New Results for Pearson Type III Family of Distributions and Application in Wireless Power Transfer

Sotiris A. Tegos, Student Member, IEEE, George K. Karagiannidis, Fellow, IEEE, Panagiotis D. Diamantoulakis, Senior Member, IEEE, and Nestor D. Chatzidiamantis, Senior Member, IEEE

Abstract—The Pearson type III and the log Pearson type III distributions have been considered in several scientific fields, as in hydrology and seismology. In this article, we present new results for these distributions and we utilize them, for the first time in the literature, to investigate the statistical behavior of wireless power transfer, which can prolong the lifetime of Internet of Things networks, considering the nonlinear relationship between the received and harvested power, which can be precisely modeled by using the logistic function. Specifically, we present new closed-form expressions for the statistical properties of a general form of the Pearson type III and the log Pearson type III distributions and we utilize them to introduce a new member of the Pearson type III family, the logit Pearson type III distribution, through which the logit gamma and the logit exponential distributions are also defined. Moreover, we derive closed-form expressions for the probability density function, the cumulative distribution function and moments of the distributions of the sum, the log sum, and the logit sum of Pearson type III random variables. Furthermore, taking into account that the Pearson type III family of distributions is closely related to the considered nonlinear energy harvesting model the statistical properties of the distribution of the harvested power are derived, for both single input single output and multiple input single output scenarios with or without channel state information at the transmitter.

Index Terms—Energy harvesting (EH), log Pearson type III distribution, logit Pearson type III distribution, Pearson type III distribution, wireless power transfer (WPT).

I. INTRODUCTION

The Pearson type III and the log Pearson type III distributions [1]–[4] attracted the interest of the research community, since they have been utilized in several scientific fields, such as hydrology and seismology. Specifically, they are frequently used in hydrology for flood frequency analysis [5], while in [6] the log Pearson type III distribution was applied to flood and maximum rainfall data and its general use in fitting annual rainfall and streamflow sequences, was investigated. Furthermore, in [7] it was found that the log Pearson type III distribution can effectively describe the behavior of the maximum earthquake magnitudes for all ranges and also be applied to evaluate the design magnitudes. Although the Pearson type III and the log Pearson type III distributions have been investigated in the existing literature, a more general form of these distributions is not fully investigated. Moreover, the distributions of the sum and the log sum of Pearson type III random variables (RVs) have not been examined.

Regarding communication systems, the Pearson type III distribution can be considered as a generalized form of the gamma and, thus, the exponential distribution, which are frequently used in wireless communications when Nakagami-m or Rayleigh fading is assumed, respectively. Also, in [8] the outage performance of hybrid automatic repeat requests with incremental redundancy (HARQ-IR) was investigated, through the cumulative distribution function (CDF) of the product of multiple correlated shifted gamma RVs, which is a special case of the Pearson type III distribution. Furthermore, the shifted exponential distribution, which also is a special case of the Pearson type III distribution, was used in [9] to extract the outage capacity in a multicarrier system, whereas in [10] it was proposed to model the headway distance in multihop vehicle to vehicle communications. Finally, in [11] the shifted gamma distribution was used to model long-range dependent Internet traffic, when the input traffic rate is not Gaussian, and in [12] it was also used to extract upper and lower bounds for the channel capacity in neuro-spike communications.

Internet of Things (IoT) leads to the network integration of a huge amount of wireless devices, thus, raising several research and implementation challenges. The priorities of the European Union in the Next Generation IoT (NGIoT) include the development of reliable, low cost, sustainable and scalable wireless networks, IoT miniaturization, energy harvesting (EH), and pervasiveness [13]. EH is a promising solution for prolonging the lifetime of IoT networks by offering self-sustainability to the devices, minimizing, if not eliminating, the use of battery power. This is of paramount importance especially when replacing or recharging the batteries is inconvenient, costly, or dangerous, such as in remote areas and harsh...
industrial environments, e.g., rotating and moving platforms, human bodies, or vacuum equipment [14]. However, the main disadvantage of basic EH methods is their reliability, since they depend solely on ambient natural energy sources, such as wind and solar, which are uncontrollable. To this end, wireless power transfer (WPT) which utilizes radio frequency (RF) signals for EH is an interesting alternative and also benefits from high-density networks [15], [16]. In future wireless networks where WPT is applied, low-power devices without communication capabilities can be wirelessly powered anytime and anywhere and low-power communication devices, e.g., sensors, can experience a ubiquitous wireless connectivity. To this end, WPT can assist in various communication scenarios, e.g., orthogonal multiple access schemes [17], nonorthogonal multiple access schemes [18], [19], etc.

Scanning the open literature, a linear EH model is frequently used to express the harvested power, when WPT is performed [17], [18], [20]. Although, this model can be easily handled because of its simplicity, it can be considered impractical, since it is not accurate and cannot describe the saturation of the EH circuit, which can occur even when the received power is relatively low [21]. Although, in practical EH circuits, a linear region exists, the operation in this region cannot be assured, since it depends on the transmitted power and the fading. To this end, nonlinear EH models were proposed in [22] and [23]. Also, in [21] a practical parametric nonlinear EH model was proposed and its accuracy was verified through measurements. This model is based on the logistic function and due to its accuracy has been adopted in several research works [24]–[26]. It captures the dynamics of the RF energy conversion efficiency for different input power levels, in contrast with the linear model which is accurate only when the received power is constant. However, although this nonlinear EH model has received the researchers’ attention, its statistical properties, e.g., the CDF, the probability density function (PDF), and the moments, have not been derived, which is a prerequisite to analytically evaluate the capabilities and reliability of this technology. Considering that the basis of this model is the logistic function, the analytical investigation of WPT performance, assuming Nakagami-m or Rayleigh fading, is facilitated by the use of the logit Pearson type III distribution, which however has not been defined and studied in the existing literature, in which solely the logit normal distribution has been investigated [27], [28].

2) We derive exact closed-form expressions for the statistical properties of the distribution of the sum, the log sum, and the logit sum of Pearson type III RVs.

3) We utilize the results for the Pearson type III family of distributions to provide a comprehensive analytical framework for the evaluation of the performance of the EH systems, and to analytically evaluate the capabilities and reliability of the WPT technology, taking into account the nonlinear relationship between the received and the harvested power. Useful insights for the EH system can be extracted through the evaluation of the average harvested power and harvested power probability of outage. Both single input single output (SISO) and multiple input single output (MISO) scenarios are considered. Specifically, for the MISO scenario two cases are investigated, i.e., a network with a power beacon (PB) with multiple antennas and a network with multiple PBs with a single antenna. The derived expressions are valid when either perfect channel state information (CSI) or no CSI is available at the PB, which can be considered a practical scenario in machine-type communications (MTCs), where low-power IoT sources perform WPT.

