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Abstract—The Pearson type III and the log Pearson type III
distributions have been considered in several scientific fields, as in
hydrology and seismology. In this article, we present new results
for these distributions and we utilize them, for the first time in
the literature, to investigate the statistical behavior of wireless
power transfer, which can prolong the lifetime of Internet of
Things networks, considering the nonlinear relationship between
the received and harvested power, which can be precisely modeled
by using the logistic function. Specifically, we present new closed-
form expressions for the statistical properties of a general form
of the Pearson type III and the log Pearson type III distributions
and we utilize them to introduce a new member of the Pearson
type III family, the logit Pearson type III distribution, through
which the logit gamma and the logit exponential distributions
are also defined. Moreover, we derive closed-form expressions
for the probability density function, the cumulative distribution
function and moments of the distributions of the sum, the log
sum, and the logit sum of Pearson type III random variables.
Furthermore, taking into account that the Pearson type III fam-
ily of distributions is closely related to the considered nonlinear
energy harvesting model the statistical properties of the distri-
bution of the harvested power are derived, for both single input
single output and multiple input single output scenarios with or
without channel state information at the transmitter.

Index Terms—Energy harvesting (EH), log Pearson type III
distribution, logit Pearson type III distribution, Pearson type III
distribution, wireless power transfer (WPT).

I. INTRODUCTION

THE PEARSON type III and the log Pearson type III dis-
tributions [1]–[4] attracted the interest of the research

community, since they have been utilized in several scientific
fields, such as hydrology and seismology. Specifically, they are
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frequently used in hydrology for flood frequency analysis [5],
while in [6] the log Pearson type III distribution was applied to
flood and maximum rainfall data and its general use in fitting
annual rainfall and streamflow sequences, was investigated.
Furthermore, in [7] it was found that the log Pearson type III
distribution can effectively describe the behavior of the maxi-
mum earthquake magnitudes for all ranges and also be applied
to evaluate the design magnitudes. Although the Pearson type
III and the log Pearson type III distributions have been inves-
tigated in the existing literature, a more general form of these
distributions is not fully investigated. Moreover, the distribu-
tions of the sum and the log sum of Pearson type III random
variables (RVs) have not been examined.

Regarding communication systems, the Pearson type III
distribution can be considered as a generalized form of the
gamma and, thus, the exponential distribution, which are fre-
quently used in wireless communications when Nakagami-m
or Rayleigh fading is assumed, respectively. Also, in [8] the
outage performance of hybrid automatic repeat requests with
incremental redundancy (HARQ-IR) was investigated, through
the cumulative distribution function (CDF) of the product of
multiple correlated shifted gamma RVs, which is a special case
of the Pearson type III distribution. Furthermore, the shifted
exponential distribution, which also is a special case of the
Pearson type III distribution, was used in [9] to extract the out-
age capacity in a multicarrier system, whereas in [10] it was
proposed to model the headway distance in multihop vehicle
to vehicle communications. Finally, in [11] the shifted gamma
distribution was used to model long-range dependent Internet
traffic, when the input traffic rate is not Gaussian, and in [12]
it was also used to extract upper and lower bounds for the
channel capacity in neuro-spike communications.

Internet of Things (IoT) leads to the network integration
of a huge amount of wireless devices, thus, raising several
research and implementation challenges. The priorities of the
European Union in the Next Generation IoT (NGIoT) include
the development of reliable, low cost, sustainable and scal-
able wireless networks, IoT miniaturization, energy harvesting
(EH), and pervasiveness [13]. EH is a promising solution
for prolonging the lifetime of IoT networks by offering self-
sustainability to the devices, minimizing, if not eliminating,
the use of battery power. This is of paramount importance
especially when replacing or recharging the batteries is incon-
venient, costly, or dangerous, such as in remote areas and harsh
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industrial environments, e.g., rotating and moving platforms,
human bodies, or vacuum equipment [14]. However, the main
disadvantage of basic EH methods is their reliability, since
they depend solely on ambient natural energy sources, such as
wind and solar, which are uncontrollable. To this end, wireless
power transfer (WPT) which utilizes radio frequency (RF) sig-
nals for EH is an interesting alternative and also benefits from
high-density networks [15], [16]. In future wireless networks
where WPT is applied, low-power devices without commu-
nication capabilities can be wirelessly powered anytime and
anywhere and low-power communication devices, e.g., sen-
sors, can experience a ubiquitous wireless connectivity. To
this end, WPT can assist in various communication scenarios,
e.g., orthogonal multiple access schemes [17], nonorthogonal
multiple access schemes [18], [19], etc.

Scanning the open literature, a linear EH model is fre-
quently used to express the harvested power, when WPT is
performed [17], [18], [20]. Although, this model can be easily
handled because of its simplicity, it can be considered imprac-
tical, since it is not accurate and cannot describe the saturation
of the EH circuit, which can occur even when the received
power is relatively low [21]. Although, in practical EH cir-
cuits, a linear region exists, the operation in this region cannot
be assured, since it depends on the transmitted power and
the fading. To this end, nonlinear EH models were proposed
in [22] and [23]. Also, in [21] a practical parametric nonlinear
EH model was proposed and its accuracy was verified through
measurements. This model is based on the logistic function
and due to its accuracy has been adopted in several research
works [24]–[26]. It captures the dynamics of the RF energy
conversion efficiency for different input power levels, in con-
trast with the linear model which is accurate only when the
received power is constant. However, although this nonlinear
EH model has received the researchers’ attention, its statisti-
cal properties, e.g., the CDF, the probability density function
(PDF), and the moments, have not been derived, which is a
prerequisite to analytically evaluate the capabilities and reli-
ability of this technology. Considering that the basis of this
model is the logistic function, the analytical investigation of
WPT performance, assuming Nakagami-m or Rayleigh fading,
is facilitated by the use of the logit Pearson type III distribu-
tion, which however has not been defined and studied in the
existing literature, in which solely the logit normal distribution
has been investigated [27], [28].

A. Contribution

In the present work, we introduce the logit Pearson type
III distribution and we utilize the statistical properties of this
distribution to investigate the performance of WPT systems
where the nonlinear EH model proposed in [21] is considered.
The specific contributions of this article are listed as follows.

1) We introduce a new member of the Pearson type III
family, the logit Pearson type III distribution, and derive
closed-form expressions for its statistical properties, e.g.,
the CDF, the PDF, and the moments. To this end, first,
we provide new results for a general form of the Pearson
type III and the log Pearson type III distributions.

