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Abstract—Recently, federated learning (FL) has sparked
widespread attention as a promising decentralized machine
learning approach which provides privacy and low delay. How-
ever, communication bottleneck still constitutes an issue, that
needs to be resolved for an efficient deployment of FL over
wireless networks. In this paper, we aim to minimize the total
convergence time of FL, by quantizing the local model parameters
prior to uplink transmission. More specifically, the convergence
analysis of the FL algorithm with stochastic quantization is firstly
presented, which reveals the impact of the quantization error on
the convergence rate. Following that, we jointly optimize the
computing and communication resources as well as the number
of quantization bits, in order to guarantee minimized convergence
time, subject to energy and quantization error requirements.
The impact of the quantization error on the convergence time is
evaluated and the trade-off among model accuracy and timely
execution is revealed. Moreover, the proposed method is shown
to result in faster convergence compared with baseline schemes.
Finally, useful insights for the selection of the quantization error
tolerance are provided.

Index Terms—wireless federated learning, quantization, con-
vergence time minimization

I. INTRODUCTION

FUture wireless networks are envisioned to support ubiq-
uitous artificial intelligent services [1]. Conventional ma-

chine learning techniques are usually conducted in a cen-
tralized manner, where the data are uploaded and processed
at a single entity, e.g., a central server [2]. However, the
growing computing capabilities of devices have paved the
way for realizing distributed learning frameworks. Among the
decentralized approaches, federated learning (FL) has shown
great promise in preserving data privacy and providing low
delay [3], [4]. In FL, users collaboratively build a shared
learning model, without exposing their raw data to the server
or any other residual participant. The server redistributes the
global model back to the users, while the whole procedure
is repeated until the convergence of the global model. In
this manner, FL is inherently privacy-preserving and reduces
the communication load. However, the wireless environment
imposes some distinctive challenges, owing to the limited
wireless resources, unreliable links, etc., which degrade the
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performance of FL and need to be efficiently addressed [5]–
[8].

A. Related Works and Motivation

In the context of wireless networks, several works examined
and optimized the performance of FL in various aspects, such
as model accuracy, timely execution and energy efficiency.
More specifically, in [9], a joint learning and communication
framework was proposed, in order to minimize the training
loss in the presence of packet errors, while in [10] the objective
was to minimize the total energy consumption by optimizing
both the computation and communication resources. Moreover
in [11], authors focus on minimizing the convergence time
of the FL process by efficiently scheduling the participating
devices, while in [12], the convergence time was minimized by
considering both the impact of training and communication.
In [13], the FL global loss function was minimized under
total convergence time constraints, by jointly allocating the
bandwidth and scheduling the users, while in [14], the impact
of various scheduling policies on the FL convergence rate was
examined. Finally, [15] proposed a coded federated learning
scheme, which exploits coding techniques to introduce redun-
dant computations to the FL server.

Although previous works focused on achieving a timely FL
execution, communication bottleneck may be still incurred by
the limited bandwidth and the large size of the local training
parameters. To alleviate this burden, gradient compression
techniques, such as quantization, have been proposed to fur-
ther improve the communication efficiency in FL [16]–[18].
Through this technique, a quantized version of the local model
is being transmitted to the server, aiming to achieve faster com-
munication without deteriorating the FL model accuracy. In
this direction, authors in [19], examined quantization schemes
for the uplink and downlink communication in FL and rigor-
ously proved the respective convergence rate upper bounds. In
[20], a lossy FL scheme is introduced where both global and
local updates are quantized before being transmitted, while
the convergence behavior is analyzed. Furthermore, in [21],
a universal vector quantization scheme for FL was proposed
accompanied by an analysis for the respective error distortion,
while authors showed that the error vanishes as the number of
users grows. Moreover, in [22], the FL convergence bound
was minimized, in a multiple access channel scenario of
FL, while an efficient utilization of the quantization levels
was proposed. In [23], the quantization error was minimized
subject to uplink transmission delay and outage constraints per
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round, in a wireless environment. In [24], authors proposed a
one-bit quantization scheme for over-the-air FL, while they
also examined the convergence rate under fading channels.
In [25], a heterogeneous quantization scheme was proposed
towards minimizing the convergence upper bound as a function
of the heterogeneous quantization errors of all clients. In [26],
a decentralized quantization algorithm based on the alternating
direction method of multipliers was proposed, which resulted
in decreased communication cost in comparison with its non-
quantized counterpart. Finally, in [27] and [28], the use of
weight quantization methods in FL over wireless networks is
examined, towards minimizing either the energy consumption
or the training time.

At this point, we clarify that none of the aforementioned
works [19]–[27], which applied quantization methods, focused
on minimizing the total convergence time of the FL, which
is a metric of paramount importance for meeting the low
latency requirements of the next generation of wireless net-
works. Moreover, the convergence time is one of the most
critical metric for evaluating the communication efficiency
of quantization methods, since their primary goal is to re-
duce communication bottlenecks. Although, authors in [19]–
[21] and [24], [26] examined the behavior of quantization
schemes in FL, they did not propose techniques for optimizing
the performance of quantization in a wireless environment
and addressing its underlying constraints in the quantization
process, e.g., allocating communication and computation re-
sources towards achieving timely FL execution. Regarding
the works that performed optimization methods, [22], [23]
and [25] focused on minimizing the quantization error -and
not the convergence time- without jointly considering the
computation, the communication resources, as well as the
quantization policy. Specifically, the analysis in [22] assumed a
simplistic model for the transmission rate constraints, without
including the wireless factors and the computation delay.
Similarly, [25] minimizes the convergence upper bound due
to quantization without considering any additional constraints,
neither wireless nor computation ones. Moreover, although
[23] focuses on a wireless FL scenario, the local computation
time and subsequently the adjustment of users’ local CPU
frequency were neglected, which affect both the convergence
time and the energy requirements. Also, in [27], the energy
consumption in wireless FL is minimized, while authors solely
consider the optimal selection of the quantization precision and
do not focus on optimizing computational or radio resources.
To this end, in [28], the authors aim to minimize the train-
ing/convergence time in FL over wireless networks, without
neither considering a variable computational power nor opti-
mizing the transmit power. Hence, the trade-off between com-
putational and communication power is neglected, and thus,
its effects on the convergence time is absent. Moreover, the
number of quantization bits is selected to be fixed throughout
the whole training phase.

By taking the above into consideration, prior works seem to
neglect the joint design of computational and communication
resources when applying weight quantization in wireless FL.
Therefore, the efficient utilization of the available computa-
tion, radio resources and quantization strategy in FL over

wireless networks, is an issue that has not been yet resolved.
This joint optimization of the available resources in a holistic
approach, could further accelerate the training time of FL.
Furthermore, the trade-off among model accuracy and fast
convergence, owing to the local updates’ quantization, is not
well-examined in the previous works, where the convergence
rate is mainly investigated with regards to the global communi-
cation rounds and not the total evolution of time. Specifically,
a large number of quantization bits may increase precision,
in the expense of slow communication with the server per
FL round, since the training parameters’ size also increases
and leads to higher transmission delay. On the contrary,
smaller quantization level may lead to slightly decreased
model performance, though, with lower delay per round and
potentially faster convergence. However, low precision updates
may be communication efficient in terms of latency per round,
but require increased number of communication rounds until
convergence. Therefore, it is not evident that the utilization of
few quantization bits can always lead to faster convergence,
with respect to the evolution of time. The aforementioned fact
is not clearly presented in the literature and needs further
investigation.

B. Contributions

Driven by the aforementioned considerations, we study the
quantization of the local model parameters of each user and
aim to minimize the total convergence time of FL, under
energy consumption and quantization error constraints. The
latter aims to retain the model accuracy in desirable levels.
Moreover, the considered minimization is conducted with re-
spect to the unit of time, and not purely the evolution of global
FL rounds, since the wireless factors, the available resources
and the quantization policy affect the duration of each round,
which is critical for the evaluation of the convergence time.
The main contributions of this paper are summarized as:

• We present a rigorous convergence analysis of the FL
process by considering stochastic quantization of the
local parameters. The impact of the quantization error
on the convergence bound is revealed, while useful in-
sights for the optimality gap are provided. Furthermore,
throughout the derivation of the resulted bound, we do
not enforce the quantization bits to be a function of
convergence related parameters, which is usually assumed
for guaranteeing convergence [19], [26]. Note that by
setting the quantization bits in advance, may not lead to
minimized convergence time, since the number of quanti-
zation bits also influence the uplink transmission duration
of the training parameters, owing to the limitations of
the wireless medium. Therefore, we allow the proper
adjustment of the quantization bits when dealing with
wireless systems’ constraints, and thus, targeting to the
timely completion of the FL task.

