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Efficient Memory-Bounded Optimal Detection
for GSM-MIMO Systems
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Abstract— We investigate the optimal signal detection problem
in large-scale multiple-input multiple-output (MIMO) system
with the generalized spatial modulation (GSM) scheme, which
can be formulated as a closest lattice point search (CLPS).
To identify invalid signals, an efficient pruning strategy is
needed while searching on the GSM decision tree. However, the
existing algorithms have exponential complexity, whereas they
are infeasible in large-scale GSM-MIMO systems. In order to
tackle this problem, we propose a memory-efficient pruning
strategy by leveraging the combinatorial nature of the GSM
signal structure. Thus, the required memory size is squared to
the number of transmit antennas. We further propose an efficient
memory-bounded maximum likelihood (ML) search (EM-MLS)
algorithm by jointly employing the proposed pruning strategy
and the memory-bounded best-first algorithm. Theoretical and
simulation results show that our proposed algorithm can achieve
the optimal bit error rate (BER) performance, while its memory
size can be bounded. Moreover, the expected time complex-
ity decreases exponentially with increasing the signal-to-noise
ratio (SNR) as well as the system’s excess degree of freedom,
and it often converges to squared time under practical scenarios.

Index Terms— Signal detection, MIMO, maximum likelihood
detection, generalized spatial modulation, tree search algorithm,
sphere decoding.
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I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) has
became one of the basic component of future wireless

communication networks [1], [2]. The use of massive anten-
nas at both transmitter and receiver offers multiplexing and
diversity, and thereby a massive MIMO system is established
to support ultra-reliable and low-latency services. However,
a major concern of the conventional MIMO schema is the
rapid increase of complexity and deployment cost [3]–[5].
In order to tackle this problem, spatial modulation (SM) has
been extensively investigated as an innovative and promising
technology [6], [7]. Despite the fact that multiple antennas are
equipped at the transmitter, SM activates only one antenna to
convey a certain symbol at any instant. In SM, the transmitted
information depends on both the activated antenna index and
the transmitted symbol. Therefore, an overall increase in spec-
tral and energy efficiency is achieved, and the inter-channel
interference (ICI) can be reduced as well. However, a main
drawback of SM is that the overall increase of performance
is limited for massive MIMO systems. Therefore, generalized
spatial modulation (GSM) was proposed as an extension of
SM [8]. Instead of activating only one antenna in SM, GSM
activates multiple antennas during a symbol. Thus, it has the
potential to provide a comprehensive trade-off among spectral
and energy efficiency by adaptively setting the number of
activated antennas [7].

In MIMO systems, one important approach to improve the
quality of service (QoS) is to reduce the detection errors.
However, due to ICI and varying activated transmit antenna
combinations (TACs), it becomes much more challenging
to recover the transmitted information in GSM. Specifically,
the maximum likelihood detection (MLD) in GSM involves
a brute-force enumeration over the set of all valid TACs
as well as the associated symbols drawn from a specific
constellation. Thus, the computational complexity of MLD
increases exponentially with the number of activated transmit
antennas and the constellation size, which is prohibitively
high in large-scale MIMO systems [9], [10]. Although several
low-complexity detection algorithms, including ordered block
minimum mean square error (OB-MMSE) [11], Gaussian
approximation [12], Bayesian cooperative detection [13] and
sparsity recovery algorithms [14]–[19], have been proposed to
reduce the complexity of GSM signal detection, they actually
underperform the optimal MLD with considerably inevitable
performance loss. To tackle this problem, researchers have
proposed several algorithms to search the shortest valid path

0090-6778 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 11:56:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6618-5568
https://orcid.org/0000-0003-2154-1562
https://orcid.org/0000-0002-9783-1366
https://orcid.org/0000-0001-5229-458X
https://orcid.org/0000-0003-1001-7036
https://orcid.org/0000-0001-8810-0345


4360 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 7, JULY 2022

on the GSM decision tree [20]–[27], with the purpose of
achieving exact maximum likelihood (ML) performance and
meanwhile reducing the average complexity. In general, such
existing search algorithms can be categorized into one stage
and two stage search algorithms, which are described in details
in the following.

