey wolves’ status ζi is basically
changed to the status ζj in a single step, and its transition
probability

Lemma 1. The transition probability of the i-th vector of
GWO population from state ζn to state ζn + 1 is the found
by the joint probability

P (Aζ(ζi,n) = ζi,n+1) = P (xni → xn+1
i )P (wna → wn+1

a ) (37)

where P (xni → xn+1
i ) is the probability for the i-th particle

changing from the position xni to the spherical region
centered at xn+1

i with radius ϵ and P (wna → wn+1
a ) is

the transition probability of the best solution of GWO.

Proof. Any individual i of the GWO changes status from
from (xni , w

n
α, w

n
β , w

n
δ ) to (xn+1

i , wn+1
α , wn+1

β , wn+1
δ ). This

means that the xni → xn+1
i , and wna → wn+1

a are performed
synchronously. Thus, the joint probability is given by

P (Aζ(ζi,n) = ζi,n+1) = P (xni → xn+1
i )P (wna → wn+1

a ). (38)

We consider the single vector model given by (39). Then
it obvious that the value of xn+1

i is determined by the
six random variables rnm,m = 1, 2, . . . , 6. Without loss of

generality we may write rn2 = rn4 = rn6 = 1. Thus, (39)
becomes

xn+1
i = 1

3 [(w
n
a − rn1 |wna − xni |)+

+
(
wnβ − rn3

∣∣∣wnβ − xni

∣∣∣)+

+(wnδ − rn5 |wnδ − xni |)]
(39)

Then we have similarly with [44]

P
(
xni → xn+1

i

)
==

x
n+1
i

+1
2
ε∫

x
n+1
i

− 1
2
ε

dψ

xιn+1
3 (wn

a+wn
β

+wn
δ )∫

xn
i

dψ

×

rn1 + 1
2
ε∫

rn1 − 1
2
ε

dψ

xιn∫
xn
i
−rn1 |wn

a−xn
i |
dψ

×

×

rn3 + 1
2
ε∫

rn3 − 1
2
ε

dψ

xιn∫
xn
i
−rn3 |wn

b
−xn

i |
dψ

×

rn5 + 1
2
ε∫

rn5 − 1
2
ε

dψ

xιn∫
xn
i
−rn5 |wn

δ
−xn

i |
dψ

=

= ε
1
3 (wn

a+wn
β+wn

δ )
× ε

c|wn
a−xn

i |
× ε

c|wn
β−xn

i |
× ε

c|wn
δ −xn

i |

(40)

Moreover, it is

P (wna → wn+1
a ) =

{
1, f(wn+1

a ) < f(wna ),

0, f(wn+1
a ) ≥ f(wna ).

(41)

We may now give the proof of the following theorem
using these findings:

Theorem 1. During the iterative procedure of the GWO
algorithm, the transition probability of the grey wolves
group status changes from ψi to ψj is given by

P (Aψ(ψi) = ψj) =

N∏
n=1

P (Aζ(ζi,n) = ζj,n), (42)

where N denotes the current number of iterations.

Proof. As Aψ(ψi) = ψj) shows that each state in the grey
wolf group state, ψi is concurrently moved to group state
ψj ; this is expressed as

Aζ(ζi,1) = ζj,1, Aζ(ζi,2) = ζj,2, . . . , Aζ(ζi,N ) = ζj,N .

Then, we can deduct that the transition probability of a
group transition of the grey wolf group is actually each
iteration step’s joint probability. Hence, we may write

P (Aψ(ψi) = ψj) = P (Aζ(ζi,1) = ζj,1)P (Aζ(ζi,2) = ζj,2)

. . . P (Aζ(ζi,N ) = ζj,N ),=
∏N
n=1 P (Aζ(ζi,n) = aj,n),

(43)

which concludes the proof.

The state sequence ζ can thus be proven to be a finite,
homogeneous Markov chain.

Theorem 2. The grey wolf group state sequence ζ consti-
tutes a finite homogeneous Markov chain.