• We minimize the convergence time of FL, i.e, the total
duration of all global rounds, subject to energy con-
sumption and quantization error constraints. The latter
have resulted from the convergence analysis and aim to
guarantee sufficiently high precision and subsequently
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high model accuracy. To this end, we jointly optimize
the computation and communication resources, as well
as the number of quantization bits of each user. After
some mathematical manipulations, the resulted convex
problem is solved with the Lagrange dual decomposition
and closed-form solutions are derived, in terms of the
Lagrange multipliers (LMs).

• Through simulations, the performance of local param-
eters’ quantization is evaluated. Specifically, we inves-
tigate the impact of the quantization error tolerance
on the convergence time and model accuracy, while
the trade-off among model accuracy and fast conver-
gence is exhibited. In addition to this, it is shown that
low precision quantization cannot always achieve fast
convergence. This result is related with the increased
number of global rounds that low precision quantization
requires, which may prevail over the low transmission
delay per round. Moreover, numerical results validate
the effectiveness of the proposed optimization towards
minimizing the convergence time, in comparison with
baseline schemes, revealing the significance of jointly
adjusting the radio and computation resources, as well
as the quantization bits. Finally, driven by the theoretical
convergence analysis, we study the effects of decaying the
quantization error tolerance along with the evolution of
the training, instead of keeping it constant. The simulation
results corroborate the effectiveness of this approach,
which demonstrates increased convergence rate without
model accuracy degradation. In essence, this observation
coincides with the concept of “later-is-better” [29], which
implies that reserving FL-related resources in the early
stages of the training process and spending them in the
final stages, may be beneficial for the performance.

II. SYSTEM MODEL

A. FL model

We consider a wireless FL system, consisting of a set K =
{1, 2, ...,K} of K users and a base station (BS) co-located
with a server, while hereinafter we use the terms BS and server
interchangeably. To tackle with the straggler effect, we assume
that a only a subset N ⊆ K of users is participating in the FL
process, with cardinality |N | = N ≤ K. The user selection
policy will be described later on this work. Each user n ∈ N ,
poses a local dataset DL

n = {xn,k, yn,i}
DL

n

k=1, where DL
n =

|DL
n|, xn,k is the k-th input data vector of user n, while yn,k

is the corresponding output. The whole dataset is denoted as
D = ∪

n∈N
DL

n , while the size of all training data among the

participating users is D =
∑N

n=1D
L
n . The loss function of

user n, is defined as [8]

Fn(w) ≜
1

DL
n

∑
k∈DL

n

ϕ(w,xn,k, yn,k), ∀n ∈ N , (1)

where ϕ(w,xn,k, yn,k) captures the error of the d-dimensional
model parameter w ∈ Rd for the input-output pair
{xn,k, yn,k}. The goal of the training process is to find the
global parameter w, which minimizes the loss function on

the whole dataset, i.e., F (w) =
∑N

n=1 pnFn(w), where
pn =

DL
n

D . Hereinafter, for ease of presentation we consider
that pn = 1

N , ∀n ∈ N .
We assume that the whole FL process consists of T global

rounds, denoted as t ∈ T = {0, ..., T − 1}. The subset of
users scheduled for participation in the t-th round is denoted
as N (t), with |N (t)| = N, ∀t. During the t -th global round,
each user receives the global parameter w(t) from the server,
and performs τ steps of the stochastic gradient descent (SGD)
method. The i-th step of SGD, ∀n ∈ N (t), is given as

wi
n(t) = wi−1

n (t)−η(t)∇Fn(w
i−1
n (t), ξi−1

n (t)), i = 1, ..., τ ,
(2)

where w0
n(t) ≜ w(t). Moreover, η(t) represents the learn-

ing rate, while ξi−1
n (t) ⊆ DL

n is a mini-batch, which is
sampled uniformly at random from the local dataset DL

n

of user n. Therefore, it holds E[∇Fn(w
i−1
n (t), ξi−1

n (t))] =
∇Fn(w

i−1
n (t)), where the expectation is taken with respect

to the randomness of the stochastic gradient function. Fur-
thermore, we assume that at the first global round, the server
initializes w(0). After terminating the local training, user n
transmits the weight differential to the server, given as

∆wn(t) = wτ
n(t)−w0

n(t) = wτ
n(t)−w(t)

= −η(t)
τ∑

i=1

∇Fn(w
i−1
n (t), ξi−1

n (t)).
(3)

The selection of transmitting the weight differential instead of
simply transmitting the latest local weight wτ

n(t), is related
with the quantization scheme that will be used and discussed
later on this work. Following that, the global model at the
server’s side, in round t, is updated as follows

w(t+ 1) = w(t) +
∑

n∈N (t)

1

N
∆wn(t). (4)

At last, the global model is broadcast to the devices, while the
whole process is repeated for T rounds, until the convergence
of the global model.

B. Quantization model

As mentioned previously, at time step t, each user
n ∈ N (t) calculates its local model ∆wn(t) =
(∆wn,1(t), ...,∆wn,d(t))

⊤. In order to prevent a wasteful
overuse of resources, we assume that users send to the
server a quantized version of ∆wn(t), which is denoted as
Q(∆wn(t)), where Q(·) denotes the quantization function.
Therefore, the global model update at the server, is actually
given as

w(t+ 1) = w(t) +
∑

n∈N (t)

1

N
Q(∆wn(t)). (5)

We also highlight that in [19] it was shown that by trans-
mitting the weight differential ∆wn(t), a faster convergence
is achieved, while it is also adopted in our work. Following
that, for each element j ∈ {1, 2, ..., d} of ∆wn(t), it holds
|∆wn,j(t)| ∈ [∆wmin

n (t),∆wmax
n (t)], where ∆wmin

n (t) ≜
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Fig. 1. Federated learning with local model quantization.

min{|∆wn(t)|} and ∆wmax
n (t) ≜ max{|∆wn(t)|}. More-

over, we assume that ∆wn,j(t) is quantized according
to the stochastic quantization method [19]. That is, with
Bn(t) quantization bits, user n can divide the interval
[∆wmin

n (t),∆wmax
n (t)] into the following ς intervals: I1 =

[s0, s1], I2 = [s1, s2], ..., Iς = [sς−1, sς ], where ς = 2Bn(t)−1
and

sk = ∆wmin
n (t) + k

∆wmax
n (t)−∆wmin

n (t)

2Bn(t) − 1
, (6)

where k = 0, 1, ..., 2Bn(t) − 1. Therefore, if the parameter
∆wn,j(t) falls into the interval Ik, it will be quantized as

Q(∆wn,j(t)) =

{
sk−1 · sign(∆wn,j(t)), w.p.

sk−|∆wn,j(t)|
sk−sk−1

sk · sign(∆wn,j(t)), w.p.
|∆wn,j(t)|−sk−1

sk−sk−1

(7)
where w.p. stands for “with probability”. Furthermore, the
overall d-dimensional quantized local model is denoted as

Q(∆wn(t)) = (Q(∆wn,1(t)), ..., Q(∆wn,d(t)))
⊤, ∀n, t.

(8)
while its size is given by Sn(t) = d(Bn(t)+1)+m (bits), since
each element of the quantized model vector is represented by
Bn(t) bits plus one bit for the sign specification. Also, m bits
are needed to specify the values of ∆wmax

n (t) and ∆wmin
n (t).

C. Computation and Communication model

During the t-th global round, the server is broadcasting the
global model w(t) to all users. We consider that the downlink
transmission latency is negligible, since the transmit power of
the BS is much larger than that of the devices, while also the
same message is broadcast to all users. In addition to this, we
assume that the downlink is error-free. In the continue, we
slightly abuse the notation by dropping t, while the following
expressions could refer to any arbitrary round. The time for

local computations by device n, for τ SGD steps, in order to
generate the local model, is

lcn = τ
cnDn

fn
, ∀n ∈ N , (9)

where fn is the CPU cycle frequency of user n, Dn is the
size of the mini-batch (in bits), while cn denotes the number
of CPU cycles for user n to perform one sample of data during
the local model training. The energy consumption for the local
computations, is given as [30]

Ec
n = τζcnDnf

2
n, ∀n ∈ N , (10)

where ζ is a constant parameter related with the hardware
architecture of device n. Finally, we assume that the time
duration dedicated for generating Q(∆wn) through the quan-
tization process, is negligible.