A. Literature Overview

The basic idea of one-stage search algorithms is to identify
the inactivated antennas by extending the constellation with
“0” or NULL symbols [20]–[24]. Under this setting, one is
able to jointly determine the selected TAC as well as the
transmitted symbols. It is straightforward to find the optimal
ML estimation by applying tree search algorithms (e.g. sphere
decoding (SD) [20] or K-best SD [22]) to find the shortest
valid path. However, only a few number of paths represent-
ing valid GSM signals should be considered in the search
space of large-scale GSM-MIMO systems. Therefore, pruning
the unpromising branches becomes an essential strategy for
one-stage search algorithms. From this perspective, researchers
proposed several methods to address this problem. In [20], the
authors proposed to employ the structure of GSM to restrain
the visiting branches leading to valid candidates, which was
accomplished by introducing a boolean matrix as a mask or
filter at each tree level. In addition, a layer ordering and TAC
partitioning aided SD algorithm were proposed in [23], which
employed a similar pruning strategy as [20]. Moreover, the
authors in [21], [22], [24] proposed to employ a GSM look-up
table or codebook to help prune unpromising branches. Such
methods are classical implementation of the idea of sacrific-
ing space to store a look-up table or codebook to improve
efficiency.

In order to avoid pruning many invalid branches, researchers
proposed to search according to the combinatorial nature
of GSM signals. Those algorithms are called as two-stage
search algorithms, as they typically involves two stages to
find the shortest valid path [25], [26]. Two-stage search algo-
rithms will first determine the transmit antenna configuration,
and then estimate the transmitted symbols by solving the
least-squares problem for all effectively smaller sub-systems.
For instance, the authors in [25] proposed a sorting-aided
successive SD algorithm (SA-SSDA), which first orders the
effective sub-systems, and then successively performs SD on
the sub-systems to achieve the MLD performance with a
lower computational complexity. Moreover, a similar succes-
sive search algorithm was proposed in [26], which employed
box-optimization and initial radius broadcasting to further
reduce the complexity of SA-SSDA.

Although many one-stage and two-stage search algo-
rithms have been proposed in the past years, there still
exists some issues regarding large-scale GSM-MIMO systems.
Specifically, for the one-stage search algorithms introduced
in [20]–[24], the boolean matrix or look-up table can be
prohibitively large in large-scale systems. Storing a huge size
of boolean matrix or look-up table can be very challenging
for many storage-sensitive internet of things (IoT) devices,
and querying can become much more inefficient as well. For
the two-stage search algorithms introduced in [25] and [26],

ordering subproblems require to exhaustively compute the
costs of all possible TACs, which is however again an
ineffective strategy for large-scale systems. Generally, the
existing one-stage or two-stage algorithms are mainly based
on depth-first search [20], [21], [23]–[26] or breadth-first
strategy [22]. Despite the fact that depth-first and breath-
first search require less memory space than the best-first
search, they usually visit much more nodes and run very
slowly in large-scale MIMO systems [28]–[30]. Therefore,
finding a feasible search algorithm with near-optimal detection
performance still remains a critical challenge for large-scale
GSM-MIMO systems.

B. Contribution

In this paper, we are interested in achieving the exact
optimal detection performance in large-scale GSM-MIMO
systems, while trying to significantly improve the search
efficiency and memory efficiency. In order to accomplish
this goal, we propose an efficient pruning strategy based
on combinatorial codes. Moreover, we modify the memory-
bounded best-first search algorithm with the proposed pruning
strategy, and thereby an efficient memory-bounded ML search
(EM-MLS) algorithm is proposed to achieve the exact ML
performance and considerable complexity reduction. To sum-
marize our work, the main contributions of this paper are as
follows:

• By leveraging the combinatorial nature of the GSM signal
structure, we propose an efficient pruning strategy whose
time and space complexities grow linearly and squared
with the number of transmitted antennas, respectively.
Thus, the proposed pruning strategy is much more effi-
cient with comparison to the existing strategies, which
involve exponentially high complexities.

• With the help of memory-bounded pruning and memory-
bounded best-first searching, we show that the proposed
EM-MLS is able to perform the best-first style search on
the GSM decision tree, reach the optimal BER perfor-
mance with limited memory, and can run 30 times faster
than the existing optimal algorithms.

• We further show that the average computational com-
plexity of the proposed search algorithm decreases expo-
nentially with increasing the SNR and system’s excess
degree of freedom. In fact, it often converges to squared
time under practical scenarios. This finding suggests that
the proposed algorithm is feasible for large-scale GSM-
MIMO systems, especially when the system is highly
overdetermined.

II. GSM-MIMO SYSTEM AND ML DETECTION

In this section, we will introduce the considered
GSM-MIMO system, as well as several traditional approaches
to address ML detection in the system.

A. GSM-MIMO System Model

In this paper, we consider a large-scale GSM-MIMO system
with Nt and Nr antennas at the transmitter and receiver,
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Fig. 1. Transmitter and receiver diagrams for the GSM-MIMO system.