B. Structure

The remainder of the article is organized as follows.

In Section II, the statistical properties of the Pearson type III and the log Pearson type III distribution are derived and the distributions of the sum of Pearson type III and the log sum of Pearson type III RVs are investigated. In Section III, the logit Pearson type III distribution is introduced and its statistical properties are derived as well as the ones of the logit gamma and the logit exponential distributions, and the distribution of the logit sum of Pearson type III RVs. In Section IV, the expressions for the CDF, the PDF, and the moments of the harvested power are derived considering the nonlinear EH model for the SISO and the MISO scenario and simulations are provided. Finally, closing remarks and discussions are provided in Section V.

II. NEW RESULTS FOR THE PEARSON TYPE III AND THE LOG PEARSON TYPE III DISTRIBUTIONS

In this section, the Pearson type III and the log Pearson type III distributions are presented and new results regarding their statistical properties are provided. Also, the distribution of the sum of Pearson type III and log Pearson type III RVs are investigated.

A. Pearson Type III Distribution

If an RV X follows the Pearson type III distribution with parameters (a, b, m), where $a \in \mathbb{R}$ with $a > 0$ is the shape parameter, $b \in \mathbb{R}$ with $b \neq 0$ is the inverse scale parameter and $m \in \mathbb{R}$ is the shift parameter, its PDF is given by [5]

$$f_X(x, a, b, m) = \frac{|b|}{\Gamma(a)}(b(x - m))^{a-1}e^{-b(x-m)}$$

(1)
where $\Gamma(\cdot)$ is the gamma function and e is the base of the natural logarithm. If $b > 0$, $x \in (m, +\infty)$ and, if $b < 0$, $x \in (-\infty, m)$.

In the following proposition, the CDF of the Pearson type III distribution is derived for $b < 0$. For $b > 0$, the CDF is provided in [3], but it is also included in the proposition for completeness.

Proposition 1: The CDF of the Pearson type III distribution can be expressed as follows:

$$F_X(x, a, b, m) = \begin{cases} \frac{1}{\Gamma(a)} \Gamma(a, b(x - m)), b < 0 \\ \frac{1}{\Gamma(a)} \gamma(a, b(x - m)), b > 0 \end{cases} [2]$$

where $\Gamma(\cdot, \cdot)$ and $\gamma(\cdot, \cdot)$ are the upper and lower incomplete gamma function, respectively.

Proof: If $b < 0$, $x \in (-\infty, m)$ the CDF is given by

$$F_X(x, a, b, m) = -\frac{b}{\Gamma(a)} \int_{-\infty}^{x} (b(y - m))^{a-1} e^{-b(y-m)} dy. \quad (3)$$

Using $z = b(y - m)$, (3) can be written as follows:

$$F_X(x, a, b, m) = \frac{b}{\Gamma(a)} \int_{0}^{\infty} z^{a-1} e^{-z} dy. \quad (4)$$

Considering the definition of the upper incomplete gamma function, the expression of the CDF, when $b < 0$, is derived and the proof is completed.

Next, the moments of the Pearson type III distribution are presented. When $b > 0$, the expression for the moments is provided in [3]. We extract the same expression when $b < 0$.

Proposition 2: The nth moment of the Pearson type III distribution is given as follows:

$$\mu_X^n(a, b, m) = \sum_{k=0}^{n} \binom{n}{k} m^{n-k} \Gamma(k + a) b^k \Gamma(a) \quad (5)$$

where $\binom{n}{k}$ denotes the binomial coefficient.

Proof: If $b < 0$, the nth moment is calculated as follows:

$$\mu_X^n(a, b, m) = \int_{-\infty}^{m} x^n f_X(x, a, b, m) dx. \quad (6)$$

Utilizing the binomial theorem, (6) can be rewritten as

$$\mu_X^n(a, b, m) = \frac{1}{\Gamma(a)} \sum_{k=0}^{n} \binom{n}{k} m^{n-k} b^k \int_{0}^{\infty} z^{k+a-1} e^{-z} dz. \quad (7)$$

From the definition of the gamma function, (5) is derived.

Corollary 1: From (5), the mean value is obtained as the first moment and can be expressed as follows:

$$\mu_X = \frac{a}{b} + m. \quad (8)$$

The characteristic function of the Pearson type III distribution is given by [5]

$$\phi_X(t) = \frac{e^{imt}}{(1 - \frac{b}{b})^a} \quad (9)$$

where $j^2 = -1$.

Remark 1: The gamma distribution is a special case of the Pearson type III distribution with $b > 0$ and $m = 0$. If $b \neq 0$, an RV that follows the Pearson type III distribution with parameters (a, b, m) can also be multiplied with a constant c resulting in an RV that follows the Pearson type III distribution with parameters $(a, b/c, mc)$. Accordingly, if an RV follows the gamma distribution with parameters (a, b) with $b > 0$, multiplying this RV with a negative constant c results in an RV that follows the Pearson type III distribution with parameters $(a, b/c, 0)$, where the second parameter is negative.

B. Log Pearson Type III Distribution

If the RV X follows the Pearson type III distribution with parameters (a, b, m), the RV $Y = e^X$ follows the log Pearson type III distribution with the same parameters. If $b > 0$, $y \in (e^m, +\infty)$ and, if $b < 0$, $y \in (0, e^m)$. When $b < 0$, the distribution can also be considered as the inverse log Pearson type III.

The PDF of the log Pearson type III distribution is given by [5]

$$f_Y(y, a, b, m) = \frac{|b| e^{m} \Gamma(a)}{-\Gamma(a)} (b(ln y - m))^{a-1} ln^{-b-1} y \quad (10)$$

where $ln(\cdot)$ is the natural logarithm.

In the following proposition, the CDF of the log Pearson type III distribution is derived for $b < 0$. For $b > 0$, the CDF is provided in [4], but it is also included in the proposition for completeness.

Proposition 3: The CDF of the log Pearson type III distribution can be expressed as follows:

$$F_Y(y, a, b, m) = \frac{1}{\Gamma(a)} \Gamma(a, b(ln y - m)), b < 0 \quad (11)$$

Proof: The CDF of the log Pearson type III distribution is derived by integrating (10) or directly from (2).

The nth moment of the log Pearson type III distribution is given by [5]

$$\mu_Y^n(a, b, m) = e^{mn} \left(\frac{b}{b - n} \right)^a. \quad (12)$$

If $b > 0$, $b > n$ should be satisfied, whereas, if $b < 0$, there is no constraint.

Corollary 2: From (12), the mean value is obtained as the first moment and can be expressed as follows:

$$\mu_Y = \frac{a}{b} + m. \quad (13)$$

An approximation of the characteristic function of the log Pearson type III distribution, as a formal power series [29], is provided in the following proposition.