2) We derive exact closed-form expressions for the statis-
tical properties of the distribution of the sum, the log
sum, and the logit sum of Pearson type III RVs.

3) We utilize the results for the Pearson type III family
of distributions to provide a comprehensive analytical
framework for the evaluation of the performance of the
EH systems, and to analytically evaluate the capabili-
ties and reliability of the WPT technology, taking into
account the nonlinear relationship between the received
and the harvested power. Useful insights for the EH
system can be extracted through the evaluation of the
average harvested power and harvested power probabil-
ity of outage. Both single input single output (SISO) and
multiple input single output (MISO) scenarios are con-
sidered. Specifically, for the MISO scenario two cases
are investigated, i.e., a network with a power beacon
(PB) with multiple antennas and a network with multiple
PBs with a single antenna. The derived expressions are
valid when either perfect channel state information (CSI)
or no CSI is available at the PB, which can be considered
a practical scenario in machine-type communications
(MTCs), where low-power IoT sources perform WPT.

B. Structure

The remainder of the article is organized as follows.
In Section II, the statistical properties of the Pearson type

III and the log Pearson type III distribution are derived and
the distributions of the sum of Pearson type III and the log
sum of Pearson type III RVs are investigated. In Section III,
the logit Pearson type III distribution is introduced and its sta-
tistical properties are derived as well as the ones of the logit
gamma and the logit exponential distributions, and the distribu-
tion of the logit sum of Pearson type III RVs. In Section IV, the
expressions for the CDF, the PDF, and the moments of the har-
vested power are derived considering the nonlinear EH model
for the SISO and the MISO scenario and simulations are pro-
vided. Finally, closing remarks and discussions are provided
in Section V.

II. NEW RESULTS FOR THE PEARSON TYPE III AND THE

LOG PEARSON TYPE III DISTRIBUTIONS

In this section, the Pearson type III and the log Pearson
type III distributions are presented and new results regarding
their statistical properties are provided. Also, the distribution
of the sum of Pearson type III and log Pearson type III RVs
are investigated.

A. Pearson Type III Distribution

If an RV X follows the Pearson type III distribution with
parameters (a, b, m), where a ∈ R with a > 0 is the shape
parameter, b ∈ R with b �= 0 is the inverse scale parameter
and m ∈ R is the shift parameter, its PDF is given by [5]

fX(x, a, b, m) = |b|
�(a)

(b(x − m))a−1e−b(x−m) (1)
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where �(·) is the gamma function and e is the base of the
natural logarithm. If b > 0, x ∈ (m,+∞) and, if b < 0,
x ∈ (−∞, m).

In the following proposition, the CDF of the Pearson type
III distribution is derived for b < 0. For b > 0, the CDF is
provided in [3], but it is also included in the proposition for
completeness.

Proposition 1: The CDF of the Pearson type III distribution
can be expressed as follows:

FX(x, a, b, m) =
{

1
�(a)

�(a, b(x − m)), b < 0
1

�(a)
γ (a, b(x − m)), b > 0 [3]

(2)

where �(·, ·) and γ (·, ·) are the upper and lower incomplete
gamma function, respectively.

Proof: If b < 0, x ∈ (−∞, m) the CDF is given by

FX(x, a, b, m) = − b

�(a)

∫ x

−∞
(b(y − m))a−1e−b(y−m)dy. (3)

Using z = b(y − m), (3) can be written as follows:

FX(x, a, b, m) = b

�(a)

∫ ∞

b(x−m)

za−1e−zdy. (4)

Considering the definition of the upper incomplete gamma
function, the expression of the CDF, when b < 0, is derived
and the proof is completed.

Next, the moments of the Pearson type III distribution are
presented. When b > 0, the expression for the moments is
provided in [3]. We extract the same expression when b < 0.

Proposition 2: The nth moment of the Pearson type III
distribution is given as follows:

μn
X(a, b, m) =

n∑
k=0

(
n

k

)
mn−k�(k + a)

bk�(a)
(5)

where
(n

k

)
denotes the binomial coefficient.

Proof: If b < 0, the nth moment is calculated as follows:

μn
X(a, b, m) =

∫ m

−∞
xnfX(x, a, b, m)dx. (6)

Utilizing the binomial theorem, (6) can be rewritten as

μn
X(a, b, m) = 1

�(a)

n∑
k=0

(
n

k

)
mn−k

bk

∫ ∞

0
zk+a−1e−zdz. (7)

From the definition of the gamma function, (5) is derived.
Corollary 1: From (5), the mean value is obtained as the

first moment and can be expressed as follows:

μ1
x = a

b
+ m. (8)

The characteristic function of the Pearson type III distribu-
tion is given by [5]

φX(t) = ejmt(
1 − jt

b

)a (9)

where j2 = −1.
Remark 1: The gamma distribution is a special case of the

Pearson type III distribution with b > 0 and m = 0. If b �=
0, an RV that follows the Pearson type III distribution with

parameters (a, b, m) can also be multiplied with a constant c
resulting in an RV that follows the Pearson type III distribution
with parameters (a, (b/c), mc). Accordingly, if an RV follows
the gamma distribution with parameters (a, b) with b > 0,
multiplying this RV with a negative constant c results in an RV
that follows the Pearson type III distribution with parameters
(a, (b/c), 0), where the second parameter is negative.

B. Log Pearson Type III Distribution

If the RV X follows the Pearson type III distribution with
parameters (a, b, m), the RV Y = eX follows the log Pearson
type III distribution with the same parameters. If b > 0,
y ∈ (em,+∞) and, if b < 0, y ∈ (0, em). When b < 0, the
distribution can also be considered as the inverse log Pearson
type III.

The PDF of the log Pearson type III distribution is given
by [5]

fY(y, a, b, m) = |b|ebm

�(a)
(b(ln y − m))a−1y−b−1 (10)

where ln(·) is the natural logarithm.
In the following proposition, the CDF of the log Pearson

type III distribution is derived for b < 0. For b > 0, the CDF
is provided in [4], but it is also included in the proposition for
completeness.

Proposition 3: The CDF of the log Pearson type III distri-
bution can be expressed as follows:

FY(y, a, b, m) =
{

1
�(a)

�(a, b(ln y − m)), b < 0
1

�(a)
γ (a, b(ln y − m)), b > 0 [4].

(11)

Proof: The CDF of the log Pearson type III distribution
is derived by integrating (10) or directly from (2).

The nth moment of the log Pearson type III distribution is
given by [5]

μn
Y(a, b, m) = emn

(
b

b − n

)a

. (12)

If b > 0, b > n should be satisfied, whereas, if b < 0, there
is no constraint.