TABLE I

MAPPING TABLE FOR TAC SELECTION IN GSM-MIMO SYSTEMS,
WHERE Nt = 5 AND Na = 2

where only Na (Nr ≥ Nt ≥ Na � 1) transmit antennas
are activated. The excess degree of freedom is denoted by
Ne = Nr−Nt, and the total number of TACs is given by

�
Nt

Na

�
,

where
�
n
k

�
= n!

k!(n−k)! is the binomial coefficient. It should be
noted that not all TACs are available in the system, since only
K = 2�log2 (Nt

Na
)� TACs can be considered for transmission,

where �·� denotes the floor operation. Besides, the symbols
transmitted by the activated transmit antennas are modulated
by M -ary quadrature amplitude modulation (M -QAM) or
phase shift keying (M -PSK) modulation with alphabet X .
Hence, one is able to convey L = log2 K + Na log2 M bits
in total at a symbol duration, and only Na out of Nt radio
frequency (RF) chains are required with comparison to the
conventional MIMO systems.

As shown in Fig. 1, the transmission process in the
GSM-MIMO system include two stages. Given a block of L
bits, in the first stage, the first log2 K bits will be used to
select the transmit antennas according to the underlying GSM
mapping, and an example of GSM mapping table for TAC
selection is shown in Table. I. After the transmit antennas are
determined, in the second stage, the remaining Na log2 M bits
are modulated by M -QAM or M -PSK modulation, and the
resulting signal x ∈ XNa will be transmitted via a Rayleigh
flat fading wireless channel. Formally, the received signal at
the receiver is given by

y = Hs + w, (1)

where H ∈ CNr×Nt denotes the channel state informa-
tion (CSI) matrix with independent and identically distributed

(i.i.d.) components following CN (0, ρ), s ∈ SNt ⊂ CNt×1

denotes the transmitted signal, and w ∼ CN (0, I) represents
the additive white Gaussian noise (AWGN). Note that S =
X ∪ {0} denotes the alphabet of the effectively extended
constellation with “0” identifying inactivated antennas (e.g.
X = {−1, +1} and S = {−1, +1, 0} for BPSK modulation).
Alternatively, the above system model can be expressed as an
effective sub-system, which is given by

y =
Nt�
j=1

hjsj + w = Hkx + w, (2)

where Hk = [hkNa
, . . . , hk2 , hk1 ] is the effective CSI matrix

with columns corresponding to the nonzero elements of s.
It should be noted that there are K effective sub-systems in
total.

B. ML Detection

Based on the system model of (1), the mathematically
optimal detector is the MLD given by

s∗ = arg min
ŝ∈Sv


y −Hŝ
2 , (3)

whose principle is to find the closest valid candidate in terms
of Euclidean distance. Note that the search space Sv ⊆ SNt is
the subset containing all valid GSM signal vectors. In addition,
based on the effective sub-system model of (2), the ML
solution can be found by solving a sequence of sub-problems

�k∗, x∗
 = arg min
k,x̂


y −Hkx̂
2 , (4)

which requires to estimate both the TAC index and trans-
mitted symbols successively. Based on k∗ and x∗, one can
thereby recover the whole signal vector s∗. However, directly
solving (3) or (4) both involve an exponentially increasing
computational complexity [30]. Hence, we need to construct
a decision tree by applying QR factorization as

H =
�
Q1 Q2

�� �	 

Q

�
R
0

�
= Q

�
R
0

�
, (5)

where Q1 ∈ CNr×Nt and Q2 ∈ CNr×Ne both have orthogonal
columns, and R ∈ CNt×Nt is the upper triangular matrix.
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Fig. 2. Structure of a GSM-MIMO decision tree with Nt = 3, Na = 2 and BPSK modulation. The solid black nodes lead to invalid goal nodes, while the
solid red nodes lead to valid goal nodes.

Then, (3) can be written as

s∗ = argmin
ŝ∈Sv





QHy −
�
R
0

�
ŝ





2

(6)

= argmin
ŝ∈Sv

Nt�
j=1

����zk −
k�

j=0

rk,jsj

����2 (7)

= argmin
ŝ∈Sv

Nt�
j=1

B(ŝj), (8)

where z � QH
1 y, ri,j denotes the (i, j)-th element of R

counting from the right-bottom to the left-top, and the j-th

cost increment is given by B(ŝk) =
���zk −

�k
j=0 rk,jsj

���2,

which only depends on the partially determined vector ŝk =
[ŝk, ŝk−1, · · · , ŝ1]. In addition, the cumulative cost is G(ŝk) =�k

i=1 B(ŝi), and the successive identity G(ŝk+1) = G(ŝk)+
B(ŝk+1) holds.