Proof. The the number of iterations or generations and
the population size are both finite, thus every evolutionary
algorithm’s search space for the entire iterative process is
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finite. Thus, each of the grey wolf state ζ = (x,wα, wβ , wδ)
among the x,wα, wβ , wδ are finite. As a result, the state
space of the grey wolf is finite.

If we consider the position, global optimal values, second
global optimal value, and third optimal value to be grouped
in one state Ψ, then it is obvious that state Ψ(n + 1) will
not depend on previous states but just on state Ψ(n). Thus,
the sequence Ψ has the proper Markov chain features.

It is clear that the system state Ψ(n−1) and its transition
at time n to the new state Ψ(n) is totally predetermined by
its state at time n. Moreover, the random numbers rnm,m =
1, 2, . . . , 6 and the iteration n are independent of the system
state prior to n.

From Ψ(n−1) to Ψ(n) of grey wolf group state sequence
{Ψ(n);n ≥ o}, The transition probability P (AΨ(Ψ(n −
1)) = Ψ(n)) of the two states is given by the transition
probability of all individuals in the grey wolf group. This
transition probability is given by (1). This probability is only
related to the state ζi,n−1, 1 ≤ i ≤ N of all grey wolves at
iteration n−1. Thus, the Markov chains are finite. Moreover,
we deduct from Theorem 1, that P (Aζ(ζ(n− 1)) = ζ(n))
is independent of time (iteration) n− 1. In similar way, we
notice that P (AΨ(Ψ(n − 1)) = Ψ(n)) is also independent
of n−1. Thus, we have proven that the finite Markov chains
are homogeneous.

Next, we can define the optimal state set of the grey
wolf algorithm for the global optimum solution gα, the
second best global optimum solution, gβ , and the third
global optimum solution gδ as

Definition 3.

E =
{
ζ = (x,wα, wβ , wδ), f(wα) = f(gα), f(wβ) = f(gβ),

f(wδ) = f(gδ), ζ ∈ Z
}
.

(44)

Clearly, the E is a subset of Z, it is E ⊆ Z Moreover,
we can define the optimal grey wolf state group as

Definition 4.

Φ =
{
ψ = (ζ1, ζ2, . . . , ζN )

∣∣∃ζm ∈ E(1 ≤ m ≤ N)
}
. (45)

The above definition implies that the optimal grey wolf
state set Φ is defined as the set of all grey wolf groups
such that at least one vector grey wolf individual of the
population with its state belong to E.

Theorem 3. When Φ ⊂ E, there is no closed set J other
than E such that J

⋂
Φ = ∅.

Proof. Reductio ad absurdum. If we assume there is a
closed set J so that J

⋂
Φ = ∅ and that f(wa,j) >

f(wa,b) for ψi = (wa,b, wa,b, ..., wa,b) ∈ Φ and ∀ψj =
(ζj1, ζj2, ..., ζjn) ∈ J , this implies that

P (Aψ(ψj) = ψi) =

N∏
n=1

P (Aζ(ζj,n) = ζi,n), (46)

FIGURE 2. Number of users versus percentage of users served for
M = 2, T = 50 for different association algorithms

For each P (Aζ(ζj) = ζi), it holds that P (Aζ(ζj) =
ζi) == P (xi → xi)P (wa,i → wa,j). It is P (wa,i →
wa,j) = 1 then P (Aζ(ζj) = ζi) ̸= 0, implying that J is
not closed, which contradicts the assumption. Thus, there is
no non-empty closed set outside Φ in Ψ.

The following theorem has been proven in [45], [46].

Theorem 4. If we assume that a Markov chain has a non-
empty set U and there is not any closed set G satisfying
U
⋂
G = ∅, then the following relation is valid

lim
n→∞

P (xn = i)

{
= σi, only if i ∈ U
= 0, only if i /∈ U

(47)

Moreover, the following theorem can be derived from the
above theorems:

Theorem 5. When the number of iterations reaches infinity
or is sufficiently large, then the grey wolf group state
sequence will converge to the optimal state (solution) set
Φ.

