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Abstract—Massive Multiple-Input-Multiple-Output (MIMO)
technology is considered a crucial part of the fifth generation
(5G) telecommunications systems. However, moving towards
sixth generation (6G) wireless networks, novel solutions have
to be incorporated into the current telecommunications’ sys-
tems. Cell-free Massive MIMO and especially the user-centric
approach, seems to be the most promising idea to this direction
at this moment. Nevertheless, there are many open issues to
be resolved. Deep Learning has been successfully applied to
a wide range of problems in many different fields, including
wireless communications. In this paper, a review of the state-
of-the-art Deep Learning methods applied to Cell-free Massive
MIMO communications systems is provided. In addition future
research directions are discussed.

Index Terms—6G, Cell-Free Massive MIMO, Deep learning,
User-centric Cell-Free Massive MIMO

I. INTRODUCTION

Fifth generation (5G) telecommunications systems are
currently commercially deployed in many countries provid-
ing to users extremely high data rates, low latency, advanced
security and many other appealing amenities. One of the
key technologies behind the success of 5G is the Massive
Multiple-Input-Multiple-Output (M-MIMO) technology [1].

M-MIMO communications systems consist of a base
station (BS) with a large number of antennas £ which
simultaneously serves many users K such that £ > K.
Some of the advantages of this configuration are the fol-
lowing: i) high spectrum efficiency, ii) energy efficiency
and high reliability [1]. M-MIMO operates in a cellular
way, similar to the other existing technologies. Despite its
appealing characteristics, cellular M-MIMO technology does
not reduce large rate variations and inter-cell interference,
while challenges in the service quality arise very often [2].
Numerous solutions have been proposed to overcome these
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Fig. 1. Number of papers referring to DL applications in CF M-MIMO

issues, however the most promising one at this moment
seems to be the Cell-free M-MIMO (CF M-MIMO) scheme
[2]- [5]. The core idea behind CF M-MIMO lies on the
notion of distributed operation [6]. In CF M-MIMO, L
distributed access points (APs) serve /C users distributed over
space such that £ > IC, and neither cells nor cell-boundaries
exist. A central processing unit (CPU) is connected with
the APs via the backhaul network, while all users are
served through a cooperation between the APs which use
time-division duplexing (TDD). The main benefits over the
classical cellular technology are: i) smaller signal to noise
ratio (SNR) variations, ii) managing interference and iii)
increased SNR [2]- [5].

Deep Learning (DL) is a subclass of Machine Learning
(ML) and recently has emerged as a powerful set of meth-
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ods, achieving impressive results in many diverse research
areas. DL is based on neural networks’ architectures, using
multiple layers (deep”) of artificial neurons [7]. DL has
been utilized also in the field of wireless communications
introducing a data driven approach [8], [9]. In this realm,
there is a growing research interest in the applications of
DL in CF M-MIMO, Fig. 1.

DL may be applied into distinct ML tasks: i) Supervised
Learning (SL) where a ML algorithm learns a a function
that maps an input to an output based on labeled data, ii)
Unsupervised Learning (UL) where one tries to find underly-
ing patterns or probability distributions in unlabeled datasets,
and iii) Reinforcement Learning (RL) where a learning agent
is able to act within its environment, take actions and learn
through trial and error. In practice, however, methods and
algorithms from the above categories are combined in order
to tackle complex problems [7], [8].

A. Motivation and contributions

The guiding motivation for this research is twofold. On
the one hand, moving towards 6G, there is the need to search
for novel solutions and test their applicability. On the other
hand, the current literature in wireless communications and
CF networks is growing rapidly, making it more difficult for
researchers to navigate in the field.

The main contributions of this work are as follows

o A thorough review of DL applications on CF M-
MIMO networks is conducted. Works that consider CF
networks in general were not taken into account

¢ An introduction to CF M-MIMO and the user-centric
approach is provided

o Open challenges and future directions are discussed,
providing a framework for further studies

To the best of the authors knowledge, this is the first
time that DL. methods applied on CF M-MIMO systems is
reviewed.