Following the local training, each device uploads the quan-
tized training parameters, Q(∆wn), to the BS. Similarly to
[31], we assume that the considered transmission is carried out
via time-division multiple access (TDMA), while this choice is
not restrictive, since other schemes such as frequency-division
multiple access (FDMA) can also be applied. To successfully
upload the training parameters within lupn uplink time duration,
the n-th user should satisfy the condition

lupn W log2

(
1 +

gnEn

lupn WN0

)
≥ Sn, ∀n ∈ N , (11)

where W is the available bandwidth, En is the transmit energy,
Sn is the size of the quantized training parameters and N0

is the power of the additive white Gaussian noise (AWGN).
Moreover, gn = |hn|2d−β

n denotes the channel gain, where
the complex random variable hn ∼ CN (0, 1) is the small
scale fading, dn is the distance between user n and the BS
and β is the path loss exponent. Moreover, we assume that
the channel gain is quasi-static and stays unchanged during a
single global round, while we also consider perfect CSI both
in BS’s and users’ side. Following that, we assume that the
parameter transmission phase begins after the termination of
the local computations phase by each user. Therefore, for the
local computation duration lc, it holds that

lc ≥ lcn = τ
cnDn

fn
, ∀n ∈ N . (12)

Since all users should terminate the computation and uplink
transmission phases, so as the server can receive each local
model and subsequently update the global model, the total
duration of a FL global round is given as

lr = lc +
∑
n∈N

lupn , (13)

which is the sum of the computation latency and the trans-
mission latency among all users and is depicted in Fig. 2.
At this point, it is clarified that the participating users are
selected with respect to their channel gains [32], in order to
exclude users who suffer from bad channel conditions and
subsequently avoid large transmission delays. By adopting this
approach, the server selects only the N strongest among the
total K users for participation, i.e., N = {n ∈ K | gn ≥ g[N ]},
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Fig. 2. Duration of a global FL round.

where g[N ] denotes the N -th largest channel gain among all
users.

III. CONVERGENCE ANALYSIS

In this section we investigate the convergence behavior
of FL with stochastic quantization and stochastic gradient
function. Firstly, with regards to the stochastic quantization
scheme, we proceed to the formulation of the following
lemma:

Lemma 1: Q(∆wn(t)) is an unbiased estimator of ∆wn(t),
i.e.,

E [Q(∆wn(t))] = ∆wn(t), (14)

while it also holds that

E
[
∥Q(∆wn(t))−∆wn(t)∥22

]
≤ δ2n(t)(

2Bn(t) − 1
)2 ≜ J2

n(t),

(15)
where δn(t) ≜

√
d
4 (∆w

max
n (t)−∆wmin

n (t))
2.

Proof: The proof can be found in [19], [23].

Next, we make the following common assumptions for the
functions F1, F2, ..., FN , in order to facilitate the convergence
analysis [33].

Assumption 1: Fn, ∀n ∈ N , are all L-smooth, i.e.,
∀w′,w ∈ Rd: Fn(w

′) ≤ Fn(w) + ⟨w′ − w,∇Fn(w)⟩ +
L
2 ∥w′ −w∥22.

Assumption 2: Fn, ∀n ∈ N , are all µ-strongly convex, i.e.,
∀w′,w ∈ Rd: Fn(w

′) ≥ Fn(w) + ⟨w′ − w,∇Fn(w)⟩ +
µ
2 ∥w′ −w∥22.

Assumption 3: The expected squared norm of
stochastic gradients is uniformly bounded ∀n, t, i, i.e.,
E
[∥∥∇Fn(w

i
n(t), ξ

i
n(t))

∥∥2
2

]
≤ G2.

Assumption 4: The variance of stochastic
gradients in each user is bounded ∀n, t, i, i.e.,
E
[∥∥∇Fn(w

i
n(t), ξ

i
n(t))−∇Fn(w

i
n(t))

∥∥2
2

]
≤ σ2

n.

Moreover, we define Γ ≜ F (w∗) −
∑N

n=1 pnF
∗
n , where F ∗

n

denotes the minimum value of Fn(·), while Γ quantifies the
degree of NON-IID, among users’ datasets. Taking these into
account, we introduce the following theorem:

Theorem 1: Let Assumptions 1 to 4 hold. By selecting a di-
minishing learning rate η(t) = 2

µ(γ+t) and γ > max
{
2, 2

µ ,
L
µ

}
,

the upper bound of E [F (w(T ))− F (w∗)] is given by

E [F (w(T ))]− F (w∗) ≤
L

2

1

γ + T

(
4U

µ2
+ γE

[
∥w(0)−w∗∥22

])

+
L

2

T−1∑
j=0

[ ∑
n∈N (j)

1

N

δ2n(j)(
2Bn(j) − 1

)2 T−1∏
i=j+1

(
1− 2

γ + i

)]
︸ ︷︷ ︸

Impact of the quantization error on the convergence

(16)

where

U = τ2
K∑

n=1

σ2
n

K
+ 2Lτ2Γ + (µ+ 2)

τ(τ − 1)(2τ − 1)

6
G2

+ τG2 +
K −N

N(K − 1)
τ2G2,

(17)

while the expectation is taken with respect to the stochastic
gradient function, the stochastic quantization scheme and the
randomness in user selection.

Proof: See Appendix A.
It is clarified that the assumption of equal dataset sizes among
users can be dropped by applying some modifications in the
proof, as in [33]. Specifically, by scaling the local functions
as F̃n(w) = qnKFn(w), where qn =

DL
n∑

n∈K DL
n
, ∀n ∈ K,

the global function can be equivalently written as F (w) =
1
K

∑K
n=1 F̃n(w). Additionally, w(t + 1) should be rewritten

as w(t + 1) = w(t) +
∑

n∈N (t) pnQ(∆wn(t)). With these
transformations and some algebraic manipulations, i.e., σn and
Jn are replaced by σ̃n ≜

√
Kqnσn and J̃n ≜

√
NpnJn,

Theorem 1 will still hold [33]. Hence, the presented results
can be generalized for the case of unbalanced dataset sizes
among users.

As one can observe, for large T , the first term of the upper
bound tends to zero with rate O( 1

T ). However, the second
term which is related with the quantization error, creates a
gap between E [F (w(T ))] and F (w∗). Inspired by [20], we
present the following interesting comment. For small j, the
term

∏T−1
i=j+1

(
1− 2

γ+i

)
tends to zero, since 1 − 2

γ+i < 1,
∀i. Therefore, the effect of the quantization error in the early
stages of the training process vanishes over time. Hence, it is
discernible that during the early training rounds, the quanti-
zation error would not contribute to increasing the optimality
gap. Nevertheless, in order to further mitigate the impact of
the quantization error, an increased number of quantization
bits Bn may be selected. However, such choice may result
to increased latency during the local parameter transmission
phase, while the considered trade-off is studied later. Finally,
when Bn(j) → ∞, ∀n, j, the optimality gap is zero and the
convergence bound of Theorem 1 coincides with that of a
lossless FL model. When it also holds N = K, i.e., the full-
user participation scenario, the convergence bound is reduced
to that of the vanilla FedAvg algorithm [33].

At this point, it should be highlighted that in the con-
vergence analysis of [19], where a stochastic quantization
scheme was also considered, authors concluded that the
quantization error does not create an optimality gap, i.e.,
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E [F (w(T ))− F (w∗)] tends asymptotically to zero. How-
ever, in their analysis, they selected specific values for the
quantization bits Bn(t), given as a function either of the
learning rate η(t) or residual convergence-related parameters.
Also, in [26], authors introduced a relationship among the
quantization bits of two consecutive communication rounds
towards guaranteeing convergence. In opposition to these, in
our analysis we do not restrict Bn(t) to take certain values.
In this manner, the values of Bn(t) are not being enforced by
any parameter or the previous rounds’ bits selection Bn(t−1).
This fact is of significant importance, since the constraints
imposed by the wireless environment could affect the selection
of Bn(t), i.e., it cannot be always feasible or communication
efficient to pre-assign specific values to Bn(t), resulted from
the convergence analysis. The constraints on Bn(t) would be
obvious through the optimization problem that is formulated
in the subsequent section.