Additionally, from the above four theorems, it is straight-
forward to prove the following global convergence theorem:

Theorem 6. The GWO algorithm with the Markov chain
model as defined previously has guaranteed global conver-
gence.

Proof. We need to prove that GWO satisfies both Condition
1 and Condition 2 defined earlier in this subsection. If
this is valid, then GWO will converge to global optimality.
The iterative process of GWO, where the global best value
wα of the population is kept or is updated after every
iteration, ensures that the first convergence condition is met.
Moreover, we may deduct from the previous theorem, that
after a sufficient number of iterations, the GWO group
state sequence will converge toward the optimal set. or
when the number of iterations tends to infinity. Thus, we
may conclude that in this case, the probability of not
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(a) N=50 (b) N=100

FIGURE 3. Number of users versus percentage of users served for T = 50 and different Pt values

(a) N=50 (b) N=100

FIGURE 4. Number of users versus percentage of users served for T = 50 and different Rc values

(a) N=50 (b) N=100

FIGURE 5. Number of users versus percentage of users served for different T values

obtaining the globally optimal solution is 0. Hence, the
second convergence condition is satisfied. As an outcome,
the global convergence of GWO to global optimality is
assured.

The above proof uses a Markov chain framework, similar

to the literature [45], [46]. This means that the convergence
concept is in a probabilistic sense. It shows that the GWO
can certainly converge. However, the above theorem pro-
vides no information about the convergence rate or how
the population size and the number of iterations may have
an impact on the GWO convergence behaviour. The global
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(a) N=50

(b) N=100

FIGURE 6. Boxplot results of all algorithms for 1000 runs for a) N=50 users,
b)N=100 users

convergence of WOA may be proven similar to the above.

IV. NUMERICAL RESULTS
A. BENCHMARK FUNCTIONS
In this subsection, we evaluate the performance of GWO
and WOA in high-dimensional problems using different
types of test functions, both unimodal and multimodal. We
compare GWO and WOA on a set of nine numerical bench-
mark functions. Additionally, we also compare the above-
mentioned algorithms with other popular evolutionary algo-
rithms. These are namely the Artificial Bee Colony (ABC)
[47], the Differential Evolution (DE) [48], the Harmony
Search (HS) [49], the Invasive Weed Optimization (IWO)
[50], and the Particle Swarm Optimization (PSO) [51].
The numerical benchmark functions and their properties
are listed in Table 1. In order to evaluate the algorithm’s
performance in high-dimensional problems, we run two
different sets of tests, one for problem dimension D = 100,
and one for D = 200. All benchmark problems run for
100 independent trials. The maximum number of iterations
is set to 1000, while the population size is set to 100
for all algorithms. The unknown variables limits are set to
[−10, 10] for all problems. Table 2 holds the algorithm’s
comparative results for D = 100. We notice that WOA and
GWO obtained the best results in most of the cases. The

(a) N=50

(b) N=100

FIGURE 7. Convergence rate graph for 1000 runs for a) N=50 users, b)N=100
users

corresponding results for D = 200 are presented in Table 3.
Again the results are similar as previously, WOA and GWO
perform better or the same with the other algorithms in most
of the cases. The latter is shown directly using the Friedman
ranking, a non parametric statistical test [52], [53]. Table 4
holds the algorithm rankings according to the Friedman test.
It is clear that the WOA and the GWO emerge as the first
and the second algorithm in ranking.

B. NOMA SIMULATIONS
The numerical results of the simulations and the optimiza-
tion problem solutions are presented in this section. We
have used both GWO and WOA algorithms to solve the
QoS aware admission control problem by performing several
simulations. Table 5 lists the values for all simulations.

We consider the following scenario where the total num-
ber of users ranges from 10 to 100 with step 5. The BS
deploys and serves the users at random. We assume that the
BS operates having 50 PRBs. Moreover, each PRB supports
at the maximum M = 2 NOMA users.