Thus, a perfect |S|-way and Nt-level decision tree is con-
structed [30], [31]. In the resulting tree, we denote a node on
the k-th level as ŝk, which represents the path leading from
the root to that node as well. In particular, the cumulative
cost of a goal node (i.e. a node ŝk at the deepest level with
k = Nt), represents the Euclidean distance of the associated
signal vector. It should be noted that not every goal node
is associated with a valid GSM signal. Therefore, one has
to find the ML solution of (3) by finding the shortest path
leading from the root to a valid goal node. To illustrate this,
an example is provided in Fig. 2 with Nt = 3, Na = 2 and
BPSK modulation.

Analogously, one can also construct a forest containing a
sequence of |X |-way Na-level decision trees by factorizing
Hk for every effective sub-system as

Hk =
�
Q̄k Q̃k

� �Rk

0

�
, (9)

where Q̄k ∈ CNr×Na and Q̃k ∈ CNr×(Nr−Na) both have
orthogonal columns, and Rk ∈ CNa×Na is the upper triangu-
lar matrix. Then, (4) can be written as

�k∗, x∗
 = argmin
k

�

Q̃H

k y
2 + min
x̂∈XNa


Q̄H
k y −Rkx̂
2

�
.

(10)

Obviously, the above equation defines a decision forest of K

small decision trees, and the cost of the k-th root is 
Q̃H

k y
2.
Based on the resulting decision forest, one is able to find the
ML solution of (4) in two stages. The first stage is to order all
the trees in an ascending order according to the costs of their
roots. The second stage is to find the shortest path of each
tree, and select the shortest path among the shortest paths of
all trees as the optimal solution.

Basically, one-stage search algorithms are developed based
on (6) [20]–[24], while two-stage search algorithms are devel-
oped based on (10) [25], [26]. For the two-stage search
algorithms introduced in [25], [26], they have to factorize
all the sub-matrices and compute the costs of all roots based
on (10). Hence, it is hard to scale those algorithms to large-
scale problems, especially when the system is highly overde-
termined. As to the one-stage search algorithms introduced
in [20]–[24], they require exponentially increased memory
space to store mapping tables. Unfortunately, the number
of valid signal vectors (|Sv| = K|X |Na in total) is often
significantly less than the size of the whole search space (|S|Nt

in total) in large-scale systems. For example, only about 0.01%
signal vectors are valid when Nt = 32, Na = 16 and QPSK
modulation is adopted. In conclusion, the main drawback of
the existing search methods is that they either require a huge
size of memory space or a lot of computing time that increases
exponentially with the problem scale, which motivates us to
find an efficient memory-bounded search strategy for large-
scale GSM-MIMO systems.
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TABLE II

BIJECTIVE MAPPING TABLE FOR GSM-MIMO
SYSTEMS WITH Nt = 5 AND Na = 2

III. PROPOSED EFFICIENT MEMORY-BOUNDED

ML SEARCH STRATEGY

In this section, we will first introduce our proposed pruning
strategy. After that, we will show the proposed efficient
memory-bounded ML detection algorithm, and analyze its
expected computational complexity afterwards.

A. Efficient Pruning With Combinatorial Coding Schema

According to the GSM signal structure, a key observation
is that once we rank TACs in lexicographical order, a bijective
mapping can be established between the indices and antenna
combinations. This can be done by interpreting the TAC as a
binary antenna selection sequence (BASS), and computing the
corresponding lexicographical ordered index number. As long
as we have an arrangement on only using the first K TACs for
space modulation, we can check if a signal vector is valid by
verifying the index number (starts from zero) of the associated
BASS. Specifically, a signal vector is valid if it has the correct
number of activated antennas, and the index is less than K .
Following this, we first define the BASS of each TAC as

c = [c0, c1, . . . , ci, . . . , cNt−1], ci ∈ {0, 1}, (11)

where ci = 1 indicates that the (i+1)-th antenna is activated,
and the resulting BASS of a valid GSM signal must satisfy�Nt−1

i=0 ci = Na. Note that this is also called as Na-hot vector
in the literature, since there are at most Na elements which
are activated. In addition, we will use c = C(sk) to represent
the associated BASS of sk, and we have

�Nt−1
i=0 ci ≤ Na if

k < Nt. For illustration, an example of bijective mapping is
presented in Table. II, where Nt = 5 and Na = 2.

In order to compute the corresponding index ic(c) of a
BASS c, we employ an algorithm introduced in [32] to
calculate the index as

ic(c) =
Nt−1�
n=0

cn

�
n

kn

�
, (12)

where kn =
�n

i=0 ci and
�

n
kn

�
= 0 for all n < kn. Now one

is able to construct a combinatorial coding trellis [33] based
on (12). The corresponding encoding and decoding procedures
are presented in Algorithm 1. Based on this algorithm, one
can encode a BASS to the corresponding index number, and
decode an index number back to the corresponding BASS.