IV. CONVERGENCE TIME MINIMIZATION

A. Problem Formulation

Our objective goal is to minimize the total convergence time
of the FL task, i.e., the overall latency across all FL rounds,
under energy and quantization error constraints, with the latter
aiming to retain the optimality gap of the upper bound of
E [F (w(T ))] − F (w∗), at small levels. Note that the upper
bound is affected by the quantization error through the term∑

n
1
N

δ2n(t)

(2Bn(t)−1)
2 , as concluded in Theorem 1. Therefore, it

is obvious that by increasing the number of quantization bits
Bn(t), the quantization error decreases. However, this strategy
increases the size Sn(t) of the local model parameters and
thus, may result in increased transmission latency. Taking this
into account, it is important to balance the considered trade-
off, among model accuracy and fast convergence. Hence, we
formulate the following optimization problem

min
lc,E,B,f ,lup

T−1∑
t=0

lr(t)

s.t. C1 : lupn (t)W log2

(
1 +

gn(t)En(t)

lupn (t)WN0

)
≥ d(Bn(t) + 1) +m, ∀n ∈ N (t),∀t,

C2 : τζcnDnf
2
n(t) + En(t) ≤ Emax

n (t), ∀n ∈ N (t),

C3 :
∑

n∈N (t)

1

N

δ2n(t)(
2Bn(t) − 1

)2 ≤ ϵ(t), ∀t,

C4 : lc(t) ≥ τ
cnDn

fn(t)
, ∀n ∈ N (t), ∀t,

C5 : 0 ≤ fn(t) ≤ fmax
n (t), Bn(t) ∈ Z+, ∀t,

(18)
where C1 is related with the successful transmission of the
local training parameters, C2 indicates that the dedicated en-
ergy both for computation and transmission purposes, cannot
exceed the maximum available energy of the n-th user at
the t-th round, i.e., Emax

n (t). Moreover, C3 implies that the
quantization error should not exceed a required tolerance, ϵ(t),
at the respective round. We also clarify that it is reasonable

to constrain the quantization error per global FL round t,
since there is no coupling of the error among different global
rounds, as observed in (16). Finally, C4 stems from (12),
while fmax

n denotes the maximum CPU clock speed of user
n. Also, note that the quantization bits Bn(t) are positive
integers. Moreover, we highlight that the selection of increased
number of bits Bn(t), leads to better model precision, which
is reflected in C3 through the selection of the error tolerance
ϵ(t). However, it is observed from C1 that such policy also
increases the transmission delay and subsequently the total
convergence time. To this end, it is evident from C1 that
the number of quantization bits B(t) should be carefully
adjusted and not pre-determined [19], due to its coupling
with the uplink transmission time intervals lup(t), which
directly affect the total convergence time. Hence, by pre-
assigning a dedicated number of quantization bits only to meet
theoretical convergence guarantees, may highly increase the
uplink transmission interval and subsequently slow down the
convergence with respect to time unit. Finally, it is clarified
that although the effects of the channel gains are not directly
present in the optimality gap of Theorem 1, it is evident that
through C1, the channel gains will affect the optimal value of
B(t). Therefore, there is an underlying dependency among the
channel conditions and the value of the optimality gap, which
can be attributed to the number of quantization bits, B(t).

B. Proposed Solution

It should be highlighted that problem (18) is intractable in
the current form, since at the t-th round the channel gains
g(t′), ∀t′ > t are unknown. However, this is not restricting,
since we can address this issue by solving the problem round-
by-round, in an online fashion. In addition to this, we relax
Bn ∈ Z+ to Bn ≥ 1, ∀n ∈ N . Thus, the problem in (18)
should be solved in each global round, while hereinafter the
t notation is dropped for simplicity. Next, by observing that
C4 is equivalent to: fn ≥ τ cnDn

lc , ∀n ∈ N , we introduce the
following proposition:

Proposition 1: The optimal fn,∀n ∈ N , satisfy

f∗n = τ
cnDn

lc∗
, ∀n ∈ N , (19)

with lc∗ ≥ a1 ≜ max
n∈N

{
τcnDn

fmax
n

}
.

Proof: First, by manipulating C4, it is straightforward to
show that lc ≥ a1. Following that, let consider a known l̄c.
By observing C2, it is obvious that the selection of larger
fn decreases the value of En. Moreover, it easy to verify
that lupn W log2

(
1 + gnEn

lupn WN0

)
in C1, is an increasing function

w.r.t. both En and lupn . Therefore, the selection of smaller En

will lead to increased lupn , while the objective is to minimize
lupn . From the aforementioned, fn should be selected as small
as possible, given the local computation duration, which from
C4 concludes to (19).
Proposition 1 implies that the CPU clock speed fn,∀n, should
be selected in such a way that all users terminate the com-
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TABLE I
LIST OF NOTATIONS

Parameter Description Parameter Description
K Set of users N (t) Set of participating users at round t

DL
n Local dataset of user n Fn(·) Loss function of user n

F (·) Global loss function w(t) Global weight at round t
T Number of global rounds τ Number of local iterations
wi

n Weight of user n at the i-th local iteration ∆wn(t) Local model update of user n at t-th round
ξin Minibatch of user n at the i-th local iteration η(t) Learning rate at the t-th round
Q(·) Quantization function Bn(t) Number of quantization bits of user n at round t
fn CPU frequency of user n lupn Uplink time-slot duration of user n
ϵ quantization error tolerance En Transmit energy of user n
lc Local computation time duration w∗ argminwF (w)

putation phase concurrently. By exploiting Proposition 1, the
problem in (18) can be re-written as

min
lc,E,B,lup

lc +
∑
n∈N

lupn

s.t. C1 : lupn W log2

(
1 +

gnEn

lupn WN0

)
≥ d(Bn + 1) +m, ∀n ∈ N ,

C2 :
ζτ3c3nD

3
n

lc2
+ En ≤ Emax

n , ∀n ∈ N ,

C3 :
∑
n∈N

1

N

δ2n

(2Bn − 1)
2 ≤ ϵ,

C4 : lc ≥ a1, En, l
up
n ≥ 0, ∀n ∈ N ,

C5 : Bn ≥ 1, ∀n ∈ N .

(20)

It can be easily shown that the problem in (20) is jointly
convex with respect to all the considered variables, while the
proof is omitted due to space limitations. The problem in (20)
will be solved via the Lagrange dual decomposition. Firstly,
the Lagrangian function can be written as

L(lc, lup,E,B,λ) = lc +
∑
n∈N

lupn

+
∑
n∈N

λ1,n

(
d(Bn + 1) +m− lupn W log2

(
1 + gnEn

lupn WN0

))
+
∑
n∈N

λ2,n

(
ζτ3c3nD

3
n

lc2
+ En − Emax

n

)

+ λ3

(∑
n∈N

1

N

δ2n

(2Bn − 1)
2 − ϵ

)
+ λ4(a1 − lc)

+
∑
n∈N

λ5,n(1−Bn),

(21)

where λ = (λ1,1, ..., λ2,1, ..., λ5,N ) ≥ 0 (’≥’ denotes
the component-wise inequality) is the LM vector and
λ1,n, λ2,n, λ3, λ4, λ5,n, ∀n ∈ N , are associated with the
constraints Ci, i = 1, ..., 5, respectively. Following that, the
dual function is given as

G(λ) = min
lc,E,B,lup

L(lc, lup,E,B,λ), (22)

while the corresponding dual problem can be written as

max
λ

G(λ). (23)

Since the primal problem is convex and the Slater’s conditions
are satisfied, strong duality holds, i.e., solving the dual in
(23) is equivalent to solving the primal problem in (20), [34].
According to the Karush-Kuhn-Tucker (KKT) conditions, the
optimal solution to the problem should satisfy

∇L(lc∗, lup∗,E∗,B∗,λ∗) = 0. (24)

Thus, by taking ∂L
∂lc = 0 and ∂L

∂En
= 0, ∀n ∈ N , leads to

lc∗ = 3

√
2ζτ3

∑
n λ

∗
2,nc

3
nD

3
n

1− λ∗4
, (25)

and

E∗
n = lup∗n W

(
λ∗1,n

λ∗2,n ln(2)
− N0

gn

)
, ∀n ∈ N . (26)

From (26), we observe that λ∗2,n ̸= 0, ∀n ∈ N . Taking
this into account, according to the complementary slackness
conditions which require

λ∗2,n

(
ζτ3c3nD

3
n

lc∗2
+ E∗

n − Emax
n

)
= 0, ∀n ∈ N , (27)

the constraint C2 should be satisfied with equality [34], leading
to

E∗
n = Emax − ζτ3c3nD

3
n

lc∗2 , ∀n ∈ N . (28)