Additionally, we generate users randomly from a uniform
distribution and they are placed in a circle of 700 m radius.
We consider shadowing lognormal that a value with a stan-
dard deviation equal to 8 dB. The PRB bandwidth WPRB is
selected to be equal to 180 kHz as the bandwidth in 4G/LTE.
We compare the results between the two algorithms WOA,
and GWO. In order to evaluate if using EAs is worth, we
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TABLE 1. Numerical Benchmark functions

A/A Name Type x∗ F (x∗)
f1 Ackley Multimodal,non-convex (0, .., 0) 0
f2 Drop-wave Multimodal, high complexity (0, .., 0) 0
f3 Levy Multimodal (1, .., 1) 0
f4 Rastrigin Highly Multimodal, non-convex (0, .., 0) 0
f5 Sphere Unimodal, convex (0, .., 0) 0
f6 Sum of different powers Unimodal, nonseparable (0, .., 0) 0
f7 Sum squares Unimodal, nonseparable (0, .., 0) 0
f8 Zakharov Unimodal, continuous (0, .., 0) 0
f9 Rosenbrock Narrow valley, non-convex (0, .., 0) 0

TABLE 2. Numerical Benchmark functions results for D=100

Function WOA GWO ABC DE HS IWO PSO
f1 8.88E-16 3.29E-14 1.35E+01 3.13E-01 4.91E+00 2.69E-02 5.55E-06
f2 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00
f3 4.76E-02 4.82E+00 6.65E+02 4.58E+00 2.42E+01 1.09E+02 4.18E+00
f4 0.00E+00 0.00E+00 2.91E+03 6.64E+02 3.08E+02 3.10E+02 2.06E+02
f5 6.19E-206 1.63E-44 1.98E+03 2.36E-01 9.50E+01 3.20E-03 1.38E-11
f6 0.00E+00 2.01E-245 1.12E+68 7.05E+11 5.82E+23 5.83E-06 5.12E-15
f7 1.67E-209 1.02E-42 7.76E+04 7.91E+00 3.40E+03 2.47E+00 2.67E-09
f8 2.75E+03 5.14E-09 3.13E+03 2.61E+03 1.38E+03 8.47E+02 6.54E+01
f9 9.58E+01 9.50E+01 1.14E+07 2.54E+03 9.70E+04 9.30E+01 7.83E+01

TABLE 3. Numerical Benchmark functions results for D=200

Function WOA GWO ABC DE HS IWO PSO
f1 8.88E-16 1.29E-13 1.45E+01 5.70E+00 7.15E+00 1.78E+00 1.52E+00
f2 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00
f3 1.39E-01 1.26E+01 1.86E+03 3.91E+02 1.83E+02 2.56E+02 1.88E+01
f4 0.00E+00 0.00E+00 7.24E+03 2.11E+03 1.57E+03 1.22E+03 5.03E+02
f5 6.33E-203 3.38E-30 5.14E+03 2.28E+02 6.14E+02 3.19E-01 2.19E-02
f6 0.00E+00 2.21E-218 ######## 1.65E+86 8.82E+91 7.39E+33 1.18E+17
f7 1.78E-201 2.88E-28 5.17E+05 1.41E+04 5.53E+04 3.66E+02 1.85E+00
f8 5.79E+03 2.29E+00 7.10E+03 5.94E+03 4.48E+03 4.22E+03 5.94E+02
f9 1.95E+02 1.95E+02 2.74E+07 1.18E+06 1.57E+06 4.37E+02 5.51E+02

TABLE 4. Average Ranking achieved by the Friedman test

Algorithm Average Ranking Normalized Ranking
WOA 2.08 1.00
GWO 2.19 1.05
ABC 6.67 3.20
DE 5.00 2.40
HS 5.22 2.51
IWO 3.94 1.89
PSO 2.89 1.39

