
1

Profit Maximization for Cache-Enabled Vehicular
Mobile Edge Computing Networks

Wenqi Zhou, Junjuan Xia, Fasheng Zhou, Lisheng Fan, Xianfu Lei, Arumugam Nallanathan,
and George K. Karagiannidis

Abstract—In this paper, we investigate a multiuser cache-
enabled vehicular mobile edge computing (MEC) network,
where one edge server (ES) has some caching and computing
capabilities to assist the task computing from the vehicular users.
The introduce of caching into the MEC network significantly
affects the system performance such as the latency, energy
consumption and profit at the ES, which imposes a critical
challenge on the system design and optimization. To solve this
challenge, we firstly design the vehicular MEC network in a
non-competitive environment by maximizing the profit of the
ES with a predetermined threshold of user QoE, and jointly
exploit the caching and computing resources in the network.
We then model the optimization problem into a binary integer
programming problem, and adopt the cross entropy (CE) method
to obtain the effective offloading and caching decision with a low
complexity. Simulation results are finally presented to verify that
the proposed scheme can achieve the near optimal performance of
the conventional branch and bound (BnB) scheme, while sharply
reduce the computational complexity compared to the BnB.

Index Terms—Mobile edge computing, edge caching, compu-
tation offloading, profit maximization, cross entropy

I. INTRODUCTION

With the rapid development of communication systems, an
ever-increasing number of mobile devices and Internet data
have brought a critical challenge on massive communication
and computing. To solve this challenge, one promising
technique is mobile edge computing (MEC), which starts
from cloud computing, and evolves to deploy computational
resources to the nodes nearby the users. This can help reduce
the communication and computation overhead significantly.
In the MEC networks, the quality of experience (QoE) of
users mainly depends on the latency, energy consumption and

Copyright (c) 2023 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

W. Zhou, J. Xia, F. Zhou and L. Fan are with the School of
Computer Science, Guangzhou University, Guangzhou, China (e-mail:
2112006056@e.gzhu.edu.cn, {xiajunjuan,zfs,lsfan}@gzhu.edu.cn).

X. Lei is with the Provincial Key Lab of Information Coding and
Transmission, Southwest Jiaotong University, Chengdu 610031, China, and
also with National Mobile Communications Research Laboratory, Southeast
University, Nanjing 210096, China (e-mail: xflei@swjtu.edu.cn).

A. Nallanathan is with the School of Electronic Engineering and
Computer Science, Queen Mary University of London, London, U.K (e-
mail:a.nallanathan@qmul.ac.uk).

G. K. Karagiannidis is with Department of Electrical and Computer
Engineering, Aristotle University of Thessaloniki, Greece and also with
Cyber Security Systems and Applied AI Research Center, Lebanese American
University (LAU), Lebanon (e-mail: geokarag@auth.gr).

This work was supported in part by the NSFC (Nos. 62271158/62101145),
and by the Natural Science Foundation of Guangdong Province (No.
2021A1515011392).

The corresponding authors of this paper are Fasheng Zhou and Lisheng
Fan.

payment, which has been extensively studied in the literature
[1]–[5].

Profit is an important performance of metric for resource
providers in MEC networks, which can help encourage
servers providing edge computing services, and enhance
the users’ QoE [6]–[13]. In this direction, the authors in
[6], [7] investigated how to maximize the profit of the
MEC networks through the computational capability allocation
among users, where the users’ QoE was taken into account by
considering different system factors such as the latency, energy
consumption, and user payment. In addition, a three-tire cloud
computing architecture was investigated in [8], where the
profit was maximized for the cloud provider by optimizing
the request scheduling under the constraint of the user service
price and service latency. Moreover, the authors in [9], [10]
investigated the cloud computing system and maximized the
profit of cloud brokers, where the pricing strategy was devised
by jointly taking into account the diversity and cost in the
users’ QoE. In further, the profit maximization problem of the
cloud service provider was studied in [11], [12], where the
fund allocation and server configuration were optimized with
the constraint on the service time of users. In addition, the
work in [3], [5] provides a fundamental framework design
on the task assignment for reliable blockchain-empowered
federated edge learning, which is a critical progress in the
development of blockchain and federated learning.