Corollary 2: From (12), the mean value is obtained as the
first moment and can be expressed as follows:

μ1
Y = a

b
+ m. (13)

An approximation of the characteristic function of the log
Pearson type III distribution, as a formal power series [29], is
provided in the following proposition.

Proposition 4: The characteristic function of the log
Pearson type III distribution is approximately given as
follows:

φY(t) =
∞∑

n=0

μn

n!
(jt)n =

∞∑
n=0

emn

n!

(
b

b − n

)a

(jt)n (14)

where n! is the factorial of n. Equation (14) stands only when
b < 0.

Corollary 3: The infinite series in (14) converges.
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Proof: By setting cn = [emn/n!](b/b − n)a(jt)n, it holds
that

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = lim
n→∞

∣∣∣∣ emjt

n + 1

(
b − n

b − n − 1

)a∣∣∣∣ = 0. (15)

C. Distribution of the Sum of Pearson Type III RVs

In this section, the distribution of the sum of Pearson type
III RVs is investigated. Let {Xq}L

q=1 be a set of L RVs following
the Pearson type III distribution with ai ∈ Z, ai > 0 and either
bi > 0 ∀i or bi < 0 ∀i. The RV X̂L is defined as the sum of
the above set, i.e.,

X̂L =
L∑

i=1

Xi. (16)

If bi > 0 ∀i, x ∈ (m̂L,∞) and if bi < 0 ∀i, x ∈ (−∞, m̂L)

with m̂L = ∑L
i=1 mi.

Proposition 5: The PDF of X̂L is given by

fX̂L
(x) =

⎧⎪⎨
⎪⎩

fX(x, âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
× fXi(x, k, bi, m̂L), bi �= bj ∀i �= j

(17)

where the weights �L are given by (18), shown at the bottom
of the page, with âL = ∑L

i=1 ai and U(·) being the Heaviside
step function defined as U(x ≥ 0) = 1.

Proof: The proof is provided in Appendix A.
Since (18) is complicated, a recursive formula for the

calculation of �L is presented starting from the case that
k = ai [30], [31], i.e.,

�L

(
i, ai,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)

=
∏L

w=1 baw
w

bai
i

L∏
j=1
j �=i

(
bj − bi

)−aj . (19)

When the second argument of �L is ai − k, the value of �L

can be calculated as follows:

�L

(
i, ai − k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)

= 1

k

k∑
j=1

L∑
q=1
q�=i

aqbj
i

(
bi − bq

)−j

× �L

(
i, ai − k + j,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
. (20)

Remark 2: The PDF of X̂L for the case that at least one
mi �= 0 and bi �= bj ∀i �= j can be written as follows:

fX̂L
(x) =

L∑
i=1

ai∑
k=1

k∑
l=1

fXi(x, l, bi, mi)

× �̃L

(
i, k, l,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
mq
}L

q=1,
{
jq
}L−2

q=1

)
(21)

where the weights �̃L are given by (22), shown at the bottom
of the page. It should be highlighted that the PDF of X̂L in (21)
is a nested finite weighted sum of Pearson type III PDFs.

Proof: Utilizing the binomial theorem in (17), (21) can
be derived.

In the following proposition, the CDF of the distribution of
the sum of Pearson type III RVs is provided.

Proposition 6: The CDF of X̂L is given by

FX̂L
(x) =

⎧⎪⎨
⎪⎩

FX(x, âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
× FXi(x, k, bi, m̂L), bi �= bj ∀i �= j.

(23)

�L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
=

ai∑
j1=k

n1∑
j2=k

· · ·
jL−3∑

jL−2=k

(−1)âL−ai

∏L
w=1 baw

w

bk
i

(
ai + a1+U(1−i) − j1 − 1

)
!(

a1+U(1−i) − 1
)
!(ai − j1)!

× (
bi − b1+U(1−i)

)j1−ai−a1+U(1−i)

(
jL−2 + aL−1+U(L−1−i) − k − 1

)
!(

aL−1+U(L−1−i) − 1
)
!(jL−2 − k)!

(
bi − bL−1+U(L−1−i)

)k−jL−2−aL−1+U(L−1−i)

×
L−3∏
s=1

(
js + as+1+U(s+1−i) − js+1 − 1

)
!
(
bi − bs+1+U(s+1−i)

)js+1−js−as+1+U(s+1−i)(
as+1+U(s+1−i) − 1

)
!(js − js+1)!

(18)

�̃L

(
i, k, l,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
mq
}L

q=1,
{
jq
}L−2

q=1

)
=

ai∑
j1=k

n1∑
j2=k

· · ·
jL−3∑

jL−2=k

e(m̂L−mi)bi(mi − m̂L)k−l

(k − l)!
(−1)âL−ai

∏L
w=1 baw

w

bl
i

×
(
ai + a1+U(1−i) − j1 − 1

)
!(

a1+U(1−i) − 1
)
!(ai − j1)!

(
bi − b1+U(1−i)

)j1−ai−a1+U(1−i)

(
jL−2 + aL−1+U(L−1−i) − k − 1

)
!(

aL−1+U(L−1−i) − 1
)
!(jL−2 − k)!

× (
bi − bL−1+U(L−1−i)

)k−jL−2−aL−1+U(L−1−i)

L−3∏
s=1

(js+as+1+U(s+1−i)−js+1−1)!(bi−bs+1+U(s+1−i))
js+1−js−as+1+U(s+1−i)

(as+1+U(s+1−i)−1)!(js−js+1)!
(22)
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Proof: The CDF of X̂L can be obtained by integrating (17)
from m̂L to x, interchanging the order of summation and
integration and utilizing (2).

Next, closed-form expression for the moments the distribu-
tion of the sum of Pearson type III RVs are provided.

Proposition 7: The nth moment of X̂L is given by

μn
X̂L

=

⎧⎪⎨
⎪⎩

μn
X(âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
×μn

X(k, b, m̂L), bi �= bj ∀i �= j.
(24)

Proof: The nth moment of X̂L can be obtained by the
integrals

∫ m̂L
−∞ xnfX̂L

(x)dx if bi < 0 ∀i and
∫∞

m̂L
xnfX̂L

(x)dx if
bi > 0 ∀i, by interchanging the order of summation and
integration and utilizing (5).