Algorithm 1 Encoding and Decoding Procedures for Combi-
natorial Coding Trellis
1: procedure ENCODE(c)
2: Compute the index ic(c) according to (12)
3: return ic(c)
4: end procedure
5: procedure DECODE(ic)
6: Initialize c = [c0, c1, . . . , cn, . . . , cNt ] with zeros
7: r = ic
8: for k = Na to 1 do
9: for n = Ne + k − 1 to k − 1 do

10: if r ≥ �nk� then
11: cn = 1
12: r = r − �nk�
13: break
14: end if
15: end for
16: end for
17: return c
18: end procedure

To further check whether an arbitrary intermediate node ŝk is
a valid node, we obtain the following theorem.

Theorem 1: Let ŝk be an arbitrary node on the GSM
decision tree of (6), c = C(ŝk) be the corresponding BASS
of ŝk, and na =

�Nt−1
n=Nt−k cn be the number of currently

activated antennas. Then, ŝk is a valid node if

Na + k −Nt ≤ na ≤ Na, (13)

and
Nt−1�

n=Nt−k

cn

�
n

kn + Na − na

�
< K, (14)

where kn =
�n

i=Nt−k ci denotes the counter of activated
antennas.

Proof: From the GSM decision tree, it is clear that an
intermediate node ŝk is a valid node if and only if there is a
valid goal node on the sub-tree of ŝk. In other words, ŝk is
a valid node if the minimum index number among the goal
nodes on the sub-tree of ŝk is less than K . Following this,
we expand the associated BASS of ŝk as

c = [0, . . . , 0,� �	 

(Nt − k) terms

cNt−k, . . . , cNt−1], (15)

where only the last k elements are determined and the remain-
ing Nt − k undetermined elements are all zeros. In addition.
the number of currently activated antennas should satisfy (13).
Since the associated TACs are lexicographically ordered for all
valid goal nodes, the minimum BASS among the valid goal
nodes on the sub-tree can be expressed as

c† = [ 1, 1, . . . , 1,� �	 

(Na − na) ones

0, . . . , 0, cNt−k, . . . , cNt−1� �	 

k terms

], (16)

where the first Na − na terms are all ones, and the remain-
ing terms are the same as c. From (12), the corresponding
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combinatorial index of c† can be computed as

ic(c†) =
Na−na−1�

n=0

�
n

n + 1

�
+

Nt−1�
n=Nt−k

cn

�
n

kn + Na − na

�
(17)

=
Nt−1�

n=Nt−k

cn

�
n

kn + Na − na

�
, (18)

and it should satisfy ic(c†) < K . Thus, we have finished the
proof of Theorem 1.

By utilizing Theorem 1, one can easily check if an interme-
diate node is valid during search on the decision tree. In order
to analyze the complexity of the pruning strategy, we should
focus on the complexity of the decoding algorithm, which
can be viewed as a traverse along the trellis. As shown in
Fig. 3, the decoding algorithm starts with the combinatorial
terms at the upper-left corner, and then compares the index
of a signal candidate with the combinatorial term on the
diagonally downward transition. If the index is greater than
the combinatorial term, then the combinatorial term will be
selected for transition, and meanwhile the index is updated
by subtracting with the combinatorial term. Otherwise, the
algorithm continues to find the next node on the right side
transition. Obviously, we can find from the trellis that only
Na(Nt−Na+1) combinatorial terms need to be stored. There-
fore, the space complexity of the proposed pruning strategy is
O(N2

t ) with Na = �Nt+1
2 �. Moreover, since the combinatorial

terms are pre-computed, the worst-case time complexity is
O(NtNa), which grows linearly with the fixed Na or Nt. For
comparison, at least K|X |Nt terms should be stored for the
mapping table based pruning strategies. Therefore, we are able
to prune the tree efficiently by leveraging the combinatorial
nature of the GSM signal structure.

B. Efficient Memory-Bounded Best-First Search

In order to reduce the number of visited nodes, and limit
the memory usage at the same time, we introduce an efficient
memory-bounded search algorithm, which jointly uses the
aforementioned pruning strategy, and the memory-bounded
best-first search strategy [34] to achieve the exact ML perfor-
mance. Before showing the details, it is necessary to introduce
the following important concepts:

• ACTIVE is an ordered list with possibly limited size,
whose elements are ordered according to their costs.
In practice, it can be a priority queue or self-balancing
binary search tree (a.k.a. AVLTree) to meet the need of
fast querying.

• A node is said to be generated if it has been visited during
the expansion of its parent.

• A node is said to be in memory if it occupies space of
ACTIVE.