To further enhance the performance of the MEC networks,
caching is introduced into the system by pre-storing popular
contents close to the users to reduce the overhead of the
communication and computation. It is of vital importance
to jointly optimize the caching and computing services in
the cache-enabled MEC networks, in order to enhance the
system performance [14]–[17]. In this direction, S. Bi et.al
studied how to devise the cache-enabled MEC networks by
maximizing the QoE of users [14]. The user utility was
maximized in the cache-enabled MEC networks, through
studying the problem of joint service caching and task
offloading under the constraint of the storage, computation
and user budget [15]. In addition, the authors in [16], [17]
studied the cache-enabled Internet of Vehicles (IoV) edge
computing network to minimize the system latency, where the
computation offloading and caching were jointly investigated.
So far, there has been little work on the profit maximization
in the cache-enabled MEC networks, where the joint impact
of caching and computing should be fully taken into account.
This motivates the work in this paper.

In this paper, we study a multiuser cache-enabled vehicular
MEC network with one edge server (ES), where the ES can
assist the task computation of the vehicular users through

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3275365

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 10:05:38 UTC from IEEE Xplore. Restrictions apply.

2

Edge server

Vehicle users

O ffloading

Center C loud

Fig. 1. System model of cache-enabled vehicular MEC networks.

its caching and computing resources. For this system, we
firstly design the network in a non-competitive environment
with the goal of maximizing the profit of the ES, while
satisfying the QoE of users. And then, the maximization
problem is modeled into a binary integer programming
problem, and we adopt cross entropy (CE) method to solve
the problem of offloading and caching decisions with a low
complexity. Finally, simulations are conducted to demonstrate
the superiority of the proposed scheme over the traditional
ones.

II. SYSTEM MODEL

Fig. 1 depicts the system model of a cache-enabled
vehicular MEC network, where there is one ES surrounded
by M vehicular users {um|1 ≤ m ≤M}, and the ES can
download resources from the center cloud through a wired
link. These M users have some computational tasks that
need to be executed by in-car applications. As the users are
generally of limited computational capability, the ES with
a powerful computational capability should help compute
the tasks through wireless links from the users to the ES.
Moreover, the ES is equipped with a storage space of Ω,
which can pre-store some applications in order to speed
up the computation. Specifically, if some frequently used
applications have already been pre-stored in the ES, the user
does not need to offload these applications1 but to send the
contextual information (e.g., the user related parameters, which
are negligible compared to the application itself.) and wait
for the corresponding task computational result from the ES.
Otherwise, the vehicle needs to offload the applications for the
task execution or compute the task locally. In the following
part, we detail the caching model as well as the computation
and communication model.

A. Caching Model
Let I denote the set of applications in the network, and

there are I applications in total. Due to the limited storage
space, only a part of applications can be cached in the ES.
The caching strategy should take into account some factors,
such as the application popularity, caching cost and so on.
For the i-th application, we use xi to present the associated
caching decision, given by

xi =

{
1, If application i is cached in the ES,
0, Else.

(1)

1Vehicles can outsource the in-car applications to the ES for the task
execution [17].

The constraint in the storage space at the ES is
I∑
i=1

xiωi ≤ Ω. (2)

where ωi is the application size in bits. Without loss of
generality, we use the Zipf distribution [18] to model the
application popularity, given by

pi =
i−γ∑I

i1=1 i1
−γ , (3)

where pi is the popularity of the i-th application, and γ > 0
is an essential parameter of Zipf distribution.