D. Distribution of the Log Sum of Pearson Type III RVs

In this section, the distribution of the log sum of Pearson
type III RVs is investigated. If the RV X̂L is a sum of Pearson
type III RVs, the RV ŶL = eX̂L follows the distribution of the
log sum of Pearson type III RVs. If bi > 0 ∀i, y ∈ (em̂L ,+∞)

and, if bi < 0 ∀i, y ∈ (0, em̂L).
Proposition 8: The CDF of ŶL is given by

FŶL
(y) =

⎧⎪⎨
⎪⎩

FY(y, âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
×FYi(y, k, bi, m̂L), bi �= bj ∀i �= j.

(25)

Proof: The CDF of ŶL can be obtained from (23).
In the following proposition, the PDF of the distribution of

the log sum of Pearson type III RVs is extracted.
Proposition 9: The PDF of ŶL is given by

fŶL
(y) =

⎧⎪⎨
⎪⎩

fY(y, âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
×fYi(y, k, bi, m̂L), bi �= bj ∀i �= j.

(26)

Proof: The PDF of ŶL can be obtained as the first
derivative of (25) and by utilizing (10).

Next, the moments of the distribution of the log sum of
Pearson type III RVs are provided.

Proposition 10: The nth moment of ŶL is given by

μn
ŶL

=

⎧⎪⎨
⎪⎩

μn
Y(âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
×μn

Y(k, b, m̂L), bi �= bj ∀i �= j.

(27)

If bi > 0 ∀i, bi > n ∀i should be satisfied, whereas, if
bi < 0 ∀i, there is no constraint.

Proof: The nth moment of ŶL can be obtained by the

integrals
∫ em̂L

−∞ ynfŶL
(y)dy if bi < 0 ∀i and

∫∞
em̂L ynfŶL

(y)dy if
bi > 0 ∀i, by interchanging the order of summation and
integration and utilizing (12).

III. LOGIT PEARSON TYPE III DISTRIBUTION

In this section, we utilize the derived results of the previous
section to introduce a new member of the Pearson type III
family, the logit Pearson type III distribution, and derive its
statistical properties. In [27] and [28], the logit normal distri-
bution is investigated where, considering that the RV A follows
the normal distribution, the RV B follows the logit normal dis-
tribution, if A = logit(B) = ln(B/1 − B) or B = f (A), where
f (x) = (1/1 + e−x) is the logistic function. Accordingly, in
this work, we introduce the logit Pearson type III distribution,
which is defined as follows.

Definition 1: The RV Z = (1/1 + e−X) follows the logit
Pearson type III distribution with parameters (a, b, m), if the
RV X follows the Pearson type III distribution with the same
parameters or, equivalently, X = logit(Z). Regarding the
domain of z, if b > 0, z ∈ (1/1 + e−m, 1), while, if b < 0,
z ∈ (0, [1/1 + e−m]).

Proposition 11: The CDF of the logit Pearson type III
distribution can be expressed as follows:

FZ(z, a, b, m) =
⎧⎨
⎩

1
�(a)

�
(

a, b
(

ln z
1−z − m

))
, b < 0

1
�(a)

γ
(

a, b
(

ln z
1−z − m

))
, b > 0.

(28)

Proof: The CDF of the logit Pearson type III distribution
is derived by substituting x = ln(z/1 − z) in (2).

In the following proposition, the PDF of Z is extracted.
Proposition 12: The PDF of the logit Pearson type III

distribution is given as follows:

fZ(z, a, b, m) = |b|ebm

�(a)

(
b

(
ln

z

1 − z
− m

))a−1

× z−b−1(1 − z)b−1. (29)

Proof: The PDF of the logit Pearson type III distribution
is derived as the first derivative of the CDF given by (28).

In Figs. 1 and 2, the CDF and the PDF of the introduced
logit Pearson type III distribution are illustrated, respectively.
In both figures, we set m = 0, thus for negative b, x ∈ (0, 0.5)

and for positive b, x ∈ (0.5, 1). It should be highlighted
that neither PDF nor CDF is defined in 0, 0.5, or 1 and for
the case that m = 0, the PDF is symmetric around 0.5. It
can be observed that the simulations validate the theoretical
results.

Proposition 13: The nth moment of the logit Pearson type
III distribution when b > 0 is given by (30), shown at the
bottom of the next page.

Proof: The proof is provided in Appendix B.
Corollary 4: The mean value of the logit Pearson type III

distribution when b > 0 and m ≥ 0 is given in closed form by

μ1
Z(a, b, m) = ba�

(−e−m, a, b
)

(31)

where �(·, ·, ·) is the Lerch function [32].
Corollary 5: The second moment of the logit Pearson type

III distribution when b > 0 and m ≥ 0 is given in closed
form by

μ2
Z(a, b, m) = ba(�(−e−m, a − 1, b

)
− (b − 1)�

(−e−m, a, b
))

. (32)
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Fig. 1. CDF of the logit Pearson type III distribution.

Fig. 2. PDF of the logit Pearson type III distribution.

A. Logit Gamma and the Logit Exponential Distributions

Utilizing the above analysis, for the special case that b > 0
and m = 0, the logit gamma distribution can be derived. If
the RV Z follows the logit gamma distribution, it holds that
z ∈ (0.5, 1), whereas, if we further assume that a = 1, the RV
Z follows the logit exponential distribution. The CDF of the
logit gamma distribution can be expressed as follows:

FZ(z, a, b) = 1

�(a)
γ

(
a, b ln

z

1 − z

)
. (33)

Similarly, the CDF of the logit exponential distribution is
further simplified as follows:

FZ(z, b) = 1 −
(

z

1 − z

)−b

. (34)

The PDF of the logit gamma distribution is given by

fZ(z, a, b) = b

�(a)

(
b ln

z

1 − z

)a−1

z−b−1(1 − z)b−1. (35)

Accordingly, the PDF of the logit exponential distribution can
be expressed as follows:

fZ(z, b) = bz−b−1(1 − z)b−1. (36)

The nth moment of the logit gamma distribution is given as
follows:

μn
Z(a, b) =

∞∑
l=0

(
n + l − 1

l

)
(−1)l

(
1 + l

b

)−a

. (37)

Corollaries 4 and 5 can be used to extract closed-form expres-
sions for the first and the second moment of the logit gamma
distribution. Similarly, the moments of the logit exponential
distribution can be derived.

B. Distribution of the Logit Sum of Pearson Type III RVs

In this section, the distribution of the logit sum of Pearson
type III RVs is investigated. If the RV X̂L is a sum of Pearson
type III RVs, the RV ẐL = (1/1 + e−X̂L) follows the distribu-
tion of the logit sum of Pearson type III RVs. If bi > 0 ∀i,
z ∈ ([1/1 + e−m̂L ], 1) and if bi < 0 ∀i, z ∈ (0, [1/1 + e−m̂L ]).