The rest of this paper is structured as follows: In section II
the literature review is presented while in section III the ba-
sic information about CF M-MIMO communication systems
is provided. section IV reviews the various applications of
DL in the field of CF M-MIMO. Future research directions
are highlighted in Section V, which also concludes this
work.

II. RELATED WORK

An extensive presentation of the foundations of user-
centric CF M-MIMO is provided in [2]. The applicability
of CF M-MIMO to 6G vision is thoroughly discussed in
[3], while in [5] for 5G/Beyond 5G networks. In [6] the
authors provide a survey of the state-of-the-art literature on
CF M-MIMO along with the characteristics of such systems.

To the best of our knowledge this is the first study that
discusses explicitly the applications of DL methods to the
field of CF M-MIMO.

Y Active
User

Fronthaul

Access
Point

Fig. 2. Cell-Free Network Model

III. CELL-FREE M-MIMO

Following [2] CF M-MIMO can be defined as an ultra-
dense network where joint transmission and reception are
achieved through the cooperating APs which serve the
User Equipment (UE). The whole system makes use of the
physical layer concepts from the cellular M-MIMO area.
More specifically, a CF M-MIMO network is comprised of
numerous distributed APs which are connected to a central
processing unit (CPU). There is no need for cells and the
users are served simultaneously by all APs, (Fig. 2). The
motivation behind this idea is to provide an (almost) uniform
quality of service in a given space [2].

CF M-MIMO brings a change of paradigm in wireless
communications, offering many advantages over the clas-
sical 5G cellular M-MIMO systems. In particular, CF M-
MIMO technology offers i) smaller SNR variations, ii)
managing interference and iii) increased SNR [2] - [5].

Smaller SNR variations are achieved through uniform
SNR across the coverage area. By joint transmission from
multiple APs inter-cell interference is significantly sup-
pressed. The involvement of APs with weaker channels in
the transmission results in an increased SNR, as opposed to
the case where only the AP with the best channel is utilized.
In addition, having a much larger number of antennas than
users, has the effect of creating many spatial degrees of
freedom to separate the UEs in space. As a result the
transmitted and received signals can be processed using
linear methods.

However, CF M-MIMO networks face a serious challenge
regarding their practical implementation. Despite its bene-
fits, the technology is not a scalable one, thus making it
unsuitable for 6G telecommunications.
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TABLE I
DL IN CF M-MIMO

DL Architectures Applications Research Paper

FFNNs Channel estimation [16], [18]
Power allocation [20], [23]

LSTMs Power allocation [21]

CNNs Channel estimation [17]

Power allocation [19]

Unsupervised Learning Power allocation [22]
RL Power allocation [24], [25]

Joint cooperation [27]

A. User-centric CF M-MIMO

As previously stated, the main issue about CF M-MIMO
systems is the fact that they are not scalable, thus making
them impractical for 6G applications. In order to overcome
this problem, User-centric CF M-MIMO has been proposed.
In this new setup, a subset of APs is transmitting to the
UE. As a result, the fronthaul signaling is reduced, while,
at the same time, the performance loss is negligible. Stated
differently, User-centric CF M-MIMO makes use of dynamic
cooperation clustering, where a subset of APs serves the user
k. In [2] one proved that this new configuration is scalable.

Cellular M-MIMO communication systems make use
of two emerging phenomena: i) Channel hardening and
ii) favorable propagation [1], which explain the resulting
performance gain. Channel hardening explains the situation
where a fading channel has almost the same effects with a
non-fading channel. Favorable propagation is defined in the
case where the vector-valued channels. These two properties
are extended in the User-centric CF M-MIMO framework,
however a proper mathematical analysis is needed [2].