Proposition 4: The characteristic function of the log Pearson type III distribution is approximately given as follows:

$$\phi_Y(t) = \sum_{n=0}^{\infty} \frac{\mu_Y^n}{n!} (jt)^n = \sum_{n=0}^{\infty} \frac{e^{mn}}{n!} \left(\frac{b}{b - n} \right)^a (jt)^n \quad (14)$$

where $n!$ is the factorial of n. Equation (14) stands only when $b < 0$.

Corollary 3: The infinite series in (14) converges.
calculation of TEGOS et al.

\begin{align*}
\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| &= \lim_{n \to \infty} \left| \frac{e^{\alpha_n t}}{n+1} \left(\frac{b-n}{b-n-1} \right)^n \right| = 0.
\end{align*}

(15)

C. Distribution of the Sum of Pearson Type III RVs

In this section, the distribution of the sum of Pearson type III RVs is investigated. Let \(\{X_i^{(L)}\}_{q=1}^L \) be a set of \(L \) RVs following the Pearson type III distribution with \(a_i \in \mathbb{Z}, \ a_i > 0 \) and either \(b_i > 0 \) \(\forall i \) or \(b_i < 0 \) \(\forall i \). The RV \(\hat{X}_L \) is defined as the sum of the above set, i.e.,

\[\hat{X}_L = \sum_{i=1}^L X_i. \]

(16)

If \(b_i > 0 \) \(\forall i, \ x \in (\hat{m}_L, \infty) \) and if \(b_i < 0 \) \(\forall i, \ x \in (-\infty, \hat{m}_L) \) with \(\hat{m}_L = \sum_{i=1}^L m_i \).

Proposition 5: The PDF of \(\hat{X}_L \) is given by

\[f_X^L(x) = \sum_{i=1}^L \sum_{k=1}^n f_X(x, a_i, L, b_i, \hat{m}_L), \]

\[\times \sum_{i=1}^L \sum_{i_1=1}^n \sum_{i_2=1}^n \cdots \sum_{i_{L-1}=1}^n \sum_{i_L=1}^n \left(-1 \right)^{\hat{a}_L - a_i} \sum_{L=1}^{L} b_j \left(\frac{a_i + a_{L-1} + U(-1) - j - 1}{a_{L+1} + U(-1)} - 1 \right) \left(j_{L-1} - j \right)! \]

\[\times \left(b_i - b_{L-1} + U(-1) \right)^{k-a_i-a_{L-1}+U(-1)} \left(j_{L-2} - j_{L-1} \right) \left(j_{L-2} - j_{L-3} \right) \cdots \left(j_2 - j_1 \right)! \left(j_1 \right)! \left(j_0 \right)! \]

\[\times \prod_{i=1}^{L} \left(j_i + a_{i+1} + U(-1) - j_{i+1} \right) \left(j_i + a_{i+1} + U(-1) - j_{i+1} \right)! \left(j_i - j_{i-1} \right)! \]

\[\left(a_{i+1} + U(-1) - j_{i+1} \right)^{-1} \left(j_i - j_{i-1} \right)! \]

\[\times \left(a_{i+1} + U(-1) - j_{i+1} \right)! \left(a_i - j_i \right)! \left(a_{L-1} - j_{L-1} \right)! \left(a_{L-2} - j_{L-2} \right)! \cdots \left(a_1 - j_1 \right)! \left(a_0 - j_0 \right)! \]

\[\left(b_i - b_{L-1} + U(-1) \right)^{k-a_i-a_{L-1}+U(-1)} \left(j_{L-2} - j_{L-1} \right) \left(j_{L-2} - j_{L-3} \right) \cdots \left(j_2 - j_1 \right)! \left(j_1 \right)! \left(j_0 \right)! \]

\[\times \prod_{i=1}^{L} \left(j_i + a_{i+1} + U(-1) - j_{i+1} \right) \left(j_i + a_{i+1} + U(-1) - j_{i+1} \right)! \left(j_i - j_{i-1} \right)! \]

\[\left(a_{i+1} + U(-1) - j_{i+1} \right)^{-1} \left(j_i - j_{i-1} \right)! \]

\[\left(a_{i+1} + U(-1) - j_{i+1} \right)! \left(a_i - j_i \right)! \left(a_{L-1} - j_{L-1} \right)! \left(a_{L-2} - j_{L-2} \right)! \cdots \left(a_1 - j_1 \right)! \left(a_0 - j_0 \right)! \]

\[\left(b_i - b_{L-1} + U(-1) \right)^{k-a_i-a_{L-1}+U(-1)} \left(j_{L-2} - j_{L-1} \right) \left(j_{L-2} - j_{L-3} \right) \cdots \left(j_2 - j_1 \right)! \left(j_1 \right)! \left(j_0 \right)! \]

\[\times \prod_{i=1}^{L} \left(j_i + a_{i+1} + U(-1) - j_{i+1} \right) \left(j_i + a_{i+1} + U(-1) - j_{i+1} \right)! \left(j_i - j_{i-1} \right)! \]

\[\left(a_{i+1} + U(-1) - j_{i+1} \right)^{-1} \left(j_i - j_{i-1} \right)! \]
Next, closed-form expression for the moments of the distribution of the sum of Pearson type III RVs are provided.

Proposition 7: The nth moment of \hat{X}_L is given by

\[
\mu^n_{\hat{X}_L} = \left\{ \begin{array}{ll}
\mu^n_x(\hat{a}_L, b, \hat{m}_L), & b_i = b \ \forall i \\
\sum_{i=1}^{L} \sum_{k=1}^{\hat{m}_L} \mathbb{E}\left(i, k, \{a_q\}_{q=1}^{L}, \{b_q\}_{q=1}^{L-2} \right) \\
\times \mu^n_x(b, k, \hat{m}_L), & b_i \neq b_j \ \forall i \neq j.
\end{array} \right.
\]

(24)

Proof: The nth moment of \hat{X}_L can be obtained by the integrals $\int_{-\infty}^{\infty} x^n f_{\hat{X}_L}(x) dx$ if $b_i < 0 \ \forall i$ and $\int_{-\infty}^{\infty} f_{\hat{X}_L}(x) dx$ if $b_i > 0 \ \forall i$, by interchanging the order of summation and integration and utilizing (5).

D. Distribution of the Log Sum of Pearson Type III RVs

In this section, the distribution of the log sum of Pearson type III RVs is investigated. If the RV \hat{X}_L is a sum of Pearson type III RVs, the RV $\hat{Y}_L = \log(\hat{X}_L)$ follows the distribution of the log sum of Pearson type III RVs. If $b_i > 0 \ \forall i$, $y \in (e^{\hat{m}_L}, +\infty)$ and, if $b_i < 0 \ \forall i, y \in (0, e^{\hat{m}_L})$.