Proposition 14: The CDF of ẐL is given by

FẐL
(z) =

⎧⎪⎨
⎪⎩

FZ(z, âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
×FZi(z, k, bi, m̂L), bi �= bj ∀i �= j.

(38)

Proof: The CDF of ẐL can be obtained from (23) by
substituting x = ln(z/1 − z).

In the following proposition, the PDF of the distribution of
the logit sum of Pearson type III RVs is extracted.

Proposition 15: The PDF of ẐL is given as follows:

fẐL
(z) =

⎧⎪⎨
⎪⎩

fZ(z, âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
× fZi(z, k, bi, m̂L), bi �= bj ∀i �= j.

(39)

Proof: The PDF of ẐL can be obtained as the first
derivative of (38) and by utilizing (29).

Next, the moments of the distribution of the logit sum of
Pearson type III RVs are provided.

μn
Z(a, b, m) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑∞
l=0

(n+l−1
l

)
(−1)le−ml

(
1 + l

b

)−a
, m ≥ 0

1
�(a)

∑∞
l=0

(n+l−1
l

)
(−1)l

(
em(n+l)

(
1 − n+l

b

)−a
γ
(

a,−mb
(

1 − n+l
b

))
+e−ml

(
1 + l

b

)−a
�
(

a,−mb
(

1 + l
b

)))
, m < 0

(30)
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Proposition 16: The nth moment of ẐL when bi > 0 ∀i is
given by

μn
ẐL

=

⎧⎪⎨
⎪⎩

μn
Z(âL, b, m̂L), bi = b ∀i∑L
i=1

∑ai
k=1 �L

(
i, k,

{
aq
}L

q=1

{
bq
}L

q=1,
{
jq
}L−2

q=1

)
×μn

Z(k, b, m̂L), bi �= bj ∀i �= j.
(40)

Proof: The nth moment of ẐL can be obtained by the
integral

∫ 1
(1/1+e−m̂L )

znfẐL
(z)dz by interchanging the order of

summation and integration and utilizing (30).

IV. APPLICATION OF PEARSON TYPE III FAMILY OF

DISTRIBUTIONS IN WPT

A. System Model

In this section, a network is considered which consists of
one PB or multiple PBs that utilizes WPT to provide energy to
the assigned EH sources, e.g., low-power sensors or devices.
It is assumed that the harvested power due to the processing
noise is negligible and, thus, it can be ignored. The nonlinear
EH model proposed in [21] is considered, which captures the
dynamics of the RF energy conversion efficiency for differ-
ent input power levels and is based on the logistic function.
Moreover, it is able to capture the joint effect of the non-
linear phenomena caused by hardware constraints, including
circuit sensitivity limitations and current leakage. Two scenar-
ios are considered, i.e., an SISO scenario and an MISO one.
Also, for the MISO scenario two cases are considered, i.e.,
a network with a PB with L antennas and a network with
L PBs with a single antenna. When multiple antennas in the
PB or multiple PBs are considered, the assigned EH sources
can harvest power more reliably than the SISO case, since the
number of the values of the harvested power that are lower
than the sensitivity threshold due to the randomness of the
fading reduce. Therefore, the harvested power increases for
the MISO scenario.

The power harvested by one of the sources for the SISO
scenario can be expressed as follows [21]:

QS = Ps
(
1 + eAB

)
eAB

(
1 + e−A(lp|h|2−B)

) − Ps

eAB
(41)

where Ps denotes the maximum harvested power when the
EH circuit is saturated. Also, A and B are positive constants
related to the circuit specification such as the resistance, capac-
itance, and diode turn-on voltage. Specifically, A reflects the
nonlinear charging rate with respect to the input power and B
is related to the turn-on threshold. Practically, the parameters
Ps, A, and B can be determined by curve fitting, ensuring a
zero-input zero-output response for EH. Furthermore, l, p, and
h denote the path loss factor between the PB and the source,
the transmitted power and the small-scale fading coefficient
between the PB and the source, respectively. We assume that
the channel fading between the PB and the source is a station-
ary and ergodic random process, whose instantaneous channel
realizations follow the Nakagami-m distribution with parame-
ters (a, [a/b]), since the Nakagami-m channel model is general
enough to describe the typical wireless fading environments.

In this case, |h|2 follows the gamma distribution with parame-
ters (a, b) or the Pearson type III distribution with parameters
(a, b, 0).

The power harvested by one of the sources for the MISO
scenario can be expressed as follows:

QM = Ps
(
1 + eAB

)
eAB

(
1 + e

−A
(

wp
∑L

i=1 li|hi|2−B
)) − Ps

eAB
(42)

where

w =
{

1, perfect CSI
1
L , no CSI.

(43)

As (43) reveals, (42) expresses the harvested power by a
source, when either perfect CSI or no CSI is available at the PB
which constitutes a practical case in NGIoT MTC scenarios.
Specifically, if perfect CSI is available at the PB and under
the sum power constraint, the optimal beamforming is per-
formed, i.e., all antennas transmit the same symbol weighted
by a specific complex weight at each antenna. The weight of
each antenna has both the phase matched to the phase of the
corresponded channel coefficient and the amplitude propor-
tional to the amplitude of this channel coefficient [33], [34].
On the other hand, if CSI is not available at the PB, the
transmitted power is equally allocated to the antennas [35],
[36]. It should be highlighted that the distribution of the
sum of Pearson type III RVs appears and, thus, the distri-
butions presented in Sections II and III can be utilized. In the
case that the network consists of one PB with L antennas,
it holds that (bi/li) = (b/l) ∀i, since the antennas are co-
located. In the second case, where the network consists of L
PBs with one antenna, considering that the distance between
the EH source and each PB is different, it is assumed that
(bi/li) �= (bj/lj) ∀i �= j. It should be highlighted that (42)
with w = 1 is also valid for a single input multiple out-
put scenario where a maximum ratio combiner is utilized in
the receiver and the network consists of one EH source with
L antennas. However, in practical networks the EH sources
are low-cost and low-power devises such as sensors, thus the
MISO scenarios are emphasized.

B. Statistical Properties

In this section, we utilize the results extracted in the
previous sections to provide the statistical properties of the
harvested power.

1) SISO: Some important statistical properties of the distri-
bution of the harvested power for the SISO case are presented
as follows.