• A node is said to be expanded if all of its valid successors
are in memory.

The pseudo code of the proposed algorithm is presented in
Algorithm 2, and the pseudo code of utility functions is
presented in Algorithm 3. In the decision tree, every goal node

Algorithm 2 Efficient Memory-Bounded ML Search (EM-
MLS) Algorithm
Input: z and R
Output: ŝ

1: Insert the root node s0 into ACTIVE
2: loop
3: if ACTIVE is empty then
4: return ∅ with failure
5: end if
6: ŝk ← deepest least-cost node in ACTIVE
7: if sk is a goal node (k = Nt) then
8: return ŝk with success
9: end if

10: ŝk+1 ← next not generated valid successor according
to Theorem 1 or best forgotten successor of ŝk

11: Insert ŝk+1 into its parent’s generated successor list
12: HANDLE(ŝk, ŝk+1)
13: ADJUST(ŝk)
14: MAKESPACE()
15: Insert ŝk+1 in ACTIVE
16: if ŝk is expanded then
17: remove ŝk from ACTIVE
18: end if
19: end loop

is associated with a specific signal candidate, every branch
represents the cost of the associated symbol decision, and the
shortest path which has the least cumulative costs represents
the optimal ML estimate [30], [34]. As shown in the algo-
rithm 2, the algorithm maintains a partially expanded decision
tree of the whole tree, generates only one valid successor
during each expansion, and forgets the most unpromising leaf
node. The search procedure always starts from a dummy root
node s0, chooses the deepest least-cost leaf node1 sk from
the memory, and expands it at each iteration. In particular,
as shown in Line 10 of Algorithm 2, the algorithm finds the
next not-generated valid successor of sk according to Theo-
rem 1 during the expansion. Hence, all the invalid intermediate
nodes and goal nodes can be pruned very efficiently, which
significantly reduces the complexity of the algorithm.

Besides, the proposed algorithm will keep expanding the
best leaf node until ACTIVE is full. Since the memory size is
limited, EM-MLS will forget the most unpromising node from
ACTIVE, and remember the forgotten node’s key information
in its parent. After safely deleting the most unpromising node,
the proposed algorithm is able to move forward, and recover
forgotten nodes if there is not any other path better than the
forgotten path. Thus, the memory size can be bounded, and
EM-MLS guarantees to find the shortest path, which represents
the exact ML estimate. By using the above search strategy,
the memory usage of the proposed algorithm can be limited.
Meanwhile, the algorithm can take full advantage of all the
available memory during the search.

1The leaf node is with respect to the partially expanded decision tree
maintained by the algorithm. That means the forgotten node is not necessary
to be the goal node of the whole decision tree of (6).
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Fig. 3. Trellis diagram for decoding index (Na = 3).

Algorithm 3 Utility Functions for the EM-MLS Algorithm

1: function HANDLE(ŝk, ŝk+1)
2: if ŝk+1 is not a forgotten node then
3: G(ŝk+1)← max

�
G(ŝk), G(ŝk+1

�
)

4: else
5: Recover ŝk+1’s cost from its parent
6: end if
7: end function
8: function ADJUST(ŝk)
9: if all of ŝk’s successors are generated then

10: ŝk+1 ← least-cost successor among all generated
successors and forgotten successors of ŝk+1

11: if ŝk+1’s cost is finite and not equal to ŝk’s cost then
12: Update ŝk’s cost to ŝk+1’s cost
13: ADJUST(ŝk’s parent)
14: end if
15: end if
16: end function
17: function MAKESPACE()
18: if ACTIVE is not full then
19: return
20: end if
21: Remove shallowest highest-cost leaf node ŝk

j from
ACTIVE

22: Remove ŝk
j from its parent’s generated successor list

23: Remember ŝk
j ’s cost in its parent’s forgotten successor

list
24: if the parent is not in ACTIVE then
25: Insert the parent into ACTIVE MAKESPACE

26: end if
27: end function

It should be noted that the BER performance is not related to
the memory size, as long as the least required memory space2

is satisfied. In principle, with different sizes of memory space,
the proposed algorithm still generates the same set of nodes,
but may visit some nodes more than once depending on the
memory size [34]. This means that the proposed algorithm

2To find a complete path from the root node to any goal node, the memory
size must be at least larger than the length of the path.

will run faster with a larger memory size, as it has no need
to frequently forget unpromising nodes. In particular, if the
memory size is unlimited, EM-MLS behaves exactly the same
as the other best-first search algorithms, except for the ability
to prune the nodes which will break the structure of the GSM
signal. In the simulations, we will show that the proposed
algorithm can reach nearly the optimal performance with
memory sizes which is linear to the problem scale. Although
EM-MLS can perform very well with small memory space,
we should provide as much memory as possible in practice,
as EM-MLS can perform better with larger memory space.
Consequently, with the help of the proposed efficient pruning
strategy and memory-bounded best-first search, the proposed
search algorithm guarantees to obtain the exact ML estimate,
while its space complexity can be bounded.