Proposition 8: The CDF of \hat{Y}_L is given by

\[
F_{\hat{Y}_L}(y) = \left\{ \begin{array}{ll}
F_{Y}(y, \hat{a}_L, b, \hat{m}_L), & b_i = b \ \forall i \\
\sum_{i=1}^{L} \sum_{k=1}^{\hat{m}_L} \mathbb{E}\left(i, k, \{a_q\}_{q=1}^{L}, \{b_q\}_{q=1}^{L-2} \right) \\
\times F_{Y}(y, k, b_i, \hat{m}_L), & b_i \neq b_j \ \forall i \neq j.
\end{array} \right.
\]

(25)

Proof: The CDF of \hat{Y}_L can be obtained from (23).

In the following proposition, the PDF of the distribution of the log sum of Pearson type III RVs is extracted.

Proposition 9: The PDF of \hat{Y}_L is given by

\[
f_{\hat{Y}_L}(y) = \left\{ \begin{array}{ll}
f_Y(y, \hat{a}_L, b, \hat{m}_L), & b_i = b \ \forall i \\
\sum_{i=1}^{L} \sum_{k=1}^{\hat{m}_L} \mathbb{E}\left(i, k, \{a_q\}_{q=1}^{L}, \{b_q\}_{q=1}^{L-2} \right) \\
\times f_Y(y, k, b_i, \hat{m}_L), & b_i \neq b_j \ \forall i \neq j.
\end{array} \right.
\]

(26)

Proof: The PDF of \hat{Y}_L can be obtained as the first derivative of (25) and by utilizing (10).

Next, the moments of the distribution of the log sum of Pearson type III RVs are provided.

Proposition 10: The nth moment of \hat{Y}_L is given by

\[
\mu^n_{\hat{Y}_L} = \left\{ \begin{array}{ll}
\mu^n_y(\hat{a}_L, b, \hat{m}_L), & b_i = b \ \forall i \\
\sum_{i=1}^{L} \sum_{k=1}^{\hat{m}_L} \mathbb{E}\left(i, k, \{a_q\}_{q=1}^{L}, \{b_q\}_{q=1}^{L-2} \right) \\
\times \mu^n_y(b, k, \hat{m}_L), & b_i \neq b_j \ \forall i \neq j.
\end{array} \right.
\]

(27)

If $b_i > 0 \ \forall i, b_i > n \ \forall i$ should be satisfied, whereas, if $b_i < 0 \ \forall i$, there is no constraint.

Proof: The nth moment of \hat{Y}_L can be obtained by the integrals $\int_{0}^{\infty} x^n f_{\hat{Y}_L}(x) dx$ if $b_i < 0 \ \forall i$ and $\int_{0}^{\infty} f_{\hat{Y}_L}(x) dx$ if $b_i > 0 \ \forall i$, by interchanging the order of summation and integration and utilizing (12).

III. Logit Pearson Type III Distribution

In this section, we utilize the derived results of the previous section to introduce a new member of the Pearson type III family, the logit Pearson type III distribution, and derive its statistical properties. In [27] and [28], the logit normal distribution is investigated where, considering that the RV A follows the normal distribution, the RV B follows the logit normal distribution, if $A = \logit(B) = \ln(B/1 - B)$ or $B = \logit(A)$, where $\logit(x) = (1/1 + e^{-x})$ is the logistic function. Accordingly, in this section, we introduce the logit Pearson type III distribution, which is defined as follows.

Definition 1: The RV $Z = (1/1 + e^{-X})$ follows the logit Pearson type III distribution with parameters (a, b, m), if the RV X follows the Pearson type III distribution with the same parameters or, equivalently, $X = \logit(Z)$. Regarding the domain of Z, if $b > 0, z \in (1/(1 + e^{-m}), 1)$, while, if $b < 0, z \in (0, 1/(1 + e^{-m}))$.

Proposition 11: The CDF of the logit Pearson type III distribution can be expressed as follows:

\[
F_{\hat{Z}}(z, a, b, m) = \left\{ \begin{array}{ll}
\frac{1}{1 + e^{m}} \Gamma\left(a, b \left(\ln \frac{1 - z}{z} - m \right) \right), & b < 0 \\
\frac{1}{1 + e^{m}} \gamma\left(a, b \left(\ln \frac{1 - z}{z} - m \right) \right), & b > 0.
\end{array} \right.
\]

(28)

Proof: The CDF of the logit Pearson type III distribution is derived by substituting $x = \ln(c/1 - z)$ in (2).

In the following proposition, the PDF of Z is extracted.

Proposition 12: The PDF of the logit Pearson type III distribution is given as follows:

\[
f_{\hat{Z}}(z, a, b, m) = \frac{|b|e^{bm}}{\Gamma(a)} \left(\frac{b}{1 - z} - m \right)^{a-1} \\
\times z^{-b-1}(1 - z)^{-b-1}.
\]

(29)

Proof: The PDF of the logit Pearson type III distribution is derived as the first derivative of the CDF given by (28).

In Figs. 1 and 2, the CDF and the PDF of the introduced logit Pearson type III distribution are illustrated, respectively. In both figures, we set $m = 0$, thus for negative $b, x \in (0, 0.5)$ and for positive $b, x \in (0.5, 1)$. It should be highlighted that neither PDF nor CDF is defined in 0, 0.5, or 1 and for the case that $m = 0$, the PDF is symmetric around 0.5. It can be observed that the simulations validate the theoretical results.

Proposition 13: The nth moment of the logit Pearson type III distribution when $b > 0$ is given by (30), shown at the bottom of the next page.

Proof: The proof is provided in Appendix B.

Corollary 4: The mean value of the logit Pearson type III distribution when $b > 0$ and $m \geq 0$ is given in closed form by

\[
\mu^1_{\hat{Z}}(a, b, m) = b^{\phi}\Phi(-e^{-m}, a, b)
\]

(31)

where $\Phi(c, \ldots)$ is the Lerch function [32].