B. Computation and Communication Model

As mentioned before, if the application is not cached in the
ES, then the task has to be computed locally, or computed
by the ES through offloading. Let Im denote the application
set requested by the m-th user to compute their tasks, where
Im ⊆ I. When tasks needed to be computed locally, the local
latency and energy consumption of user m can be written as

Llocalm =
∑
i∈Im

(1− xi) (1− ym,i)
ωiζ

fm
, (4)

Elocalm =
∑
i∈Im

(1− xi) (1− ym,i)ωif2mζεm, (5)

where ym,i is the binary offloading decision, in which ym,i =
0 corresponds to the local computation while ym,i = 1
indicates the full offloading of the i-th application from user
um to the ES for the task computing. Notation ζ is the
computational workload, fm is the computational capability
of user m, and εm is the energy consumption coefficient of
user m. When tasks are executed through the offloading, the
transmission latency and energy consumption of user m are

Ltransm =
∑
i∈Im

(1− xi)ym,i
ωi
rm

, (6)

Etransm =
∑
i∈Im

(1− xi)ym,i
ωi
rm

Pm, (7)

where Pm is the transmit power of user m, and rm is the
transmission data rate,

rm = Bm log2

(
1 +

Pm|hm|2

σ2

)
, (8)

in which Bm is the wireless channel bandwidth of user m,
hm ∼ CN (0, ξ) is the channel parameter of the link from
user m to the ES, and σ2 is the variance of additive white
Gaussian noise (AWGN) at the ES. After offloading, the ES
can compute the tasks in parallel, where virtual machines are
created to uniformly allocate the computational capability to
the users. Accordingly, the latency and energy consumption of
computing the tasks from user m at the ES are

Lesm =
∑
i∈Im

(1− xi)ym,i
ωiζ

fes/M
, (9)

Eesm =
∑
i∈Im

(1− xi)ym,i(fes/M)2ωiζεes, (10)

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3275365

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 10:05:38 UTC from IEEE Xplore. Restrictions apply.

3

where fes is the computational capacity of the ES, and εes is
the associated energy consumption coefficient. From (9) and
(10), we can obtain the total computational latency and energy
consumption of the ES as,

Les = max(Les1 , L
es
2 , ..., L

es
M), (11)

Ees =

M∑
m=1

Eesm . (12)

Moreover, the total latency and energy consumption of user
m are

Lm = max(Llocalm , Ltransm + Lesm), (13)

Em = Elocalm + Etransm . (14)

III. PROBLEM FORMULATION AND PROFIT MAXIMIZATION

In this section, we firstly formulate the offloading and
caching problem to maximize the server profit while guaran-
teeing the QoE of users, and then employ the CE method to
obtain the offloading and caching decision. We further discuss
the computational complexity of the CE-based method.

A. Problem Formulation

When the server helps accomplish the computational tasks
from the users, it should be awarded some profit due to user
payment, and the profit award from user m is

Rm = β1
∑
i∈Im

(1− xi)ym,iωi + β2
∑
i∈Im

xiωi, (15)

in which β1 and β2 are the price coefficients (Unit:
cents/Mbits) of computing and caching at the ES, respectively.
The total profit award of the ES is

λaward =

M∑
m=1

Rm. (16)

Meanwhile, to assist the computation, the server has to
suffer some profit loss due to computing and pre-storing the
applications. Specifically, the profit loss of the server due to
computing depends on the computational energy consumption
and latency, given by

λcomp = ηeE
es + ηlL

es, (17)

where ηe and ηl are the economic factors (Unit: cents/J,
cents/s) of the energy consumption and latency, which turn
the energy consumption and latency into the economic sense.
In addition, the ES also suffers some profit loss due to the
caching, depending on the size of the application,

λcache = ηs

I∑
i∈I

xiωi, (18)

where ηs ≥ 0 is the economic factor (cents/Mbits) for caching.
Note that the above β1, β2, ηe, ηl, and ηs should

be set according to the specific application scenarios and
requirements. Take β1 as an example to explain the impact
of these coefficients on the system profit. If β1 is set too high,
users may be reluctant to offload tasks to the ES due to high

payment, which may lead to an decreased profit at the ES. On
the contrary, if β1 is set too small, the ES may suffer economic
loss due to little revenue. Hence, the setting of these economic
coefficients including β1 should jointly take into account the
user payment and the ES profit.