IV. DEEP LEARNING IN CF M-MIMO

DL has been applied in many different scientific fields
achieving impressive results. Recently, researchers in wire-
less communications have began to train deep neural net-
works’ models in various tasks, including CF M-MIMO. In
Table I, the most common used DL architectures applied on
CF M-MIMO scenarios are summarized.

A. DL models

In this section, the DL models that have been applied in
the field of CF M-MIMO are briefly discussed. In this way
the non-familiar with the subject reader may refer to this
exposition and the corresponding literature.

The basic DL architecture is the Feed-forward Neural
Network (FFNN). In this model there exists no feedback
loop (or of any other kind) [7], [11]. FFNNs are comprised
of many (in principle an unbounded number) layers of
artificial neurons and each neuron in one layer is directly
connected to the neurons of the following layer.

Convolutional neural networks (CNNSs) are a class of DL
models that are capable of processing data with a known
grid-like topology [7]. Instead of using general matrix multi-
plication, CNNs make use of the convolution operation in at

least one of the model’s layers [7]. There are many variants
of CNNs that are incredibly successful in numerous tasks
such as Computer Vision, Natural Language Processing,
time series forecasting etc [12].

Recurrent neural networks (RNNs) are a family of neu-
ral networks suitable for processing sequential data [7].
A subset of RNNs which has been successfully applied
in many different areas is the Long Short Term Memory
networks (LSTM) [13]. In the most general case the LSTM
is composed of a cell, an input gate, an output gate and a
forget gate [13].

RL is one of the three ML paradigms [7], [14]. As stated
before, a learning agent is able to act within its environment,
take actions and learn through trial and error. In order to
maximize a cumulative reward, the agent tries to find a
balance between exploration of “unknown territory” and
exploitation of its “current knowledge”. Recently the com-
bination of DL architectures with RL (DRL) has provided
solutions to many problems [14].

Deep Q-Learning (DQL) is a branch of DRL which is
utilized for many tasks. In RL a Q-value is an estimation
of how good is it to take the action A at the state S, thus
creating a matrix in which the agent can refer to in order
to maximize its cumulative reward [14]. The realization that
the matrix entries have an importance relative to the other
entries, leads us to approximate the matrix values with a
deep neural network (DQL).

B. Channel Estimation

Channel estimation is the process of characterizing the
dynamics of the wireless channel and has a fundamental
role in every telecommunications’ system including CF M-
MIMO [15].

The authors of [16] formulate the concept of channel
mapping in space and frequency. Considering a scenario
with two set of antennas with different frequency bands, the
channels and the frequencies of the first one are mapped
to the channels and frequency bands of the other set of
antennas. Leveraging the results of their proposed analysis,
a FFNN was utilized for channel mapping in a CF M-
MIMO model. This DL method managed to reduce both
the downlink training/feedback and the fronthaul signaling
overhead.

In [17] the authors employ a flexible denoising convo-
lutional neural network (FFDNet) for the task of channel
estimation in a CF M-MIMO framework. The results showed
that the time spent for the FFDNet training is much less
than the time that is needed from the state-of-the-art channel
estimators, achieving at the same time similar performance.
In order to remove the need for relative reciprocity calibra-
tion based on the cooperation of antennas, a cascade of two
FFNNS is proposed in [18].

C. Power Allocation

The implementation of M-MIMO systems faces the dif-
ficulty of resource allocation and power control. This diffi-
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culty remains in the CF M-MIMO configurations too. Power
allocation refers to the allocation of power to the individual
users, in a way to achieve a maximization of the minimum
capacity guaranteed to each of them. Since the state of the
channel is time dependent, the process of power allocation
should be compatible with the channel’s dynamics [2], [3].

Exploiting the characteristics of DL techniques one can
approximate the power allocation and control problem in a
couple of ways. A solution to the sum rate maximization
problem is discussed in [19]. The sum rate describes the
summation of the achievable rates of multiple concurrent
transmissions and the problem of its maximization is a non-
convex one. The power allocation problem is converted into
a standard geometric program (GP) and the channel statis-
tics is exploited to design the respective power elements.
Employing large-scale-fading (LSF) with a CNN allows to
determine a mapping from the LSF coefficients and the
optimal power through solving the sum rate maximization
problem.