Corollary 5: The second moment of the logit Pearson type III distribution when $b > 0$ and $m \geq 0$ is given in closed form by

\[
\mu^2_{\hat{Z}}(a, b, m) = b^{\phi}\Phi(-e^{-m}, a - 1, b) \\
- \left(b - 1 \right)\Phi(-e^{-m}, a, b).
\]

(32)
A. Logit Gamma and the Logit Exponential Distributions

Utilizing the above analysis, for the special case that \(b > 0 \) and \(m = 0 \), the logit gamma distribution can be derived. If the RV \(Z \) follows the logit gamma distribution, it holds that \(z \in (0.5, 1) \), whereas, if we further assume that \(a = 1 \), the RV \(Z \) follows the logit exponential distribution. The CDF of the logit gamma distribution can be expressed as follows:

\[
F_Z(z, a, b) = \frac{1}{\Gamma(a)} \gamma \left(a, b \ln \frac{z}{1 - z} \right). \tag{33}
\]

Similarly, the CDF of the logit exponential distribution is further simplified as follows:

\[
F_Z(z, b) = 1 - \left(\frac{z}{1 - z} \right)^{-b}. \tag{34}
\]

The PDF of the logit gamma distribution is given by

\[
f_Z(z, a, b) = \frac{b}{\Gamma(a)} \left(b \ln \frac{z}{1 - z} \right)^{a-1} z^{-b-1}(1 - z)^{b-1}. \tag{35}\]

Accordingly, the PDF of the logit exponential distribution can be expressed as follows:

\[
f_Z(z, b) = b z^{-b-1}(1 - z)^{b-1}. \tag{36}\]

The \(n \)th moment of the logit gamma distribution is given as follows:

\[
\mu_n^z(a, b) = \sum_{l=0}^{\infty} \left(\begin{array}{c} n + l - 1 \\ l \end{array} \right) (-1)^l \left(1 + \frac{l}{b} \right)^{-a}. \tag{37}\]

Corollaries 4 and 5 can be used to extract closed-form expressions for the first and the second moment of the logit gamma distribution. Similarly, the moments of the logit exponential distribution can be derived.

B. Distribution of the Logit Sum of Pearson Type III RVs

In this section, the distribution of the logit sum of Pearson type III RVs is investigated. If the RV \(\hat{X}_L \) is a sum of Pearson type III RVs, the RV \(\hat{Z}_L = (1 + e^{-\hat{X}_L}) \) follows the distribution of the logit sum of Pearson type III RVs. If \(b_i > 0 \) \(\forall i \), \(z \in (1/1 + e^{-\hat{a}_i}, 1) \) and if \(b_i < 0 \) \(\forall i \), \(z \in (0, 1/1 + e^{-\hat{a}_i}) \).

Proposition 14: The CDF of \(\hat{Z}_L \) is given by

\[
F_{\hat{Z}_L}(z) = \sum_{i=1}^{L} \sum_{k=1}^{\hat{a}_i} \hat{Z}_L(i, k, \{ \hat{a}_q \}_{q=1}^{L}, \{ \hat{b}_q \}_{q=1}^{L-2}) \times F_Z(z, k, b_i, \hat{m}_L), \quad b_i = b_i \, \forall i, \quad b_i \neq b_j \, \forall i \neq j. \tag{38}\]

Proof: The CDF of \(\hat{Z}_L \) can be obtained from (23) by substituting \(x = \ln(z(1 - z)) \). In the following proposition, the PDF of the distribution of the logit sum of Pearson type III RVs is extracted.

Proposition 15: The PDF of \(\hat{Z}_L \) is given as follows:

\[
f_{\hat{Z}_L}(z) = \sum_{i=1}^{L} \sum_{k=1}^{\hat{a}_i} \hat{Z}_L(i, k, \{ \hat{a}_q \}_{q=1}^{L}, \{ \hat{b}_q \}_{q=1}^{L-2}) \times f_Z(z, k, b_i, \hat{m}_L), \quad b_i = b_i \, \forall i, \quad b_i \neq b_j \, \forall i \neq j. \tag{39}\]

Proof: The PDF of \(\hat{Z}_L \) can be obtained as the first derivative of (38) and by utilizing (29).

Next, the moments of the distribution of the logit sum of Pearson type III RVs are provided.
Proposition 16: The nth moment of \hat{Z}_L when $b_i > 0$ $\forall i$ is given by

$$
\mu^n_{\hat{Z}_L} = \left\{ \begin{array}{ll}
\mu^n_2(\hat{a}_L, b, \hat{m}_L), & b_i = b_i \quad \forall i \\
\sum_{L=1}^{L} \sum_{k=1}^{a_l} \sum_{q=1}^{L} \{ a_q \}^{L} \times \mu^n_2(k, b, \hat{m}_L), & b_i \neq b_i \quad \forall i \neq j.
\end{array} \right.
$$

Proof: The nth moment of \hat{Z}_L can be obtained by the integral $\int [1 + e^{-\hat{Z}_L}] \times f_\hat{Z}_L(\hat{z}) d\hat{z}$ by interchanging the order of summation and integration and utilizing (30).

IV. APPLICATION OF PEARSON TYPE III FAMILY OF DISTRIBUTIONS IN WPT

A. System Model

In this section, a network is considered which consists of one PB or multiple PBs that utilizes WPT to provide energy to the assigned EH sources, e.g., low-power sensors or devices. It is assumed that the harvested power due to the processing noise is negligible and, thus, it can be ignored. The nonlinear EH model proposed in [21] is considered, which captures the dynamics of the RF energy conversion efficiency for different input power levels and is based on the logistic function. Moreover, it is able to capture the joint effect of the nonlinear phenomena caused by hardware constraints, including circuit sensitivity limitations and current leakage. Two scenarios are considered, i.e., an SISO scenario and an MISO one. Also, for the MISO scenario two cases are considered, i.e., a network with a PB with L antennas and a network with L PBs with a single antenna. When multiple antennas in the PB or multiple PBs are considered, the assigned EH sources can harvest power more reliably than the SISO case, since the number of the values of the harvested power that are lower than the sensitivity threshold due to the randomness of the fading reduce. Therefore, the harvested power increases for the MISO scenario.

The power harvested by one of the sources for the SISO scenario can be expressed as follows [21]:

$$
Q^S = \frac{P_s(1 + e^{AB})}{e^{AB}(1 + e^{-A(b_l^2 - B_l)})} - \frac{P_s}{e^{AB}}
$$

where P_s denotes the maximum harvested power when the EH circuit is saturated. Also, A and B are positive constants related to the circuit specification such as the resistance, capacitance, and diode turn-on voltage. Specifically, A reflects the nonlinear charging rate with respect to the input power and B is related to the turn-on threshold. Practically, the parameters P_s, A, and B can be determined by curve fitting, ensuring a zero-input zero-output response for EH. Furthermore, l, p, and h denote the path loss factor between the PB and the source, the transmitted power and the small-scale fading coefficient between the PB and the source, respectively. We assume that the channel fading between the PB and the source is a stationary and ergodic random process, whose instantaneous channel realizations follow the Nakagami-\textit{m} distribution with parameters $(a, [a/b])$, since the Nakagami-\textit{m} channel model is general enough to describe the typical wireless fading environments.

In this case, $|h|^2$ follows the gamma distribution with parameters (a, b) or the Pearson type III distribution with parameters $(a, b, 0)$.