By jointly taking into account the award and loss, we obtain
the overall profit of the server (Unit: cents) as

λES = λaward − λcomp − λcache. (19)

On the other hand, by jointly considering the latency, energy
consumption and the computational payment, we can write the
QoE of user m as

Um = ηeEm + ηlLm + ηpRm, (20)

where ηp ∈ [0, 1] is a factor to indicate the importance of
the price for users. For the entire system, we can formulate
the system design by maximizing the server profit and
guaranteeing the QoE of users meanwhile, given by

P : max
{xi,ym,i}

λES

s.t. C1 : Um < Uth, ∀m ∈ [1,M],

C2 : xi ∈ {0, 1}, ∀i ∈ I,

C3 :

I∑
i=1

xiωi ≤ Ω,

C4 : ym,i ∈ {0, 1}, ∀m ∈ [1,M], ∀i ∈ Im,

(21)

where Uth is a predetermined threshold of the QoE, and
the optimization variables come from the caching variables
{xi|i ∈ I}, and the offloading variables {ym,i|1 ≤ m ≤
M, i ∈ Im}.

Note that the above optimization problem is a binary integer
programming problem, which is hard to be solved by the
conventional method such as convex optimization. Although
it can be solved by the branch-and-bound (BnB) algorithm, its
huge complexity makes it difficult for practical applications.
In many practical vehicular MEC networks, vehicles have
to complete the task within the timescale of millisecond, in
order to give a quick response on the vehicle operation. To
meet this requirement, we turn to use the CE method to
solve the problem, which is a heuristic algorithm and widely
used in integer nonlinear programming problems thanks to its
advantages of implementation simplicity and fast convergence
[19]–[21].

B. CE-Based Offloading and Caching Scheme

In this part, we employ the CE algorithm to solve the
binary caching and offloading decision in (21). Let J =
I +

∑M
m=1 Im, where Im is the number of the applications

in Im, and a J-dimensional vector z = [z1, z2, ..., zJ] can be
constituted, where it consists of {xi|i ∈ I} and {ym,i|m ∈
[1,M], i ∈ Im}. In particular, zj ∈ {0, 1} for j ∈ [1, J], and
the first I elements represent the caching decision, while the
rest elements denote the offloading decision. The idea of using
the CE algorithm to solve the problem in (21) lies in that we
try to learn a distribution of caching and offloading decision,
which is close to the true distribution of the optimal decision.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3275365

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 10:05:38 UTC from IEEE Xplore. Restrictions apply.

4

Specifically, we use q(z,µ) to denote the true distribution
of the optimal caching and offloading decision, and g(z,µ)
represents a theoretically-tractable distribution that needs to
be learned, where µ = [µ1, µ2, ..., µJ] denotes the mean of
the distribution. For the two distributions, the cross entropy is
given by

H(q, g) = −
∑

q(z,µ) ln g(z,µ), (22)

which represents the distance between the two distributions.
From H(q, g), we aim to learn g(z,µ) by iterative training,
in order to minimize the cross entropy. For the binary integer
programming problem in (21), we firstly choose Bernoulli
distribution as a feasible solution of g(z,µ), expressed by

g(z,µ) =

J∏
j=1

µ
zj
j (1− µj)1−zj , (23)

where uj ∈ [0, 1] is the mean of element zj , i.e., Pr(zj = 1) =
uj . We then generate some samples of caching and offloading
decision for the learning, according to the distribution g(z,µ).
Let N denote the set of feasible samples. In iteration k ∈
[1,K], we repeatedly generate the sample zn according to
(23), where n ∈ N . In detail, the element zj in zn is parallelly
generated according to the Bernoulli distribution of Pr(zj =
1) = uj and Pr(zj = 0) = 1 − uj . Meanwhile, the sample
zn that does not satisfy the constraint C1 and C3 in (21)
is removed during the process of producing samples. After
we obtain N samples for the set N , the sample generation at
iteration k is completed. Based onN , we further learn the µ of
g(z,µ) to minimize the cross entropy. As the decision samples
in the set N are independent, we can obtain q(z,µ) = 1