C. Expected Computational Complexity

To analyze the computational complexity of the proposed
algorithm, we first provide the following theorem.

Theorem 2 (Conditions for Node Expansion): Let ŝk be
any valid node satisfying Theorem 1 on the tree of (6), then a
necessary condition for expanding ŝk is

G(ŝk) ≤ G(s∗), (19)

and the sufficient condition is

G(ŝk) < G(s∗), (20)

where s∗ denotes the ML estimate.
Proof: We first prove the necessary condition. Since s∗

is the ML estimate, it will be the first goal node expanded by
the algorithm. For any valid node ŝk satisfying Theorem 1,
the algorithm expands s∗ before ŝk if G(ŝk) > G(s∗).
As the algorithm terminates at s∗, ŝk will not be expanded
by the algorithm. Hence, the necessary condition holds. For
the sufficient condition, the algorithm expands ŝk before s∗ if
G(ŝk) < G(s∗). When G(ŝk) = G(s∗), s∗ may be expanded
before ŝk due to the algorithm’s visitation priority. At this
time, the algorithm terminates, and ŝk will not be expanded.
Hence, the sufficient condition holds as well.

Following Theorem 2, it is clear that only one goal node
will be eventually expanded by the algorithm. As a contrast,
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the depth-first or breadth-first algorithms like SD or K-best
SD may expand more than one goal nodes [28]. As the
computational complexity of search algorithms mainly depend
on the number of expanded nodes, the proposed algorithm
often runs much faster than SD in practice. Generally, the
complexity of SD can be regarded as a loose upper bound of
the complexity of the proposed algorithm, and both algorithms
will require exponential complexity at the worst case [30].
However, since the decision tree is constructed based on the
random system model in (1), we can further characterize the
expected complexity of the proposed algorithm based on the
following theorem.

Theorem 3: For the GSM-MIMO system in (1) with fixed Nt

and finite lattice points, the expected computational complexity
of the proposed EM-MLS algorithm decreases exponentially
with both the increasing SNR which is proportional to ρ, and
the increasing excess degree of freedom Ne. In particular, the
expected computational complexity converges to O �N2

t

�
with

sufficiently large ρ and Ne.
Proof: See Appendix.

Following Theorem 3, we can observe that EM-MLS not
only benefits from increasing SNR, but also benefits from
increasing the excess degree of freedom of the system. The
latter reveals that one is able to significantly improve the
efficiency of the proposed algorithm without additional energy
consumption. As to the other GSM-MIMO signal detection
algorithms like Gaussian approximation and OB-MMSE, they
do not utilize the excess degree of freedom to reduce their
computational complexities. In particular, when Ne grows
large enough, the proposed algorithm can reach the low-
est average complexity that is squared of Nt. Therefore,
we believe that the proposed algorithm is feasible for the
large-scale GSM-MIMO system, especially when the system
is highly overdetermined.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results to verify the
effectiveness of our proposed EM-MLS algorithm. Specifi-
cally, we perform simulations on several GSM-MIMO systems
where the transmitted signals experience Rayleigh flat fading
channels [35], [36]. If not specified, the presented simulations
are performed with Nr = Nt = 16, Na = 10 and QPSK
modulation. Under this setting, there are 232 signal candidates
in total, which is prohibitively large such that the brute-force
search is totally impractical. In simulations, we compare our
proposed EM-MLS algorithm with the following competitive
GSM-MIMO detection algorithms.

• OMP: Orthogonal matching pursuit algorithm for fast
sparse signal recovery introduced in [17].

• GA: Maximum likelihood detector with Gaussian approx-
imation introduced in [12].

• OB-MMSE: Ordered block minimum mean squared error
detector introduced in [11].

• SASSD: Sorting assisted successive sphere decoding
algorithm introduced in [25].

In order to verify the memory efficiency of the proposed
algorithm, we will show the performance of our proposed

Fig. 4. BER comparison versus SNR with Nr = Nt = 16, Na = 10 and
QPSK modulation.

algorithm in terms of memory space. Specifically, we use
EM-MLS(L) to indicate that the capacity of ACTIVE is set to
L. In particular, EM-MLS(∞) denotes that the memory size
is unlimited, and EM-MLS will visit each node no more than
once in this situation.