The power harvested by one of the sources for the MISO scenario can be expressed as follows:

$$
Q^M = \frac{P_s(1 + e^{AB})}{e^{AB}(1 + e^{-A\sum_{i=1}^{L}|h_i|^2 - B})} - \frac{P_s}{e^{AB}}
$$

where

$$
w = \begin{cases} 1, & \text{perfect CSI} \\
\frac{1}{L}, & \text{no CSI} \end{cases}
$$

As (43) reveals, (42) expresses the harvested power by a source, when either perfect CSI or no CSI is available at the PB which constitutes a practical case in NGIoT MTC scenarios. Specifically, if perfect CSI is available at the PB and under the sum power constraint, the optimal beamforming is performed, i.e., all antennas transmit the same symbol weighted by a specific complex weight at each antenna. The weight of each antenna has both the phase matched to the phase of the corresponded channel coefficient and the amplitude proportional to the amplitude of this channel coefficient [33], [34]. On the other hand, if CSI is not available at the PB, the transmitted power is equally allocated to the antennas [35], [36]. It should be highlighted that the distribution of the sum of Pearson type III RVs appears and, thus, the distributions presented in Sections II and III can be utilized. In the case that the network consists of one PB with L antennas, it holds that $(b_i/l_i) = (b_i/l) \forall i$, since the antennas are colocated. In the second case, where the network consists of L PBs with one antenna, considering that the distance between the EH source and each PB is different, it is assumed that $(b_i/l_i) \neq (b_j/l_j) \forall i \neq j$. It should be highlighted that (42) with $w = 1$ is also valid for a single input multiple output scenario where a maximum ratio combiner is utilized in the receiver and the network consists of one EH source with L antennas. However, in practical networks the EH sources are low-cost and low-power devises such as sensors, thus the MISO scenarios are emphasized.

B. Statistical Properties

In this section, we utilize the results extracted in the previous sections to provide the statistical properties of the harvested power.

1) SISO: Some important statistical properties of the distribution of the harvested power for the SISO case are presented as follows.

Theorem 1: The CDF of the distribution of the harvested power for the SISO case is given as follows:

$$
F_{Q^S}(q) = \frac{1}{\Gamma(a)} \left(a, -\frac{b}{Ap} \right) \times \left(\ln \left(\frac{P_s(1 + e^{AB})}{e^{AB}(q + \frac{P_s}{e^{AB}})} - 1 \right) - AB \right).
$$

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 11:20:19 UTC from IEEE Xplore. Restrictions apply.
Proof: In (41), $|h|^2$ follows the gamma distribution with parameters (a, b), which is also the Pearson type III distribution with parameters $(a, b, 0)$, and $lp|h|^2$ follows the Pearson type III distribution with parameters $(a, (b/lp), 0)$. Therefore, $-A(lp|h|^2-B)$ follows the Pearson type III distribution with parameters $(a, -(b/Alp), AB)$, $e^{-A(lp|h|^2-B)}$ follows the log Pearson type III distribution with the same parameters, and $(1/(1+e^{-A(lp|h|^2-B)})$ follows the log Pearson type III distribution with parameters $(a, (b/Alp), -AB)$.

The CDF of the distribution of the harvested power is obtained as follows:

$$F_{QS}(q) = Pr(Q < q) \quad (45)$$

where Pr denotes probability. After some algebraic manipulations and using (28), (45) can be rewritten as follows:

$$F_{QS}(q) = F_Z \left(e^{AB} \left(q + \frac{Ps}{2AB} \right) \right). \quad (46)$$

From (46), (44) is derived, which completes the proof.

Remark 3: It should be highlighted that the CDF of the distribution of the harvested power indicates the probability that outage occurs in the harvested power if we consider a threshold q.

In the following theorem, the PDF of Q^S is extracted.

Theorem 2: The PDF of the distribution of the harvested power for the SISO case can be expressed as follows:

$$f_{QS}(q) = \frac{c(1 + e^{AB}) \hat{b}^2}{\Gamma(a) e^{AB}} \left(e^{ABq} - q \right)^{a-1} \left(c + q \right)^{1-b} \times \left(AB - \ln \left(\frac{c(1 + e^{AB})}{c + q} - 1 \right) \right)^{a-1} \quad (47)$$

where $\hat{b} = (b/Alp)$ and $c = (Ps/e^{AB})$.

Proof: The PDF is obtained as the first derivative of the CDF given by (44).

In the following theorem, the moments of Q^S are provided.

Theorem 3: The nth moment of the distribution of the harvested power for the SISO case is given, if $\hat{b} \neq Z$, by

$$\mu^n_{QS} = \frac{c^n}{\Gamma(a)} \sum_{l_1=0}^{a-n} \sum_{l_2=0}^{a-n-l_1} \left(\frac{n!}{l_1! l_2!} \right) \left(l_1 + l_2 - 1 \right)^{a-n-l_1-l_2} \times \left(e^{-AB} + 1 \right)^{l_1} \left(e^{-ABl_2} - 1 \right)^{-a} \times \left(1 + \frac{l_2}{b} \right)^{a} \times \left(1 + \frac{l_1}{b} \right)^{a} \left(1 + \frac{l_2}{b} \right)^{a} \Gamma \left(a, AB \hat{b} \left(1 + \frac{l_2}{b} \right) \right). \quad (48)$$

Proof: The proof is provided in Appendix C.

Corollary 6: The average harvested power is obtained as the first moment and can be expressed, if $\hat{b} \neq Z$, as follows:

$$\mu_1^{QS} = -c + \frac{c(1 + e^{-AB})}{\Gamma(a)} \sum_{k=0}^{\infty} (-1)^k e^{-ABk} \quad (49)$$

In the following remarks, we provide physical insights on the first and second moment of the distribution of the harvested power.

Remark 4: In a WPT system, the average harvested power is of paramount importance, since it can assist in the calculation of the average harvested energy E in a time interval T, i.e., $E = T \mu_1^{Q^S}$. Moreover, in a communication system where WPT is used with an infinite storage capacity battery at the EH source, the average energy departure rate, which represents the average consumed energy, should be less than or equal to the average harvested energy, i.e.,

$$P_t(1 - \tau) \leq \tau \mu_1^{Q^S} \quad (50)$$

where P_t is the average transmitted power. Moreover, τ is a time-sharing parameter with τT and $(1 - \tau)T$ being the duration of the EH phase and the communication phase, respectively, where T is the total time duration. In [37], such a system was considered, but the linear EH model was used, since the average harvested power of the nonlinear model had not been derived.

Remark 5: Utilizing the second moment, the variance of the harvested power can be calculated, which expresses how the values of the harvested power fluctuate around the mean value. It should be highlighted that the variance should be small, so that the majority of the harvested power is larger than the sensitivity threshold of the energy receiver of the EH source.

2) MISO: Accordingly, the statistical properties of the distribution of the harvested power for the MISO case are presented as follows.