N , and
write the minimum of cross entropy as

minH(q, g) = max
1

N

N∑
n=1

ln g(zn,µ). (24)

As the optimal caching and offloading decision in (21) is to
maximize λES , the feasible samples of the decision in N are
sorted in descending order according to the value of λES at
each iteration. The first Nelite decisions are selected as elite
decisions to update the parameters µ, which is written as

µ∗ = arg max
µ

1

N

Nelite∑
n=1

ln g(z(n),µ), (25)

where z(n) indicates the n-th elite decision. According to [20],
we can obtain the value of µ∗ at iteration k, where the element
µ∗j of µ∗ is obtained by

µ∗j =
1

Nelite

Nelite∑
n=1

z
(n)
j . (26)

We update µ(k) based on µ(k−1) and µ∗(k) of iteration k − 1
and k by

µ(k) = bµ∗(k) + (1− b)µ(k−1), (27)

where b ∈ [0, 1] is the learning rate, which can be set in
the range of [0.4, 0.9] to achieve a fine result [21]. After K
iterations, we can finally obtain the estimate of the caching and
offloading decision. The overall CE-based learning algorithm
is summarized in Algorithm 1.

Algorithm 1 CE-based joint offloading and caching scheme
Input: N = [], µ(0) = 0.5× 1J×1

1: for k = 1 : K do
2: while |N | < N do
3: generate zn based on g(z,µ) under constraints C1

4: and C3

5: end while
6: Calculate the function (19) of N samples
7: Sort {λES(zn)}Nn=1

8: Select the first Nelite samples as elites
9: λmaxES = Average{λES(zn)}Nelite

n=1

10: Update µ(k+1)

11: end for
Output: λmaxES , z

C. Complexity Analysis

In this part, we provide some analysis on the computational
complexity of the CE method. For the J-dimensional binary
integer programming problem, CE method needs to update
the parameters of the J elements in K iterations. Therefore,
the computational complexity of CE method is O(JK). In
contrast, the computational complexity of the conventional
BnB is close to that of the exhaustive method, as it is
performed sequentially. Although pruning can be carried out in
the process of BnB to reduce the complexity, its computational
complexity is still about O(2J). Obviously, the computational
complexity of CE method is much lower than that of BnB,
which is about JK

2J
of the BnB. Moreover, BnB requires a large

memory for storage, especially when the problem dimension
increases. Therefore, CE algorithm shows more advantages
with the increase of the problem dimension J , and it is much
more readily to be implemented in a parallel way.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this part, we provide some simulation results to verify the
proposed studies. If not specified, there are 500 applications
in the network which are of the same size, and each user
requests 10 applications for the task computing, according to
the Zipf distribution with γ = 2. The size of the application
is 80Mbits, and the storage space is 30Gbits. Moreover, the
wireless links in the network experience Rayleigh block fading
with the average channel gain of unity, and the wireless
bandwidth of each user is 40MHz. The transmit power of
users is 2W, and the variance of AWGN is σ2 = 1× 10−2W.
In further, the computational workload ζ is set to 2cycle/bit,
and the CPU cycle frequencies of the users and ES are set to
400MHz and 800MHz, respectively. The energy consumption
coefficients of the users and ES are set to 1 × 10−26 and
1×10−28, respectively. Furthermore, the price coefficients β1
and β2 are set to 1cent/Mbits and 5cents/Mbits, respectively.
The economic factors ηe, ηl, and ηs are set to 100cents/J,
100cents/s, and 10cents/Mbits, respectively. Such setting of
economic coefficients can make the award and loss of the ES
at the same magnitude, which can help analyze the impact of
the system parameters on the profits. The profit of the ES in
the simulation is in 104.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3275365

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 10:05:38 UTC from IEEE Xplore. Restrictions apply.