The uplink power control is studied in [20]. In a Su-
pervised Learning framework a FFNN is trained to learn
the pairs of input-output data. In this particular setting,
the optimal solution of the power allocation strategy is the
goal of the FFNN’s training. In a similar manner the same
problem is tackled in [21]. The authors use a LSTM, taking
into consideration different scenarios.

A different approach is given in [22]. An Unsupervised
Learning setting is established where a FFNN is designed to
learn the optimum user power allocations which maximize
the minimum user rate. In this way there is no need to know
in advance the optimal power allocations. An alternative
research direction in problem of downlink power allocation
is provided in [23]. First a generalization of maximum ratio
precoding is proved and then a NN is trained for every AP
to mimic system-wide max-min fairness power allocation.
One major benefit is the use of only local information, out-
performing the state-of-the-art power allocation algorithms
for CF M-MIMO scenarios.

RL has also been employed in CF M-MIMO problems.
More specifically, in [24] DQL is utilized. The allocation
of the downlink transmission powers in a CF M-MIMO
configuration is achieved by making use of a DQN. The
sum spectral efficiency optimization problem is discussed.
Spectral efficiency refers to the maximum number of bits
of data that can be transmitted to a specified number of
users per second while maintaining an acceptable quality
of service. Exploiting the RL framework of trial-and-error
interactions with the environment over time, the DQN is
trained taking as input of the long-term fading information
and then it outputs the downlink transmission power values.

A similar approach is used in [25]. The proposed DQN
and the the deep deterministic policy gradient (DDPG) meth-
ods are employed for the task of dynamic power allocation.
the goal here is to maximize the sum-spectral efficiency. The
numerical results showed a competitive performance with
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the state-of-the-art weighted minimum mean square error
(WMMSE) algorithm.

D. Other applications

Apart from the aforementioned DL applications in CF
M-MIMO, there are some insights in other possible use-
case scenarios. Considering the case of a large scale CF
M-MIMO network, a FFNN is utilized in [26] for pilot
assignment. The goal is to maximize the sum spectral
efficiency.

Examining the advantages of joint cooperation clustering
and content caching in CF M-MIMO, a DRL approach
is discussed in [27] demonstrating good energy efficiency
performance which does not require prior information.

V. FUTURE DIRECTIONS AND CONCLUSIONS

It is a common belief among researchers that CF M-
MIMO will play a crucial role in the 6G systems’ devel-
opment. As a result, a growing number of papers is being
published every year. However, at this point there is no
dominant approach to follow for a practical implementation.
Although DL methods seem to promise improvements in
performance, it is likely that standalone techniques will not
be proved sufficient. On the contrary, combined approaches
which leverage the individual characteristics of each method
are going to dominate the field in the near future.

A great concern is the computational cost of the DL
models’ training. Reducing the required memory and uti-
lizing results from a “classical” analysis will result in
novel solutions. In addition, resources allocation and energy
efficiency will be central in the near-future research. At this
moment, DL applications focused only on user-centric CF
M-MIMO have not been widely considered. In the future it is
expected that the results obtained in the classical framework
will be expanded to the user-centric approach.

Another factor that will enable future research in this
field is the publication of the codes and the rest com-
putational tools that were used along with the published
works. Publicly available datasets and simulation codes have
helped other fields to grow rapidly. It is inevitable that
such a practice will boost the research activity in wireless
communications in general.

In this work a comprehensive review of the work around
DL methods on CF M-MIMO was provided. More specifi-
cally, we focused only on CF M-MIMO systems and not CF
networks in general. In particular special focus was given
on channel estimation and power allocation. In these three
areas DL methods seem to perform better. The different DL
models and a review of the state-of-the-art architectures were
thoroughly surveyed, while future research directions were
highlighted.
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