Theorem 1: The CDF of the distribution of the harvested
power for the SISO case is given as follows:

FQS(q) = 1

�(a)
γ

(
a,− b

Alp

×
⎛
⎝ln

⎛
⎝ Ps

(
1 + eAB

)
eAB

(
q + Ps

eAB

) − 1

⎞
⎠− AB

⎞
⎠
⎞
⎠. (44)
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Proof: In (41), |h|2 follows the gamma distribution with
parameters (a, b), which is also the Pearson type III dis-
tribution with parameters (a, b, 0), and lp|h|2 follows the
Pearson type III distribution with parameters (a, (b/lp), 0).
Therefore, −A(lp|h|2−B) follows the Pearson type III distribu-
tion with parameters (a,−(b/Alp), AB), e−A(lp|h|2−B) follows
the log Pearson type III distribution with the same parameters,
and (1/[1 + e−A(lp|h|2−B)]) follows the logit Pearson type III
distribution with parameters (a, (b/Alp),−AB).

The CDF of the distribution of the harvested power is
obtained as follows:

FQS(q) = Pr(Q < q) (45)

where Pr denotes probability. After some algebraic manipula-
tions and using (28), (45) can be rewritten as follows:

FQS(q) = FZ

⎛
⎝eAB

(
q + Ps

eAB

)
Ps
(
1 + eAB

)
⎞
⎠. (46)

From (46), (44) is derived, which completes the proof.
Remark 3: It should be highlighted that the CDF of the

distribution of the harvested power indicates the probability
that outage occurs in the harvested power if we consider a
threshold q.

In the following theorem, the PDF of QS is extracted.
Theorem 2: The PDF of the distribution of the harvested

power for the SISO case can be expressed as follows:

fQS(q) = c
(
1 + eAB

)
b̂a

�(a)eABb̂

(
ceAB − q

)−1+b̂
(c + q)−1−b̂

×
(

AB − ln

(
c
(
1 + eAB

)
c + q

− 1

))a−1

(47)

where b̂ = (b/Alp) and c = (Ps/eAB).
Proof: The PDF is obtained as the first derivative of the

CDF given by (44).
In the following theorem, the moments of QS are provided.
Theorem 3: The nth moment of the distribution of the

harvested power for the SISO case is given, if b̂ /∈ Z, by

μn
QS = cn

�(a)

n∑
l1=0

∞∑
l2=0

(
n

l1

)(
l1 + l2 − 1

l2

)
(−1)n−l1+l2

×
(

e−AB + 1
)l1
(

e−ABl2

(
1 − l1 + l2

b̂

)−a

×γ

(
a, ABb̂

(
1 − l1 + l2

b̂

))
+ eAB(l1+l2)

×
(

1 + l2

b̂

)−a

�

(
a, ABb̂

(
1 + l2

b̂

)))
. (48)

Proof: The proof is provided in Appendix C.
Corollary 6: The average harvested power is obtained as

the first moment and can be expressed, if b̂ /∈ Z, as follows:

μ1
QS = −c + c

(
1 + e−AB

)
�(a)

∞∑
k=0

(−1)ke−ABk

((
−k + 1

b̂
+ 1

)−a

γ

(
a, ABb̂

(
−k + 1

b̂
+ 1

))

+ eAB(1+2k)
(

k

b̂
+ 1

)−a

�

(
a, ABb̂

(
k

b̂
+ 1

)))
. (49)

In the following remarks, we provide physical insights on
the first and second moment of the distribution of the harvested
power.

Remark 4: In a WPT system, the average harvested power
is of paramount importance, since it can assist in the calcula-
tion of the average harvested energy E in a time interval T ,
i.e., E = Tμ1

QS . Moreover, in a communication system where
WPT is used with an infinite storage capacity battery at the
EH source, the average energy departure rate, which represents
the average consumed energy, should be less than or equal to
the average harvested energy, i.e.,

Pt(1 − τ) ≤ τμ1
QS (50)

where Pt is the average transmitted power. Moreover, τ is
a time-sharing parameter with τT and (1 − τ)T being the
duration of the EH phase and the communication phase,
respectively, where T is the total time duration. In [37], such
a system was considered, but the linear EH model was used,
since the average harvested power of the nonlinear model had
not been derived.

Remark 5: Utilizing the second moment, the variance of
the harvested power can be calculated, which expresses how
the values of the harvested power fluctuate around the mean
value. It should be highlighted that the variance should be
small, so that the majority of the harvested power is larger
than the sensitivity threshold of the energy receiver of the EH
source.

2) MISO: Accordingly, the statistical properties of the dis-
tribution of the harvested power for the MISO case are
presented as follows.

Theorem 4: The CDF of the distribution of the harvested
power for the MISO case is given as follows:

FQM (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�(âL)

γ
(

âL,− bi
Awpli

×
(

ln

(
Ps
(
1+eAB

)
eAB

(
q+ Ps

eAB

) − 1

)
− AB

))
bi
li

= b
l ∀i∑L

i=1
∑ai

k=1
1

�(k) γ
(

k,− bi
Awpli

×
(

ln

(
Ps
(
1+eAB

)
eAB

(
q+ Ps

eAB

) − 1

)
− AB

))

× �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
bi
li

�= bj
lj

∀i �= j.

(51)

Proof: The CDF of the distribution of the harvested power
for the MISO case is obtained considering that

∑L
i=1 li|hi|2 is

a sum of Pearson type III RVs and utilizing (23) and (44).
Similarly with the SISO case, the CDF of the distribution

of the harvested power for the MISO case indicates outage
probability for the harvested power.

In the next theorem, the PDF of QM is extracted.
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Theorem 5: The PDF of the distribution of the harvested
power for the MISO case can be expressed as follows:

fQM (q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
(
1+eAB

)
b̂

âL
i

�(âL)eABb̂i

(
ceAB − q

)−1+b̂i
(c + q)−1−b̂i

×
(

AB − ln

(
c
(
1+eAB

)
c+q − 1

))âL−1

bi
li

= b
l ∀i∑L

i=1
∑ai

k=1 �L

(
i, k,

{
aq
}L

q=1,
{
bq
}L

q=1,
{
jq
}L−2

q=1

)
× c

(
1+eAB

)
b̂k

i

�(k)eABb̂i

(
ceAB − q

)−1+b̂i
(c + q)−1−b̂i

×
(

AB − ln

(
c
(
1+eAB

)
c+q − 1

))k−1

bi
li

�= bj
lj

∀i �= j

(52)

where b̂i = (bi/Awpli).
Proof: The PDF is obtained as the first derivative of the

CDF given by (51).
In the following theorem, the moments of QM are provided.
Theorem 6: The nth moment of the distribution of the har-

vested power for the MISO case is given, if b̂i /∈ Z, by (53),
shown at the bottom of the page.