This is reasonable, since it indicates that users should utilize
their whole available energy, towards minimizing the objective
function. Following that, ∂L

∂lupn
= 0,∀n ∈ N , it holds that

Wλ∗1,n
ln(2)

−(1 + b
lup∗
n

) + 1 + (1 + b
lup∗
n

) ln
(
1 + b

lup∗
n

)
1 + b

lup∗
n

= 1,

(29)
where b = E∗

ngn
WN0

. The manipulation of (29), results to

lup∗n = − gnE
∗
n

WN0(1 +W−1
0 (ψn))

, ∀n ∈ N , (30)

where W0 is the principal branch of the Lambert W function
[35] and ψn is given by

ψn = −2
− 1

Wλ∗
1,n

e
, ∀n ∈ N . (31)

Furthermore, it is easy to verify from (29) that λ∗1,n ̸= 0, ∀n ∈
N , since the case λ∗1,n = 0, leads to a contradiction. This
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result indicates that users should spend their resources so as to
transmit exactly Sn bits to the server, which is observed from
the right-hand-side of C1. Thus, C1 is satisfied with equality,
yielding

B∗
n =

lup∗n W

d
log2

(
1 +

gnE
∗
n

lup∗n WN0

)
− m

d
− 1, ∀n ∈ N .

(32)
Finally, by taking ∂L

∂Bn
= 0, ∀n ∈ N , yields(

2B
∗
n − 1

)3
=

1

N

2λ∗3 ln(2)δ
2
n

dλ∗1,n − λ∗5,n
2B

∗
n . (33)

From (33), it is obvious that λ∗3 ̸= 0, since the case λ∗3 = 0
leads to B∗

n = 0, which is infeasible. Therefore, also constraint
C3 is satisfied with equality.

According to the previous analysis, the optimal variables
lc∗,E∗, lup∗,B∗, have been given in closed forms in terms of
the LMs, by the equations (25), (28), (30), (32), respectively.
Note that given the LMs, each optimization variable can be
directly calculated, with the aforementioned order of appear-
ance, by using the respective equations. Subsequently, the LMs
can be updated iteratively via the subgradient method [36]
towards solving the dual problem, while the primal variables
can be calculated through the LMs. The algorithm of the
above procedure, which outputs the solution of problem (23) is
presented below. The number of iterations of the sub-gradient
method is of the order O( 1

ϵ̃2 ), where ϵ̃ is the required tolerance
[36].

Algorithm 1 Solution of (20)
1: Initialize k ← 0, lc(0),E(0), lup(0),B(0)

2: Repeat
3: Update the LM vector λ(k+1) (refer to Appendix C).
4: Calculate lc(k+1),E(k+1), lup(k+1),B(k+1) using the
5: equations (25), (28), (30), (32)
6: k ← k + 1
7: Until convergence
8: Output lc∗,E∗, lup∗,B∗ and f∗ from (22)

Following this analysis, recall that Bn, ∀n ∈ N , should
finally take integer values. Therefore, after obtaining the
solutions to the problem, B∗

n should be rounded to the
smallest integer which is greater or equal to B∗

n. Thus we
set B̃∗

n = ⌈B∗
n⌉, in order to guarantee that C3 is still satisfied,

i.e., the quantization error tolerance constraint is not violated.
However, since with the selection of B∗

n it was previously
shown that C1 is satisfied with equality, by plugging B̃∗

n into
the problem, C1 will be now violated, due to the fact that
B̃∗

n > B∗
n. Therefore, to address this issue, the problem in

(20) has to be resolved for a fixed value of B̃∗
n, i.e.,

min
lc,E,lup;B̃

∗
lc +

N∑
n=1

lupn , s.t. C1,C2,C4, (34)

and finally the optimal variables can be obtained. It should be
clarified that (34) can be solved similarly to (20) for a fixed
B̃

∗
. Hence, (34) can be solved with a slight modification of

Algorithm 1, where B is no longer an optimization variable
and can be treated as a constant, assigned with the value B̃

∗
.

To this end, the CPU frequency f∗ is given by (19), which
concludes the overall solution to the problem.

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value
fmax
n 1.5GHz Dn 1 Mbit
W 0.3 MHz N0 -174 dBm/Hz
ζ 10−27 cn ∼ U(10, 40)
N 10 users dn ∼ U(0, 1000m)

Emax
n 0.3 Joule m 64 bits
d 23820 β 3.75

V. NUMERICAL EXPERIMENTS AND PERFORMANCE
EVALUATION

For the simulation results, we assume that the users are
uniformly distributed in a circle with radius 1000m, while the
server/BS is located at the center of the circle. Also, N = 10
users are selected for participation in each global round. The
rest of the simulation parameters are presented in Table II, and
retain their respective values unless specified otherwise.

We select the FL task to be the image classification on the
widely-known MNIST dataset [37]. We assume that each user
carries 200 data samples and trains a fully-connected feed-
forward neural network with a single hidden layer, consisting
of 30 nodes, while the softmax is the activation function
of the output layer. Thus, the total model parameters are
d = 23860 (i.e., 784 × 30 + 30 × 10 = 23820 weights
and 30 + 10 = 40 biases). The mini-batch size has been set
as |ξin(t)| = 50, ∀n, i, t. Moreover, the Adam optimizer is
utilized for the local training [38]. Following that, we consider
two different cases of training data distributions. Firstly, for the
case of IID data distribution among users, the training data is
shuffled and randomly assigned to each user. Secondly, for the
non-IID scenario, the training data is sorted by labels and each
user is equipped only with 5 labels. For both cases, the datasets
among users are non-overlapping. All results have been con-
ducted on the MNIST dataset, unless specified otherwise.
Finally, although the convergence analysis assumed convex
problems, it will be evident in the following subsections that
useful insights can still be derived and theoretical observations
be validated via numerical results.

A. Effects of the quantization error tolerance on the conver-
gence time and model accuracy

In Fig. 3(a) and Fig. 3(b), the testing accuracy and train-
ing loss, respectively, are evaluated for various values of
the quantization error tolerance, ϵ. Note that the proposed
optimization method has been utilized in order to extract all
figures. In the considered simulations, we set τ = 2 local
iterations for each user, while we set the total number of
global communication rounds equal to T = 225. It should
be highlighted though, that the x axis illustrates the time in
seconds, and not purely the evolution of the global rounds.
We made this choice, since for different tolerance values, the
duration of a global round also varies. In this manner, the
comparison on the convergence time between various values
of ϵ can be fairly conducted. Also, we clarify that total the
training time in seconds, given the T global rounds, differs
among different choices of ϵ. From Fig. 3(a), it is evident
that for smaller ϵ, higher testing accuracy is achieved, which
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also approximates the performance of the lossless model, i.e.,
the FL model without applying quantization. Moreover, high
values of ϵ may lead to decreased model accuracy, e.g., when
ϵ = 5. Another interesting observation comes as follows. The
case ϵ = 0.1, demonstrates the highest convergence rate in
the early stages of the training process, which is also greater
than the case ϵ = 0.01. This outcome is related with the
duration of each global communication round. Smaller values
of ϵ, translate to the selection of more quantization bits, which
in turn result in increased transmission latency during each
communication round. More specifically, in Fig. 4, the average
delay per global round and the average number of quantization
bits per user per global round are presented. It can been seen
that the case ϵ = 0.01 presents the highest average delay
per round, among the rest choices of ϵ. Therefore, this fact
can slow down the convergence speed in the early stages of
the training, although finally the highest accuracy is achieved,
owing this to the selection of more quantization bits which
guaranty high precision. Based on the above, it is evident that
a model accuracy/fast convergence trade-off is present, among
the cases ϵ = 0.01 and ϵ = 0.1.

At this point, it is significant to highlight the following
observation. The cases ϵ = 1 and ϵ = 5 do not really contribute
neither in model accuracy nor in fast convergence, since they
are totally outperformed by the cases ϵ = 0.1 and ϵ = 0.01,
in both aspects. Even when targeting smaller accuracy values,
the higher-ϵ cases fail to converge faster than the cases ϵ = 0.1
and ϵ = 0.01. An interpretation of this result is the following:
The large number of communication rounds until convergence,
which occur from the low precision quantization, prevails over
the low-latency per round. Therefore, by selecting a relatively
loose quantization error tolerance, which is equivalent to
utilizing a few quantization bits, may not result in any gains or
offer any benefits. This contradicts the fact which implies that
by using a small number of quantization bits, communication
efficiency is always achieved. Accordingly, in Fig. 5, the
testing accuracy and training loss are evaluated for the NON-
IID scenario. For this example, we set τ = 3 and T = 150.
Similar behavior with the IID case is observed, while the
model accuracy is degraded.