5

0 10 20 30 40 50

Number of iterations

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
P

ro
fi

t

BnB

N=1000,N
elite

=500

N=1000,N
elite

=10

N=100,N
elite

=10

N=50,N
elite

=10

30 35 40

0.1

0.12

0.14

Fig. 2. Profit of the proposed CE-based scheme versus the number of
iterations.

In order to show the performance of the proposed CE-based
method, we demonstrate the convergence of the proposed
CE-based scheme in a small-scale experiment, and give the
profit of the BnB as a benchmark for comparison, where
there are two users in the network, the total applications is
20, and the storage space is 1200Mbits. Fig. 2 shows the
convergence of the proposed scheme versus the number of
iterations under different settings of N and Nelite, where the
number of iteration varies from 0 to 50. We can observe from
this figure that for different settings of N and Nelite, the
proposed scheme can converge to the optimal or near optimal
profit of BnB, and the convergence speed is affected by the
specific values of N and Nelite. In particular, the convergence
rate is fast when Nelite is small with respect to N , and the
proposed CE-based method is much easier to converge with
a larger N at the cost of the increased complexity. Therefore,
the proposed method can provide a flexible tradeoff between
the performance and complexity by using different values
of N and Nelite. Moreover, the computational complexity
of the BnB is about O(240), while that of the CE based
scheme is about O(40 × 50), which is about 0.2% of the
conventional BnB algorithm. These results indicate that the
CE based scheme can achieve the near-optimal performance
with a significantly reduced complexity.

Fig. 3 depicts the profit of the proposed scheme versus
the application size, where there are 200 or 300 users in
the network and the size of the application varies from 0 to
80Mbits. For comparison, we plot the profits of the random
scheme which randomly selects the offloading and caching
decisions, and we also plot the profit of the popularity based
caching scheme (pop scheme) which always selects the most
popular applications to cache. From this figure, we can see
that the profit of the three schemes increases with a larger
application size, as more payment is incurred from the caching
and computing. Moreover, the proposed scheme is superior
to the other two schemes. In particular, when the application
size is 80Mbits and the user number is 300, the profit of the
proposed scheme is about 25.6% and 48.7% higher than that
of the pop scheme and random scheme, respectively. This
is because that the proposed scheme can effectively select

0 10 20 30 40 50 60 70 80

Application size (Mbits)

0

20

40

60

80

100

120

140

P
ro

fi
t

M=200

M=300

Proposed scheme

Random scheme

Pop scheme

Fig. 3. Profit of the three schemes versus the application size.

100 200 300 400 500

Number of users

0

50

100

150

200

250

P
ro

fi
t

Proposed scheme

Random scheme

Pop scheme

ω=60Mbits

ω=80Mbits

ω=80Mbits

ω=60Mbits

Fig. 4. Impact of the user number on the profit of the three schemes.

some applications for caching and offloading, while the other
two schemes fail. In further, for the three schemes, the profit
with M=300 is higher than that with M=200, as more users
result in a larger payment. The results in Fig. 3 attests the
effectiveness of the proposed scheme.