Proof: The nth moment is obtained by utilizing (48)
and (52).

C. Simulation Results

In this section, simulations are provided to validate the theo-
retical results derived in the previous section. In Figs. 3–7, the
performance of the considered EH system is illustrated. The
path loss factor is given by l = (1/dα), where d and α denote
the distance between the transmitter and the receiver and the
path loss exponent, respectively, [34]. For the parameters of
the nonlinear EH model, we set A = 150, B = 0.014, and
Ps = 24 mW [38]. Moreover, we set ai = 3 ∀i, bi = 1 ∀i, and
the path loss exponent α = 2.5 [34], which can be considered
as a typical value for MTC scenarios of the NGIoT.

In Fig. 3, the considered nonlinear model proposed in [21]
is compared with the linear model where the harvested power
is given by Q1 = ζPr with ζ and Pr denoting the energy con-
version efficiency and the received power, respectively, and the
nonlinear model proposed in [22] where the harvested power
is given by Q2 = (aPr + b/Pr + c) − (b/c) with a, b, and
c being constants determined by standard curve fitting. The
experimental data from a practical EH circuit provided in [39]
are also illustrated. For the linear model ζ = 0.8 and for the

Fig. 3. Comparison of EH models.

nonlinear model in [22] we set a = 4.385, b = 0.178, and
c = 0.041. It can be observed that although the linear region
is well approximated, the saturation of a practical EH circuit,
as illustrated by the measurement data, cannot be described by
the linear model which highlights its impracticality. Moreover,
the nonlinear model proposed in [22] does not fit well in these
data, since neither the linear region nor the saturation are well
approximated. To this end, the performance of the three EH
models cannot be fairly compared.

In Figs. 4 and 5, the outage probability is illustrated,
obtained by (44) and (51) for the SISO and the MISO case,
respectively. The outage threshold qt, which expresses the min-
imal power needed to be harvested for the operation of the
EH source, e.g., circuit consumption, decoding information,
or information transmission, is normalized with respect to the
maximum harvested power when the power harvesting cir-
cuit is saturated, termed as Ps. Figs. 4 and 6 illustrate the
performance of the first MISO scenario versus the distance
between the PB and the EH source and we set wp = 2 W.
Figs. 5 and 7 illustrate the performance of the second MISO
scenario versus the power wp and the distances between the
EH source and the three PBs are 11, 10, and 9 m, respectively.

In Figs. 4 and 5, the outage performance improves signif-
icantly, as L increases, since if a link undergoes bad channel
conditions, outage may not occur due to the other available
links. This cannot be the case when only one antenna is used.
Moreover, it can be observed that the slope of the lines is

μn
QM =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn

�(âL)

∑n
l1=0

∑∞
l2=0

(n
l1

)(l1+l2−1
l2

)
(−1)n−l1+l2

(
e−AB + 1

)l1(e−ABl2
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(
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(
1 + l2

b̂i

)))
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li

�= bj
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(53)
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Fig. 4. Outage probability versus the distance between the PB and the EH
source.

Fig. 5. Outage probability versus power wp.

steeper, as L increases. The improvement of the performance,
when L increases, is also illustrated in Figs. 6 and 7. For
small distances in Fig. 6 and for large transmitted power in
Fig. 7, the average harvested power is saturated at 24 mW,
which is the value of the maximum harvested power when
the power harvesting circuit is saturated. For the case of no
CSI at the PBs, L times more power is needed to achieve
the same performance as the one when perfect CSI is avail-
able at the PBs. Moreover, in Fig. 7 the linear model and the
nonlinear model proposed in [22] are presented, highlighting
the fact that the linear model cannot describe the saturation
and the derived analysis is necessary to statistically investi-
gate the nonlinear model that fits in the data provided in [39].
Therefore, the performance of the three EH models cannot
be fairly compared. In all figures, it can be observed that
the theoretical lines coincide with the symbols obtained from
simulations.

Fig. 6. Average harvested power versus the distance between the PB and
the EH source.

Fig. 7. Average harvested power versus power wp.

V. CONCLUSION

In this work, the Pearson type III and log Pearson type III
distributions have been utilized in WPT, taking into account
the nonlinear relationship between the received and harvested
power. Closed-form expressions for the statistical properties of
a general form of the Pearson type III and the log Pearson type
III distributions have been extracted and utilized to introduce
the logit Pearson type III distribution, which is closely related
to the considered nonlinear EH model, deriving closed-form
expressions for its CDF, PDF, and moments. The distributions
of the sum, the log sum, and the logit sum of Pearson type III
RVs and their statistical properties have also been investigated.
The derived results have been utilized to extract closed-form
expressions for the CDF, the PDF, and the moments of the
harvested power for an SISO and an MISO system with the
considered nonlinear EH model, where either perfect CSI or no
CSI is available at the PB. These statistical properties can pro-
vide useful insights such as the probability that outage occurs
in the harvested power considering a specific threshold and
the average harvested power by the source.
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APPENDIX A
PROOF OF PROPOSITION 5

When bi = b ∀i, the PDF can be derived by the inverse
Laplace transform of the product of the moment generation
functions of the Pearson type III distribution. To derive the
PDF of X̂L, when bi �= bj ∀i �= j, similar steps as in [31] are
followed. First, we consider the case of two terms (L = 2). The
PDF of X̂2 = X1 + X2, considering that if b > 0, x ∈ (m,∞),
can be obtained as follows:

fX̂2
(x)=

∫ z−m2

m1

fX1(y, a1, b1, m1)fX2(x − y, a2, b2, m2)dy.

(54)

Using z = y−m1 and [32, eq. (3.383.1)], (54) can be rewritten
as follows:

fX̂2
(x) = b

a1
1 b

a2
2

�(a1)�(a2)
e−b2(z−m1−m2)(z − m1 − m2)

a1+a2−1

× B(a2, a1)1F1(a1; a1 + a2; (b2 − b1)(z − m1 − m2))

(55)

where B(·, ·) is the Euler Beta function [32] and 1F1(·; ·; ·)
is the confluent hypergeometric function [32]. Since ai ∈ Z

and ai > 0, using [40, eq. (07.20.03.0024.01)], (55) can be
rewritten as follows:

fX̂2
(x) = (1 − a1 − a2)a1(b2 − b1)

1−a1−a2 ba1
1 ba2

2

(a1 − 1)!(a1 + a2 − 1)!