To further showcase the impact of the quantization error
tolerance on the performance, we also ran experiments on the
CIFAR-10 dataset [39]. We assume that each user is equipped
with 2500 training samples (IID) and trains a convolutional
neural network (CNN) of the following structure: A 3 × 3
convolutional layer with 32 channels, a 5 × 5 convolutional
layer with 64 channels, both followed by 2×2 max pooling and
relu activation, a fully connected layer with 64 units and relu
activation, and a final output layer with softmax. The second
convolutional layer is also followed by a dropout layer w.p.
0.2. The number of the training parameters is d = 315, 018.
The mini-batch size is selected as |ξin(t)| = 128, ∀n, i, t..
We also set τ = 2 and T = 40. Following that, in Fig.
6, various values of ϵ are illustrated. The results are very
similar to the MNIST dataset experiments. Specifically, it is
evident that the curve which results in faster convergence, is
the ϵ = 20, presenting a slight accuracy decrease compared to
the case ϵ = 1. Hence, the trade-off among timely convergence

and model accuracy is again highlighted. Finally, we clarify
that the selection of the ϵ values is different to that of the
MNIST dataset. This can be attributed to the different range
of the training parameters for different dataset and neural
network architecture, i.e., the CNN in the case of CIFAR-
10. Thus, the range of δn(t) in (15), which is proportional
to the model size d, is affected. As a consequence, the
range of ϵ is also being affected through constraint C3. It
is noted that the values 1, 20, 50, 100 of ϵ, correspond to
6.38, 4.07, 3.52, 3.13 average quantization bits per user per
round, respectively.
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Fig. 3. IID scenario.

0.01 0.1 1 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

1

2

3

4

5

6

7

Fig. 4. Average delay per round and average quantization bits per user per
round, for the IID scenario.

0 20 40 60 80
0.5

0.6

0.7

0.8

(a) Testing accuracy versus time.

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

(b) Training loss versus time.

Fig. 5. NON-IID scenario.

B. Comparison with baseline schemes

In Fig. 7, we compare the performance of the proposed
optimization scheme with some baseline schemes. Firstly, we
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Fig. 6. Experiments on CIFAR-10.

consider the enhanced FedAvg (e-FedAvg) baseline scheme.
In e-FedAvg, the proposed optimization method is adopted,
but the number of quantization bits is pre-assigned as B̃n =
16, ∀n ∈ N in each global round. Hence, we select an
adequate number of quantization bits to model the lossless
behavior of the standard FedAvg algorithm, since the imple-
mentation of a pure lossless model would require the usage
of infinite number of quantization bits, and thus, infinite
transmission time which is impractical. The term enhanced
justifies the optimization of the available resources, since the
vanilla FedAvg does not perform any optimization. Moreover,
the equal slots allocation scheme also exploits the proposed
optimizations’ method, however it assigns equal duration up-
link time slots to all users. Finally, the equal energy allocation
scheme assigns equal energy values for both the computation
and transmission phase, while the rest of the optimization
is conducted according to the proposed method. For the
considered simulation, we set the quantization error tolerance
ϵ = 0.01, consider an IID scenario and set T = 225 global
rounds. By observing Fig. 7, it can be seen that all schemes
demonstrate almost identical testing accuracy, which is related
with the selected quantization error tolerance. However, it is
clearly seen that the proposed scheme dominates all baseline
schemes, in terms of convergence time, which is the objective
goal of the proposed optimization. Thus, Fig. 7 highlights the
significance of the proposed scheme, which jointly takes into
account the communication and computation resources, as well
as the quantization bits allocation. Also, the case of e-FedAvg
leads to very high latency until convergence, without offering
further accuracy gain. Therefore, it is evident that when aiming
towards fast convergence of the FL process, the number of
quantization bits ought to be wisely selected.

C. The dynamical adjustment of quantization error tolerance

In the continue, we examine the effects of dynamically
adjusting the quantization error tolerance ϵ throughout the
training process. Recall that in Theorem 1, it was evident
that in the early training stages, the quantization error has
not large impact in the optimality gap. Driven by this fact, we
now focus on decaying ϵ along with the evolution of the global
rounds. Specifically, we consider that ϵ(i+1) = r ·ϵ(i), where
0 < r < 1 is a constant, i = 1, ..., 223, while we initialize
ϵ(0) = 0.1. By setting r = 10−1/224, it is easy to verify
that ϵ(224) = 0.01, i.e., ϵ is equal to 0.1 in the first round
and equal to 0.01 in the final round, given that T = 225.
Following that, in Fig. 8, we compare the performance of

the considered technique, i.e., decaying ϵ, with the standard
cases of a constant ϵ throughout the training. It can be
observed that by dynamically decreasing ϵ, the convergence
rate is significantly increased. More specifically, in the very
early stages of the training, higher ϵ values contribute to fast
communication with the server, while along with the reduction
of ϵ, the precision is gradually increased. This policy results in
fast convergence and notable performance, in comparison with
the rest fixed ϵ cases and especially with the stringent case,
where ϵ = 0.01. Specifically, although the testing accuracy
is almost identical between the decaying ϵ policy and the
case ϵ = 0.01, the former converges after 22 seconds of
training, while the latter after about 40 seconds. Therefore,
the effectiveness of decreasing the quantization error tolerance
along with the evolution of the training, which enforces the
gradual increase of the number of quantization bits throughout
the training, is corroborated.

0 50 100 150 200

0.82
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0.86

0.88

0.9

0.92

Fig. 7. Comparison of the proposed scheme with baseline schemes.
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Fig. 8. The impact of dynamically adjusting ϵ, on the convergence rate and
testing accuracy.

VI. CONCLUSIONS

In this paper, we studied and optimized the performance of
FL over wireless networks by considering the quantization of
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the local model parameters. More specifically, we have jointly
optimized the communication and computation resources, as
well as the quantization bits allocation, focusing on mini-
mizing the total convergence time of FL subject to energy
constraints and quantization error tolerance. The optimization
problem was coupled with the convergence analysis, aiming to
control the impact of the quantization error and subsequently
balance the trade-off between model accuracy and fast conver-
gence. Simulations are conducted, where the considered trade-
off is examined and the effectiveness of the proposed method
in accelerating the convergence speed, is verified. Also, the
results indicate that the selection of the quantization error
tolerance is critical for achieving enhanced performance in
FL, while efficient techniques are presented which result in
increased convergence rate.

APPENDIX A
PROOF OF THEOREM 1

For proving Theorem 1, we adopt the methodologies of [33]
and [32]. Firstly, we define the auxiliary variable v(t) as

v(t+ 1) = w(t) +
∑

n∈N (t)

1

N
∆wn(t), (35)

which represents a lossless model’s update during the (t+1)-
th round by considering the set of selected users. Following
that, we also define z(t) as

z(t+ 1) = w(t) +

K∑
n=1

1

K
∆wk(t), (36)

which denotes the lossless model’s update when all networks
users are participating. Recall that

w(t+ 1) = w(t) +
∑

n∈N (t)

1

N
Q(∆wn(t)). (37)

Following that, we have

∥w(t+ 1)−w∗∥22
= ∥w(t+ 1)− v(t+ 1) + v(t+ 1)−w∗∥22
= ∥w(t+ 1)− v(t+ 1)∥22 + ∥v(t+ 1)−w∗∥22
+ 2⟨w(t+ 1)− v(t+ 1),v(t+ 1)−w∗⟩.

(38)

In the continue, the average of the right-hand-side terms in
(38) are bounded and presented in Lemmas 2-4 respectively.

Lemma 2: We have

E
[
∥w(t+ 1)− v(t+ 1)∥22

]
≤

∑
n∈N (t)

1

N
J2
n(t).