Fig. 4 portrays the impact of the user number on the profit
of three schemes, where the user number varies from 100 to
500 and the application size is 60Mbits or 80Mbits. From this
figure, we can observe that the profit of the three schemes
increases with a larger number of users, as more users result
in a larger number of requests, and the payment to the ES
increases accordingly. Moreover, for various values of M ,
the proposed scheme is shown to outperform the other two
schemes. In particular, when the number of users is 500 and
application size is 80Mbits, the profit of the proposed scheme
is about 66.3% and 15.1% better than that of the random
scheme and pop scheme, respectively. This indicates that the
proposed scheme can reasonably decide which applications
to be cached and offloaded. On the contrary, the other two
schemes can not make the decision flexibly, which results in a
lower profit. In further, when the application size is 60 Mbits,
the profit of the three schemes is lower than that with 80
Mbits, as a larger application size leads to more payment. The
results in Fig. 4 verify the superiority of the proposed scheme

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3275365

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 10:05:38 UTC from IEEE Xplore. Restrictions apply.

6

Storage space (Gbits)

0

50

100

150

P
ro

fi
t

Proposed scheme

Random scheme

Pop scheme

M=200

M=200

M=300

M=300

403020100

Fig. 5. Effect of the storage space on the profit of the three schemes.

in large-scale networks.
Fig. 5 illustrates the effect of the storage space on the profit

of the three schemes, where there are 200 or 300 users and
the storage space of the ES changes from 0 to 40Gbits. We
can observe from this figure that the profit of the proposed
scheme increases with the storage space when the space is in
the low region. This is because that caching can help improve
the computation and meet the QoE of users. However, when
the space is larger than 10Gbits, the profit of the proposed
scheme remains almost unchange. In contrast, the profit of the
pop scheme decreases with the space. This is because that,
unlike the other two schemes, the proposed scheme always
selects an appropriate caching decision to maximize the profit
of ES, rather than caches more applications as the storage
space increases. Therefore, the profit of the proposed scheme
can outperform the other schemes. In particular, when the
storage space is 40Gbits and user number is 300, the profit
of the proposed scheme improves by 33.6% and 48.7% over
that of the pop scheme and random scheme, respectively. In
further, the profit of the three schemes with M=300 is higher
than that of the schemes with M=200. These results in Fig.
5 further demonstrate that the proposed scheme is effective in
large-scale networks.

V. CONCLUSIONS

In this paper, we investigated a cache-enabled vehicular
MEC network, and designed the network in a non-competitive
environment by maximizing the profit of the ES while
satisfying the QoE of users. The optimization problem was
modeled into a binary integer programming problem, and the
CE method was used to obtain the effective offloading and
caching decisions with a low complexity. Simulation results
were finally provided to demonstrate the effectiveness of the
proposed scheme. In particular, the proposed scheme can
achieve almost the same performance as the conventional BnB
algorithm, while sharply reduce the computational complexity
compared to the BnB. In future works, we will study the cache-
enabled MEC networks with multiple servers, and investigate
the joint impact of caching and collaboration among servers
on the system profit.

REFERENCES

[1] Q. Gu, Y. Jian, G. Wang, and R. Fan, “Mobile edge computing via
wireless power transfer over multiple fading blocks: An optimal stopping
approach,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10 348–10 361,
2020.

[2] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wirel. Commun., vol. 17, no. 3, pp. 1784–1797, 2018.

[3] J. Kang, X. Li, J. Nie, Y. Liu, M. Xu, Z. Xiong, D. Niyato, and
Q. Yan, “Communication-efficient and cross-chain empowered federated
learning for artificial intelligence of things,” IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 5, pp. 2966–2977, 2022.

[4] F. Zhou and R. Q. Hu, “Computation efficiency maximization in
wireless-powered mobile edge computing networks,” IEEE Trans. Wirel.
Commun., vol. 19, no. 5, pp. 3170–3184, 2020.

[5] J. Kang, Z. Xiong, X. Li, Y. Zhang, D. Niyato, C. Leung, and C. Miao,
“Optimizing task assignment for reliable blockchain-empowered fed-
erated edge learning,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp.
1910–1923, 2021.

[6] X. Huang, B. Zhang, and C. Li, “Platform profit maximization on service
provisioning in mobile edge computing,” IEEE Trans. Veh. Technol.,
vol. 70, no. 12, pp. 13 364–13 376, 2021.