Theorem 4: The CDF of the distribution of the harvested power for the MISO case is given as follows:

$$F_{Q^M}(q) = \sum_{i=1}^{L} \sum_{j=1}^{L_i} \frac{1}{\Gamma(\alpha_{L_i}^{j})} \left(\frac{b_{L_i}^{j} - b_{\text{wpl}}^{j}}{\alpha_{L_i}^{j}} \right)^{a} \times \left(\ln \left(\frac{P_t(1 + e^{AB})}{e^{AB} + q + \frac{Ps}{2AB}} - 1 \right) - AB \right) \times \left(1 + \frac{l}{b} \right)^{-a} \times \Gamma \left(a, AB \hat{b} \left(1 + \frac{l}{b} \right) \right). \quad (51)$$

Proof: The CDF of the distribution of the harvested power for the MISO case is obtained considering that $\sum_{i=1}^{L} l_i |h|^2$ is a sum of Pearson type III RVs and utilizing (23) and (44).

Similarly with the SISO case, the CDF of the distribution of the harvested power for the MISO case indicates outage probability for the harvested power.

In the next theorem, the PDF of Q^M is extracted.
The nonlinear EH model, we set \(P_s \) is given by as a typical value for MTC scenarios of the NGIoT.

\[f_{QM}^{\mu}(q) = \left\{ \begin{array}{ll}
\frac{e^{-\mu} \sum_{i=1}^{\hat{b}_{i}} \sum_{k=1}^{\hat{b}_{j}} \zeta_{L}(i,k) \left(a_{i}^{L} b_{j}^{L} \right)}{\Gamma(a_{i}^{L} b_{j}^{L})} \left(c e^{AB} - q \right)^{-1+\hat{b}_{i}} (c+q)^{-1-\hat{b}_{i}} \times \left(AB - \ln \left(\frac{e^{(c+q)}}{c+q} - 1 \right) \right)^{\hat{b}_{i} - 1} & \text{if } \hat{b}_{i} \neq \hat{b}_{j} \\
\frac{e^{-\mu} \sum_{i=1}^{\hat{b}_{i}} \sum_{k=1}^{\hat{b}_{j}} \zeta_{L}(i,k) \left(a_{i}^{L} b_{j}^{L} \right)}{\Gamma(a_{i}^{L} b_{j}^{L})} \left(c e^{AB} - q \right)^{-1+\hat{b}_{i}} (c+q)^{-1-\hat{b}_{i}} \times \left(AB - \ln \left(\frac{e^{(c+q)}}{c+q} - 1 \right) \right)^{\hat{b}_{i} - 1} & \text{if } \hat{b}_{i} = \hat{b}_{j} \end{array} \right. \]

where \(\hat{b}_{i} = (b_i/Awpl_i) \).

\[\text{Proof:} \] The PDF is obtained as the first derivative of the CDF given by (51).

In the following theorem, the moments of \(Q^M \) are provided.

\[\text{Theorem 5:} \] The \(n \)th moment of the distribution of the harvested power for the MISO case is given, if \(\hat{b}_{i} \notin \mathbb{Z} \), by (53), shown at the bottom of the page.

\[\text{Proof:} \] The \(n \)th moment is obtained by utilizing (48) and (52).

C. Simulation Results

In this section, simulations are provided to validate the theoretical results derived in the previous section. In Figs. 3–7, the performance of the considered EH system is illustrated. The path loss factor is given by \(l = (1/d^a) \), where \(\alpha \) and \(\alpha \) denote the distance between the transmitter and the receiver and the path loss exponent, respectively, [34]. For the parameters of the nonlinear EH model, we set \(A = 150, B = 0.014 \), and \(P_s = 24 \) mW [38]. Moreover, we set \(a_i = 3 \forall i \), \(b_i = 1 \forall i \), and the path loss exponent \(\alpha = 2.5 \) [34], which can be considered as a typical value for MTC scenarios of the NGIoT.

In Fig. 3, the considered nonlinear model proposed in [21] is compared with the linear model where the harvested power is given by \(Q_1 = \zeta P_r \) with \(\zeta \) and \(P_r \) denoting the energy conversion efficiency and the received power, respectively, and the nonlinear model proposed in [22] where the harvested power is given by \(Q_2 = (a P_r + b/P_r + c) - (b/c) \) with \(a, b, \) and \(c \) being constants determined by standard curve fitting. The experimental data from a practical EH circuit provided in [39] are also illustrated. For the linear model \(\zeta = 0.8 \) and for the nonlinear model in [22] we set \(a = 4.385, b = 0.178, \) and \(c = 0.041 \). It can be observed that although the linear region is well approximated, the saturation of a practical EH circuit, as illustrated by the measurement data, cannot be described by the linear model which highlights its impracticity. Moreover, the nonlinear model proposed in [22] does not fit well in these data, since neither the linear region nor the saturation are well approximated. To this end, the performance of the three EH models cannot be fairly compared.

In Figs. 4 and 5, the outage probability is illustrated, obtained by (44) and (51) for the SISO and the MISO case, respectively. The outage threshold \(q_t \), which expresses the minimal power needed to be harvested for the operation of the EH source, e.g., circuit consumption, decoding information, or information transmission, is normalized with respect to the maximum harvested power when the power harvesting circuit is saturated, termed as \(P_s \). Figs. 4 and 6 illustrate the performance of the first MISO scenario versus the distance between the PB and the EH source and we set \(wp = 2 \) W. Figs. 5 and 7 illustrate the performance of the second MISO scenario versus the power wp and the distances between the EH source and the three PBs are 11, 10, and 9 m, respectively.

In Figs. 4 and 5, the outage performance improves significantly, as \(L \) increases, since if a link undergoes bad channel conditions, outage may not occur due to the other available links. This cannot be the case when only one antenna is used. Moreover, it can be observed that the slope of the lines is...
steeper, as L increases. The improvement of the performance, when L increases, is also illustrated in Figs. 6 and 7. For small distances in Fig. 6 and for large transmitted power in Fig. 7, the average harvested power is saturated at 24 mW, which is the value of the maximum harvested power when the power harvesting circuit is saturated. For the case of no CSI at the PBs, L times more power is needed to achieve the same performance as the one when perfect CSI is available at the PBs. Moreover, in Fig. 7 the linear model and the nonlinear model proposed in [22] are presented, highlighting the fact that the linear model cannot describe the saturation and the derived analysis is necessary to statistically investigate the nonlinear model that fits in the data provided in [39]. Therefore, the performance of the three EH models cannot be fairly compared. In all figures, it can be observed that the theoretical lines coincide with the symbols obtained from simulations.