×
⎛
⎝a2−1∑

k=0

(1 − a2)k((b2 − b1)(z − m1 − m2))
k

k!(2 − a1 − a2)k

× e−b2(z−m1−m2) − e−b1(z−m1−m2)

×
a1−1∑
k=0

(1 − a1)k((b1 − b2)(z − m1 − m2))
k

k!(2 − a1 − a2)k

⎞
⎠

(56)

where (n)k is the Pochhammer symbol. After some algebraic
manipulations, (56) can be written as follows:

fX̂2
(x) =

2∑
i=1

ai∑
k=1

fXi(x, k, bi, m̂2)�2(i, k, a1, a2, b1, b2) (57)

where

�2(i, k, a1, a2, b1, b2) = (−1)m̂2−mi
ba1

1 ba2
2

bk

× (a1 + a2 − k − 1)!
(
bi − b1+U(1−i)

)k−a1−a2(
a1+U(1−i) − 1

)
!(ai − k)!

. (58)

It should be highlighted that if b < 0, x ∈ (−∞, m) and the
PDF of X̂2 can be obtained as follows:

fX̂2
(x) =

∫ m1

z−m2

fX1(y, a1, b1, m1)fX2(x − y, a2, b2, m2)dy (59)

which results in (57) considering that |b| appears in (1).
When L = 3, the PDF of X̂3 = X̂2 + X3 can be obtained as

follows:

fX̂3
(x) =

∫ z−m3

m1+m2

fX̂3
(y)fX3(x − y, a3, b3, m3)dy. (60)

Following similar steps and after some complicated algebraic
manipulations, (60) can written as follows:

fX̂3
(x) =

3∑
i=1

ai∑
k=1

fXi(x, k, bi, m̂3)

× �3(i, k, a1, a2, a3, b1, b2, b3) (61)

where

�3(i, k, a1, a2, a3, b1, b2, b3, j1) = (−1)m̂3−mi
ba1

1 ba2
2 ba3

3

bk

× (ai+a1+U(1−i)−j1−1)!(bi−b1+U(1−i))
j1−ai−a1+U(1−i)

(a1+U(1−i)−1)!(ai−j1)!

× (j1+a2+U(2−i)−k−1)!(bi−b2+U(2−i))
k−j1−a2+U(2−i)

(a2+U(2−i)−1)!(j1−k)!
. (62)

When bi < 0 ∀i, the PDF of X̂3 can be obtained as follows:

fX̂3
(x) =

∫ m1+m2

z−m3

fX̂2
(y)fX3(x − y, a3, b3, m3)dy (63)

which results in (61).
Following similar steps for L terms, (17) is derived.

APPENDIX B
PROOF OF PROPOSITION 13

The nth moment of the logit Pearson type III distri-
bution when b > 0 can be obtained by the integral∫ 1
(1/1+e−m)

znfZ(z)dz which can be rewritten as follows:

μn
Z(a, b, m) = 1

�(a)

∫ ∞

0

(
1

1 + e− z
b −m

)n

xa−1e−xdz. (64)

When m ≥ 0, it holds that e−(z/b−m) ≤ 1 and utilizing the
binomial theorem for negative integer exponent, (64) can be
rewritten as follows:

μn
Z(a, b, m) = 1

�(a)

∫ ∞

0

∞∑
l=0

(
n + l − 1

l

)
(−1)le−ml

× za−1e
−
(

1+ l
b

)
z
dz. (65)

The infinite series in (65) converges from the utilization of
the binomial theorem. When m ≥ 0, (30) is derived by inter-
changing the order of summation and integration and using
the definition of the gamma function and [32, eq. (3.381.4)].

When m < 0, utilizing the binomial theorem for negative
integer exponent, the denominator can be written as follows:

(
1 + e− z

b −m
)−n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑∞
l=0

(n+l−1
l

)
(−1)lem(n+l)e

n+l
b z

x < −mb∑∞
l=0

(n+l−1
l

)
(−1)le−mle− l

b z

x > −mb.

(66)

In this case, the nth moment can be calculated as follows:

μn
Z(a, b, m) = 1

�(a)

∫ −mb

0

∞∑
l=0

(
n + l − 1

l

)
(−1)lem(n+l)

× za−1e
−
(

1− n+l
b

)
z
dz + 1

�(a)

∫ ∞

−mb

∞∑
l=0

(
n + l − 1

l

)

× (−1)le−mlza−1e
−
(

1+ l
b

)
z
dz. (67)
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Considering the definition of the lower and upper incomplete
gamma function and [32, eqs. (3.381.1) and (3.381.3)], (30)
is derived when m < 0 which completes the proof.

APPENDIX C
PROOF OF THEOREM 3

Setting in
∫ Ps

0 qnfQS(q)dq

x = −b̂

(
ln

(
c
(
1 + eAB

)
q + c

− 1

)
− AB

)
(68)

the nth moment is calculated as follows:

μn
QS = cn

�(a)

∫ ∞

0
e−xxa−1

(
e−AB + 1

e−x/b̂ + e−AB
− 1

)n

dx. (69)

Using the binomial theorem, (69) can be rewritten as follows:

μn
QS = cn

�(a)

n∑
l1=0

(
n

l1

)
(−1)n−l1

(
e−AB + 1

)l1

×
∫ ∞

0

xa−1e−x(
e−x/b̂ + e−AB

)l1
dx. (70)

Utilizing the binomial theorem for negative integer exponent,
the denominator can be written as follows:

(
e−x/b̂ + e−AB

)−l1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑∞
l2=0

(l1+l2−1
l2

)(
e−x/b̂

)−l1−l2

× (−1)l2
(
e−AB

)l2
, x < ABb̂∑∞

l2=0

(l1+l2−1
l2

)(
e−AB

)−l1−l2

× (−1)l2
(

e−x/b̂
)l2

, x > ABb̂.

(71)

In this case, the infinite series always converge. Using (70)
and (71) can be rewritten as follows:

μn
QS = cn

�(a)

n∑
l1=0

∞∑
l2=0

(
n

l1

)(
l1 + l2 − 1

l2

)
(−1)n−l1+l2

×
(

e−ABl2

∫ ABb̂

0
xa−1e−(1−(l1+l2)/b̂)xdx

+ eAB(l1+l2)
∫ ∞

ABb̂
xa−1e−(1+l2/b̂)xdx

)(
e−AB + 1

)l1
.

(72)

Considering the definition of lower and upper incomplete
gamma function and [32, eqs. (3.381.1) and (3.381.3)],
respectively, (48) is derived.
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