[7] Q. Wang, S. Guo, J. Liu, C. Pan, and L. Yang, “Profit maximization
incentive mechanism for resource providers in mobile edge computing,”
IEEE Trans. Serv. Comput., vol. 15, no. 1, pp. 138–149, 2022.

[8] P. Cong, G. Xu, J. Zhou, M. Chen, T. Wei, and M. Qiu, “Personality-
and value-aware scheduling of user requests in cloud for profit
maximization,” IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1991–
2004, 2022.

[9] P. Cong, Z. Zhang, J. Zhou, X. Liu, Y. Liu, and T. Wei, “Customer
adaptive resource provisioning for long-term cloud profit maximization
under constrained budget,” IEEE Trans. Parallel Distributed Syst.,
vol. 33, no. 6, pp. 1373–1392, 2022.

[10] J. Mei, K. Li, Z. Tong, Q. Li, and K. Li, “Profit maximization for cloud
brokers in cloud computing,” IEEE Trans. Parallel Distributed Syst.,
vol. 30, no. 1, pp. 190–203, 2019.

[11] K. Li, J. Mei, and K. Li, “A fund-constrained investment scheme for
profit maximization in cloud computing,” IEEE Trans. Serv. Comput.,
vol. 11, no. 6, pp. 893–907, 2018.

[12] J. Mei, K. Li, and K. Li, “Customer-satisfaction-aware optimal multi-
server configuration for profit maximization in cloud computing,” IEEE
Trans. Sustain. Comput., vol. 2, no. 1, pp. 17–29, 2017.

[13] J. Mei, K. Li, A. Ouyang, and K. Li, “A profit maximization scheme
with guaranteed quality of service in cloud computing,” IEEE Trans.
Computers, vol. 64, no. 11, pp. 3064–3078, 2015.

[14] S. Bi and L. Huang, “Joint optimization of service caching placement
and computation offloading in mobile edge computing systems,” IEEE
Trans. Wirel. Commun., vol. 19, no. 7, pp. 4947–4963, 2020.

[15] X. Pham, T. Nguyen, V. Nguyen, and E. Huh, “Joint service caching
and task offloading in multi-access edge computing: A qoe-based utility
optimization approach,” IEEE Commun. Lett., vol. 25, no. 3, pp. 965–
969, 2021.

[16] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and
R. Y. Kwok, “Intelligent edge computing in internet of vehicles: A
joint computation offloading and caching solution,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 4, pp. 2212–2225, 2021.

[17] C. Tang, C. Zhu, H. Wu, Q. Li, and J. J. P. C. Rodrigues, “Toward
response time minimization considering energy consumption in caching-
assisted vehicular edge computing,” IEEE Internet Things J., vol. 9,
no. 7, pp. 5051–5064, 2022.

[18] J. Xia, L. Fan, W. Xu, X. Lei, and X. Chen, “Secure cache-aided multi-
relay networks in the presence of multiple eavesdroppers,” IEEE Trans.
Commun., vol. 67, no. 11, pp. 7672–7685, 2019.

[19] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “The cross-
entropy method for optimization,” in Handbook of statistics. Elsevier,
2013, vol. 31, pp. 35–59.

[20] S. Zhu, W. Xu, L. Fan, K. Wang, and G. K. Karagiannidis, “A novel cross
entropy approach for offloading learning in mobile edge computing,”
IEEE Wirel. Commun. Lett., vol. 9, no. 3, pp. 402–405, 2020.

[21] P. de Boer, D. P. Kroese, and S. Mannor, “A tutorial on the cross-entropy
method,” Ann. Oper. Res., vol. 134, no. 1, pp. 19–67, 2005.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3275365

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 10:05:38 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	System Model
	Caching Model
	Computation and Communication Model

	Problem Formulation and Profit Maximization
	Problem Formulation
	CE-Based Offloading and Caching Scheme
	Complexity Analysis

	Simulation Results and Discussions
	Conclusions
	References