Proof:

E
[
∥w(t+ 1)− v(t+ 1)∥22

]
= E


∥∥∥∥∥∥
∑

n∈N (t)

1

N
(Q(∆wn(t))−∆wn(t))

∥∥∥∥∥∥
2

2


(a)

≤
∑

n∈N (t)

1

N
E
[
∥(Q(∆wn(t))−∆wn(t))∥22

]
(b)

≤
∑

n∈N (t)

1

N
J2
n(t),

(39)

where (a) follows from the convexity of ∥·∥22 and the fact that∑N
n=1

1
N = 1, while (b) follows from Lemma 1.

Lemma 3: We have

E
[
∥v(t+ 1)−w∗∥22

]
≤ −µη(t)E

[
∥w(t)−w∗∥22

]
+η2(t)U

(40)
where

U = τ2
K∑

n=1

σ2
n

K
+ 2Lτ2Γ + (µ+ 2)

τ(τ − 1)(2τ − 1)

6
G2

+ τG2 +
K −N

N(K − 1)
τ2G2.

(41)

Proof: See Appendix B.
Lemma 4: We have

E [2⟨w(t+ 1)− v(t+ 1),v(t+ 1)−w∗⟩] = 0. (42)

Proof: Since it holds

E [Q(∆wn(t))] = ∆wn(t), (43)

and

w(t+ 1)− v(t+ 1) =
∑

n∈N (t)

1

N
(Q(∆wn(t))−∆wn(t)),

(44)
it is straightforward to conclude to (42).

Following that, by combining the results in Lemmas 2-4,
(38) leads to

E
[
∥w(t+ 1)−w∗∥22

]
≤ (1− η(t)µ)E

[
∥w(t)−w∗∥22

]
+ η2(t)U +

∑
n∈N (t)

1

N
J2
n(t).

(45)

Let ∆t = E
[
∥w(t)−w∗∥22

]
. (45) can be re-written as

∆t+1 ≤ (1− η(t)µ)∆t + η2(t)U +
∑

n∈N (t)

1

N
J2
n(t). (46)

Next, we will show that ∆t ≤ ν
γ+t +Ψ(t) where

Ψ(x) ≜
x−1∑
j=0

∑
n∈N (j)

1

N
J2
n(j)

x−1∏
i=j+1

(1−η(i)µ), x ≥ 1, (47)

by selecting a diminishing learning rate η(t) = β
γ+t , with β ≥

1
µ , γ ≥ β such that η(0) ≤ 1, γ ≥ βµ such that η(0) ≤ 1

µ and

ν ≤ max
{

β2U
βµ−1 , γ∆0

}
. Also, since we required η(t) ≤ 1

Lτ ,

it should also hold γ ≥ L
µ . Similarly to [33], via induction we

have

∆t+1 ≤ (1− η(t)µ)∆t + η2(t)U +
∑

n∈N (t)

1

N
J2
n(t)

≤
(
1− βµ

γ + t

)(
ν

γ + t
+Ψ(t)

)
+

β2U2

(γ + t)2

=
t+ γ − 1

(t+ γ)2
ν +

(
β2U2

(γ + t)2
− βµ− 1

(t+ γ)2
ν

)
+Ψ(t+ 1)

≤ ν

t+ γ + 1
+Ψ(t+ 1).

(48)
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Following that, we have

ν ≤ max

{
β2U

βµ− 1
, γ∆0

}
≤ β2U

βµ− 1
+ γ∆0

β= 2
µ

≤ 4U

µ2
+ γE

[
∥w(0)−w∗∥22

]
.

(49)

By substituting (49) in (48) and by using the fact that F (·) is
L-smooth, which gives

F (w(T ))− F (w∗) ≤ ⟨w(T )−w∗,∇F (w∗)⟩

+
L

2
∥w(T )−w∗∥22

≤ L

2
∥w(T )−w∗∥22 ,

(50)

since ∇F (w∗) = 0, the proof of Theorem 1 is completed.

APPENDIX B
PROOF OF LEMMA 3

Firstly, we have

∥v(t+ 1)−w∗∥22
= ∥v(t+ 1)− z(t+ 1) + z(t+ 1)−w∗∥22
= ∥z(t+ 1)−w∗∥22 + ∥v(t+ 1)− z(t+ 1)∥22
+ 2⟨v(t+ 1)− z(t+ 1), z(t+ 1)−w∗⟩.

(51)

The first term in the right-hand-side (RHS) of (51) can be
expanded as

E
[
∥z(t+ 1)−w∗∥22

]
= E

[
∥w(t)−w∗∥22

]
+ E

∥∥∥∥∥
K∑

n=1

1

K
∆wn(t)

∥∥∥∥∥
2

2


︸ ︷︷ ︸

A1

+ 2E

[〈
w(t)−w∗,

K∑
n=1

1

K
∆wn(t)

〉]
︸ ︷︷ ︸

A2

.

(52)

For A1, we have that

A1 = E

∥∥∥∥∥
K∑

n=1

1

K

(
−η(t)

τ∑
i=1

∇Fn(w
i−1
n (t), ξi−1

n (t))

)∥∥∥∥∥
2

2


(a)

≤ η2(t)τ

K∑
n=1

1

K

τ∑
i=1

E
[∥∥∇Fn(w

i−1
n (t), ξi−1

n (t))
∥∥2
2

]
= η2(t)τ

K∑
n=1

1

K

τ∑
i=1

E
[
∥∇Fn(w

i−1
n (t), ξi−1

n (t))

−∇Fn(w
i−1
n (t)) +∇Fn(w

i−1
n (t))∥22

]
(b)

≤ η2(t)τ

(
τ

K∑
n=1

σ2
n

K
+

K∑
n=1

1

K

τ∑
i=1

E
[∥∥∇Fn(w

i−1
n (t))

∥∥2
2

])
(c)

≤ η2(t)τ2
K∑

n=1

1

K
σ2
n

+ 2Lη2(t)τ

K∑
n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− F ∗

n

]
,

(53)

where (a) follows from the convexity of ∥·∥22, (b) from As-
sumption 4 and E[∇Fn(w

i−1
n (t), ξi−1

n (t))] = ∇Fn(w
i−1
n (t)),

while (c) from the L-smoothness of Fn, which implies that
[34]:

∥∥∇Fn(w
i−1
n (t))

∥∥2
2
≤ 2L(Fn(w

i−1
n (t))− F ∗

n). (54)

In the following we bound the last term in (52), A2, as:

A2 = 2

K∑
n=1

1

K
E [⟨w(t)−w∗,∆wn(t)⟩]

= 2η(t)

K∑
n=1

1

K

τ∑
i=1

E
[
⟨w∗ −w(t),∇Fn(w

i−1
n (t), ξi−1

n (t))⟩
]

= 2η(t)×[
K∑

n=1

1

K

τ∑
i=1

E
[
⟨wi−1

n (t)−w(t),∇Fn(w
i−1
n (t), ξi−1

n (t))⟩
]

︸ ︷︷ ︸
B1

+

K∑
n=1

1

K

τ∑
i=1

E
[
⟨w∗ −wi−1

n (t),∇Fn(w
i−1
n (t), ξi−1

n (t))⟩
]

︸ ︷︷ ︸
B2

]
.

(55)

Next, for B1 we have

B1

(a)

≤ η(t)

K∑
n=1

1

K

τ∑
i=1

E
[ 1

η(t)

∥∥wi−1
n (t)−w(t)

∥∥2
2

+ η(t)
∥∥∇Fn(w

i−1
n (t), ξi−1

n (t))
∥∥2
2

]
(b)

≤
K∑

n=1

1

K

τ∑
i=1

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]
+ η2(t)τG2,

(56)

where (a) follows from the Cauchy-Schwarz inequality in
combination with the inequality

2

(
x√
η(t)

)
(
√
η(t)y) ≤ x2

η(t)
+ η(t)y2, (57)

while (b) follows from Assumption 3. Next, we bound B2

from (55) as:

B2 ≤ 2η(t)

K∑
n=1

1

K

τ∑
i=1

E
[
⟨w∗ −wi−1

n (t),∇Fn(w
i−1
n (t))⟩

]
(a)

≤ 2η(t)

K∑
n=1

1

K

τ∑
i=1

E
[
Fn(w

∗)− Fn(w
i−1
n (t))

− µ

2

∥∥wi−1
n (t)−w∗∥∥2

2

]
,

(58)

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3258485

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 15,2023 at 12:53:00 UTC from IEEE Xplore.  Restrictions apply. 



13

where (a) follows from the µ-strong convexity of Fn, ∀n ∈ N .
By combining (53) and (55) we conclude to

A1 +A2

≤ η2(t)τ2
K∑

n=1

σ2
n

K
+

K∑
n=1

1

K

τ∑
i=1

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]
+ η2(t)τG2 − 2η(t)

K∑
n=1

1

K

τ∑
i=1

E
[µ
2

∥∥wi−1
n (t)−w∗∥∥2

2

]
+ 2Lη2(t)τ

K∑
n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− F ∗

n

]
− 2η(t)

K∑
n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− Fn(w

∗)
]
.