V. CONCLUSION

In this work, the Pearson type III and log Pearson type III distributions have been utilized in WPT, taking into account the nonlinear relationship between the received and harvested power. Closed-form expressions for the statistical properties of a general form of the Pearson type III and the log Pearson type III distributions have been extracted and utilized to introduce the logit Pearson type III distribution, which is closely related to the considered nonlinear EH model, deriving closed-form expressions for its CDF, PDF, and moments. The distributions of the sum, the log sum, and the logit sum of Pearson type III RVs and their statistical properties have also been investigated. The derived results have been utilized to extract closed-form expressions for its CDF, PDF, and moments. The harvested power for an SISO and an MISO system with the considered nonlinear EH model, where either perfect CSI or no CSI is available at the PB. These statistical properties can provide useful insights such as the probability that outage occurs in the harvested power considering a specific threshold and the average harvested power by the source.
Following similar steps and after some complicated algebraic manipulations, (60) can be written as follows:

\[
\hat{f}_{X_3}(x) = \sum_{i=1}^{3} \sum_{k=1}^{3} f_{X_i}(x, k, b_1, \hat{m}_3)
\times \mathcal{Z}_3(i, k, a_1, a_2, a_3, b_1, b_2, b_3)
\]

(61)

where

\[
\mathcal{Z}_3(i, k, a_1, a_2, a_3, b_1, b_2, b_3, j_1) = \left(-1 \right)^{\hat{m}_3 - m_2} b_1^{a_1} b_2^{a_2} b_3^{a_3}
\times \frac{(a_1 + U(1-i-1) - 1)!}{(a_1 + U(1-i) - 1)! \hat{m}_3} \times \frac{(b_1 + U(1-i-1) - 1)!}{(b_1 + U(1-i) - 1)! \hat{b}_1}
\times \frac{(b_2 + U(1-i-1) - 1)!}{(b_2 + U(1-i) - 1)! \hat{b}_2}
\times \frac{(b_3 + U(1-i-1) - 1)!}{(b_3 + U(1-i) - 1)! \hat{b}_3}.
\]

(62)

When \(b_i < 0 \) \(\forall i \), the PDF of \(\hat{X}_3 \) can be obtained as follows:

\[
\hat{f}_{X_3}(x) = \sum_{m_2}^{m_1} \hat{f}_{X_3}(y) f_{X_3}(x - y, a_1, a_2, b_3, m_3)
\]

(63)

which results in (61).

Following similar steps for \(L \) terms, (17) is derived.

APPENDIX B

PROOF OF PROPOSITION 13

The \(n \)th moment of the logit Pearson type III distribution when \(b > 0 \) can be obtained by the integral

\[
f_{P^1}^{(1)} e^{-\gamma z} e^{\gamma z} dz
\]

which can be rewritten as follows:

\[
\mu_{2}^a(a, b, m) = \frac{1}{\Gamma(a)} \int_0^{\infty} \left(\frac{1}{1 + e^{-\frac{z}{b-m}}} \right)^n e^{-z} dz.
\]

(64)

When \(m \geq 0 \), it holds that \(e^{-z/(b-m)} \leq 1 \) and utilizing the binomial theorem for negative integer exponent, (64) can be rewritten as follows:

\[
\mu_{2}^a(a, b, m) = \frac{1}{\Gamma(a)} \int_0^{\infty} \sum_{l=0}^{\infty} \left(\frac{n + l - 1}{l} \right) (-1)^l e^{-ml} \left(\frac{1 + e^{-\frac{z}{b-m}}} \right)^n dz.
\]

(65)

The infinite series in (65) converges from the utilization of the binomial theorem. When \(m > 0 \), (30) is derived by interchanging the order of summation and integration and using the definition of the gamma function and [32, eq. (3.81.4)].

When \(m < 0 \), utilizing the binomial theorem for negative integer exponent, the denominator can be written as follows:

\[
(1 + e^{-\frac{z}{b-m}})^n = \left\{ \begin{array}{ll}
\sum_{l=0}^{\infty} \left(\frac{n + l - 1}{l} \right) (-1)^l e^{ml} e^{-\frac{z}{b-m}}
& x < -mb \\
\sum_{l=0}^{\infty} \left(\frac{n + l - 1}{l} \right) (-1)^l e^{-ml} e^{-\frac{z}{b-m}}
& x > -mb.
\end{array} \right.
\]

(66)

In this case, the \(n \)th moment can be calculated as follows:

\[
\mu_{2}^a(a, b, m) = \frac{1}{\Gamma(a)} \int_{-mb}^{\infty} \sum_{l=0}^{\infty} \left(n + l - 1 \right) (-1)^l e^{ml} e^{-\frac{z}{b-m}} \left(1 + e^{-\frac{z}{b-m}} \right)^n dz + \frac{1}{\Gamma(a)} \int_{-mb}^{\infty} \sum_{l=0}^{\infty} \left(n + l - 1 \right) (-1)^l e^{-ml} e^{-\frac{z}{b-m}} \left(1 + e^{-\frac{z}{b-m}} \right)^n dz.
\]

(67)
Considering the definition of the lower and upper incomplete gamma function and \([32, \text{eqs. (3.381.1) and (3.381.3)}]\), \((30)\) is derived when \(m < 0\) which completes the proof.

APPENDIX C

Proof of Theorem 3

Setting in \(\int_0^\infty q^n f_Q(q) dq\)

\[
x = -\dot{b} \left(\ln \frac{c(1+e^{AB})}{q+c} - 1 \right) - AB
\]

the \(r\)th moment is calculated as follows:

\[
\mu_Q^n = \frac{c^n}{\Gamma(a)} \int_0^\infty e^{-x^{a-1}} \left(e^{-AB} + 1 - \frac{e^{-AB}}{e^{-x^{a/b}} + e^{-AB}} \right)^n dx.
\]

Using the binomial theorem, \((69)\) can be rewritten as follows:

\[
\mu_Q^n = \frac{c^n}{\Gamma(a)} \sum_{l_1=0}^n \sum_{l_2=0}^n \left(\frac{n}{l_1} \right) \left(\frac{n-l_1}{l_2} \right) e^{-AB \tilde{l}} \times \frac{x^{-a+1} e^{-x}}{e^{-x^{a/b}} + e^{-AB}} dx.
\]

Utilizing the binomial theorem for negative integer exponent, the denominator can be written as follows:

\[
(1 - (AB)^2)^{-l_1} = \sum_{l_2=0}^\infty \left(\frac{n}{l_1} \right) \left(\frac{n-l_1}{l_2} \right) e^{-AB \tilde{l}}
\]

In this case, the infinite series always converge. Using \((70)\) and \((71)\) can be rewritten as follows:

\[
\mu_Q^n = \frac{c^n}{\Gamma(a)} \sum_{l_1=0}^n \sum_{l_2=0}^n \left(\frac{n}{l_1} \right) \left(\frac{n-l_1}{l_2} \right) \int_0^{AB \tilde{l}} x^{-a+1} e^{-x} (1 - (AB \tilde{l})^2) dx
\]

Considering the definition of lower and upper incomplete gamma function and \([32, \text{eqs. (3.381.1) and (3.381.3)}]\), respectively, \((48)\) is derived.

References