TABLE 5. Simulation parameters

Frequency F (GHz) 2

Transmission power Pt (dBm) 46

Noise power (dBm/Hz) -174

Pathloss model 3GPP TR36814 LOS

additionally generate random solutions and compare them
with the EA-approach. Moreover, we apply all algorithms
to both NOMA and OMA cases. We choose a population
of parametric vectors and 100 is the maximum number of
iterations. The algorithms run for 1000 different simulations.
We generate a random topology in each simulation run that

each algorithm tries to solve. Therefore, we obtain results
that are from 1000 different random topologies We run the
simulations with QoS constraints and without any additional
constraint. The desired user data ranges from 100 to 500
kbps, which QoS-aware selected for each user. The problem
dimensions are 2Nu, thus for the maximum number of 100
users the total number of unknowns is 200. In all cases,
a user can be served or not only if the required data rate
can be achieved. All values presented in the figures that
follow are mean values and each point corresponds to the
mean result of 1000 random topologies. Fig. 2 illustrates
the number of users versus the percentage of users served
for M = 2, T = 50 for all cases. We notice that NOMA
schemes become better when the total number of users is
larger than the available PRBs. It is also clear that both
algorithms achieve better performance than the random case.
The difference between the random and the EAs becomes
more significant for the NOMA case. Additionally, WOA
performs, in general, better than GWO.

Moreover, Figs. 3a-3b show the total number of users
versus the percentage of users served for increasing BS
transmission power for Nu = 50, and Nu = 100. By
increasing the BS transmission power for Nu = 50 equal
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to the number of PRBs almost all users can be served. This
is quite similar to both OMA and NOMA cases. However,
the NOMA advantage is clearly shown in Nu = 100, where
clearly with NOMA about 90% of the users can be served.

Figs. 4a-4b depict the total number of users versus the
percentage of users served for increasing cell radius. In all
OMA cases, the results become worse as the cell radius
increases. However, in the NOMA case, there is only a small
drop in the user percentage served and the lines are almost
straight. This means that NOMA schemes perform better
regardless of the cell radius.

Additionally, we study the effect of increasing PRBs.
Figs. 5a-5b present the total number of users versus the
percentage of users served for increasing PRBs. It is clear
that by increasing the PRB number the problem becomes
easier to solve since more slots are available for the users.
It is evident that WOA performs better than GWO. In all
cases, the evolutionary algorithms are better than the random
case.

The details of the algorithm’s performance are further
presented in the boxplots of Figs. 6a-6b. We notice that
for Nu = 50 the distribution of values seem similar in
all cases, while the EAs clearly outperform the random
case. The difference between the OMA and the NOMA
case can be seen more clearly in Fig. 6b. Moreover, WOA
outperforms the GWO in terms of median values. However,
GWO obtained results with a smaller dispersion of values.

Finally, the average convergence speed of the algorithms
over 1000 runs for two user cases is shown in Figs. 7a-7b.
We notice that in both figures the algorithms converge at a
similar speed. However, it is apparent that WOA converges
at better objective function values.

V. CONCLUSION

In this paper, we provide the formulation for the QoS
aware admission control and power allocation optimization
problem in NOMA downlink networks. We have solved
this problem using emerging swarm intelligence algorithms
inspired by nature with low complexity. The results indicate
that when the number of users that are trying to connect to
the network increases, the problem becomes harder to solve.
NOMA schemes outperform the OMA ones especially as the
number of users grows higher. Evolutionary algorithms in
general perform better than randomly generated solutions.
We have provided proof that the GWO algorithm has the
potential to converge to a global optimum using Markov
chain modeling. We have applied two different algorithms,
the GWO and WOA. The results show that for this type
of problem, WOA performs better or is similar to other
algorithms. However, both algorithms can be applied to
obtain feasible solutions quickly. In our future work, we
will expand this framework to other network types where
NOMA techniques may play an important role e.g. visual
light communications (VLC) networks.
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