(59)

Next, we bound the last two terms in (59), which we denote
as C. That gives

C = 2Lη2(t)τ

K∑
n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− F ∗

n

]
− 2η(t)

K∑
n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− Fn(w

∗)
]

= −2η(t)(1− Lη(t)τ)

K∑
n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− F ∗

n

]
+ 2η(t)

K∑
n=1

1

K

τ∑
i=1

E [Fn(w
∗)− F ∗

n ] .

(60)

We can now write C as

C = −2η(t)(1− Lη(t)τ)

×
K∑

n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− F (w∗)

]
+ (2η(t)− 2η(t)(1− Lη(t)τ))

×
K∑

n=1

1

K

τ∑
i=1

E [F (w∗)− F ∗
n ]

≤ −2η(t)(1− Lη(t)τ)

×
K∑

n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− F (w∗)

]
︸ ︷︷ ︸

D

+ 2Lη2(t)τ2Γ.

(61)

To bound D from (61), we write

D
(a)
=

K∑
n=1

1

K

τ∑
i=1

E
[
Fn(w

i−1
n (t))− F (w(t))

]
+

K∑
n=1

1

K

τ∑
i=1

E [Fn(w(t))− F (w∗)]

≥
K∑

n=1

1

K

τ∑
i=1

E
[
⟨∇Fn(w(t)),wi−1

n (t)−w(t)⟩
]

+ τE [(F (w(t))− F (w∗))]

(b)

≥ −1

2

K∑
n=1

1

K

τ∑
i=1

E
[
∥η(t)∇Fn(w(t))∥22

+
1

η(t)

∥∥wi−1
n (t)−w(t)

∥∥2
2

]
+ τE [F (w(t))− F (w∗)]

(c)

≥ −
K∑

n=1

1

K

τ∑
i=1

E
[
η(t)L(Fn(w(t))− F (w∗))

+
1

2η(t)

∥∥wi−1
n (t)−w(t)

∥∥2
2

]
+ τE [F (w(t))− F (w∗)] ,

(62)

where in (a) we have used that
∑K

n=1
1
KFn(w(t)) = F (w(t)),

(b) follows from Cauchy-Schwarz inequality and (c) from (54).
Next, by plugging D in C we get

C ≤ 2η(t)(1− Lη(t)τ)

K∑
n=1

1

K

τ∑
i=1

E
[
η(t)L(Fn(w(t))

− F (w∗)) +
1

2η(t)

∥∥wi−1
n (t)−w(t)

∥∥2
2

]
+ 2Lη2(t)τ2Γ

− 2η(t)(1− Lη(t)τ)E [τ(F (w(t))− F (w∗))]

(a)

≤ 2Lη2(t)τ2Γ +

K∑
n=1

1

K

τ∑
i=1

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]
,

(63)

where (a) holds for η(t) ≤ 1
τL , since F (w(t)) − F (w∗) ≥

0, ∀t.
By plugging (53) and (55) in (59), yields

A1 +A2 ≤ η2(t)τ2
K∑

n=1

σ2
n

K + η2(t)τG2 + 2Lη2(t)τ2Γ

+ 2

K∑
n=1

1

K

τ∑
i=1

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]
− µη(t)

K∑
n=1

1

K

τ∑
i=1

E
[∥∥wi−1

n (t)−w∗∥∥2
2

]
(a)

≤ η2(t)τ2
K∑

n=1

σ2
n + η2(t)τG2 + 2Lη2(t)τ2Γ

+ 2

K∑
n=1

1

K

τ∑
i=2

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]
− µη(t)

K∑
n=1

1

K

τ∑
i=2

E
[∥∥wi−1

n (t)−w∗∥∥2
2

]
− µη(t)E

[
∥w(t)−w∗∥22

]
,

(64)
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and now we have

A1 +A2

(b)

≤ η2(t)τ2
K∑

n=1

σ2
n

K
+ η2(t)τG2 + 2Lη2(t)τ2Γ

+ 2

K∑
n=1

1

K

τ∑
i=2

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]
+ µη(t)(1− η(t))

(
− (τ − 1)E

[
∥w(t)−w∗∥22

]
+

1

η(t)

K∑
n=1

1

K

τ∑
i=2

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

])
− µη(t)E

[
∥w(t)−w∗∥22

]
,

(65)

where in (a) we used that w0
n(t) ≜ w(t), while (b) follows

from the fact that:

−
∥∥wi−1

n (t)−w∗∥∥2
2

= −
∥∥wi−1

n (t)−w(t)
∥∥2
2
− ∥w(t)−w∗∥22

− 2⟨wi−1
n (t)−w(t),w(t)−w∗⟩

(c)

≤ −
∥∥wi−1

n (t)−w(t)
∥∥2
2
− ∥w(t)−w∗∥22

+
1

η(t)

∥∥wi−1
n (t)−w(t)

∥∥2
2
+ η(t) ∥w(t)−w∗∥22

=

(
1

η(t)
− 1

)∥∥wi−1
n (t)−w(t)

∥∥2
2

− (1− η(t)) ∥w(t)−w∗∥22 ,

(66)

where (c) follows from Cauchy-Schwarz inequality, combined
with the inequality in (57). By further expanding (65), we get

A1 +A2

≤ η2(t)τ2
K∑

n=1

σ2
n

K
+ η2(t)τG2 + 2Lη2(t)τ2Γ

− µη(t)(τ − η(t)(τ − 1))E
[
∥w(t)−w∗∥22

]
+ (2 + µ− µη(t))

K∑
n=1

1

K

τ∑
i=2

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]
,

(a)

≤ η2(t)τ2
K∑

n=1

σ2
n

K
+ η2(t)τG2 + 2Lη2(t)τ2Γ

− µη(t)E
[
∥w(t)−w∗∥22

]
+ (2 + µ)

K∑
n=1

1

K

τ∑
i=2

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]
,

(67)

where in (a) we have used that 0 < η(t) ≤ 1, which also
implies that τ −η(t)(τ −1) ≥ 1. Finally, the last term in (67),

can be bounded as follows:
K∑

n=1

1

K

τ∑
i=2

E
[∥∥wi−1

n (t)−w(t)
∥∥2
2

]

= η2(t)

K∑
n=1

1

K

τ∑
i=2

E


∥∥∥∥∥∥

i∑
j=1

∇Fn(w
j−1
n (t), ξj−1

n (t))

∥∥∥∥∥∥
2

2


(a)

≤ η2(t)

τ∑
i=2

i2G2 = η2(t)
τ(τ − 1)(2τ − 1)

6
G2,

(68)

where (a) follows from the convexity of ∥·∥22 and Assumption
3.

According to [33, Lemma 5], for the second term in the
RHS of (51) it holds

E
[
∥v(t+ 1)− z(t+ 1)∥22

]
≤ K −N

N(K − 1)
η2(t)τ2G2. (69)

Finally the third term in the RHS of (51) vanishes, since
E [v(t)] = z(t), where the expectation is taken with respect to
the randomness in user selection [33]. By substituting (68) in
(67) and also using (69), the proof of Lemma 3 is completed.

APPENDIX C
LMS UPDATE

The LMs can be updated as follows:

λ
(k+1)
1,n =

[
λ
(k)
1,n + a(k)

(
d(B(k)

n + 1) +m

− lup(k)n W log2

(
1 +

gnE
(k)
n

l
up(k)
n WN0

))]+
,

(70)

λ
(k+1)
2,n =

[
λ
(k)
2,n + a(k)

(
ζτ3c3nD

3
n

lc(k)
2 + E(k)

n − Emax
n

)]+
,

(71)

λ
(k+1)
3 =

λ(k)3 + a(k)

∑
n∈N

1

N

δ2n(
2B

(k)
n − 1

)2 − ϵ



+

,

(72)

λ
(k+1)
4 =

[
λ
(k)
4 + a(k)

(
a1 − lc(k)

)]+
, (73)

λ
(k+1)
5,n =

[
λ
(k)
5,n + a(k)

(
1−B(k)

n

)]+
, (74)

where k denotes the iteration index, [·]+ = min(·, 0) and
a(k) is a positive diminishing step size, a selection which
guarantees the convergence of the subgradient method [36].
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