Fig. 4 plots the BER performances of the aforementioned
detection algorithms, where SNR varies from 5 dB to 15 dB.
We can find from the figure that the proposed EM-MLS
algorithm reaches the exact ML performance, while the
performances of OMP, GA, and OB-MMSE are far from
reaching the optimal BER performance. This is because that
the proposed algorithm guarantees to find the shortest path
of the GSM decision tree as long as the minimum size of
memory space is established. Note that we neglect the memory
size of EM-MLS in BER performance comparisons, since the
memory size does not affect the BER performance. In addition,
we can find from the figure that the performance gap between
the proposed algorithm and the other sub-optimal algorithms
enlarges with increasing SNR. Specifically, when SNR =
15 dB, EM-MLS can significantly reduce the errors of OMP,
GA and OB-MMSE to about 0.001%, 0.01% and 0.76%,
respectively. In addition, the SNR gains of EM-MLS over GA
and OB-MMSE are about 5 dB and 2 dB at the BER level of
10−2. These results show that the performance gap between
the sub-optimal algorithms and our proposed EM-MLS rapidly
enlarges in high SNR regime, which indicates that pursuing
the optimal ML performance is of importance for large-scale
systems.

Fig. 5 compares the computing times of the aforementioned
algorithms, where the SNR varies from 5 dB to 20 dB.
In particular, we present the computing time of EM-MLS with
different sizes of memory space in order to verify the memory
efficiency of EM-MLS. We can find from the figure that
the computing time of both SASSD and EM-MLS decreases
with increasing SNR, and converges in the high SNR regime.
However, the computing time of EM-MLS is much lower than
that of SASSD, especially when SNR is high. Specifically,
EM-MLS is about 37 times faster than SASSD, and reduces

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on May 16,2023 at 11:56:05 UTC from IEEE Xplore.  Restrictions apply. 



HE et al.: EFFICIENT MEMORY-BOUNDED OPTIMAL DETECTION FOR GSM-MIMO SYSTEMS 4367

Fig. 5. Computing time comparison versus SNR with Nr = Nt = 16,
Na = 10 and QPSK modulation.

the computing time of SASSD to about 97.34% when SNR =
20 dB. More importantly, EM-MLS can be even faster than the
sub-optimal algorithms in the high SNR regime. Specifically,
EM-MLS runs about 4.6 times faster than OMP when SNR =
20 dB. This indicates that our proposed EM-MLS can prune
the unpromising nodes efficiently and visit significantly fewer
nodes to find the shortest valid path in large-scale search space.
Furthermore, we can find from Fig. 5 that the computing time
of EM-MLS is not sensitive to the size of memory space,
since EM-MLS(64) consumes nearly the same computing time
as EM-MLS(4096) and EM-MLS(∞) in a wide range of
SNR. These results sufficiently verify the effectiveness of the
proposed EM-MLS algorithm.

Generally, the computing time of search algorithms is
proportional to the total number of floating point opera-
tions (FLOPs) and the total number of visited nodes. Hence,
Figs. 6-7 are presented to further compare the two components
of the aforementioned algorithms. Specifically, Fig. 6 depicts
the number of visited nodes for the aforementioned algorithms
under the same environment setting of Fig. 5. One can
conclude from Fig. 6 that the number of nodes visited by
EM-MLS decreases very rapidly with the increasing SNR.
The number of nodes visited by SASSD decreases as well,
but converges to a much high level with comparison to EM-
MLS. This is because SASSD finds the shortest valid path
in a depth-first manner, which will visit more nodes than the
best-first style search. In addition, the size of memory space
has impact on the number of nodes visited by EM-MLS in the
low SNR regime, but it quickly vanishes with the increasing
SNR. Actually, with different memory space, EM-MLS still
generates the same set of nodes, but may visit some nodes
more than once depending on the size of memory space. This
phenomenon further indicates that the complexity of EM-MLS
is not sensitive to the size of memory space, especially for high
SNR regime.

Fig. 7 demonstrates the number of FLOPs for the competing
algorithms in the same environment setting of Fig. 5. Since
EM-MLS generates the same set of nodes with different

Fig. 6. Number of visited nodes versus SNR with Nr = Nt = 16, Na =
10 and QPSK modulation.

Fig. 7. FLOPs comparison versus SNR with Nr = Nt = 16, Na = 10 and
QPSK modulation.

memory sizes, it performs the same number of FLOPs as
well. Hence, we plot only the number of FLOPs performed
by EM-MLS(64) in the figure for brevity. From Fig. 7, it can
be found that the number of FLOPs of EM-MLS decreases
rapidly in the high SNR regime, while the number of FLOPs of
SASSD varies insignificantly at the same time. By combining
the simulation results in Fig. 6, we can conclude that this
is because even the number of nodes visited by SASSD
decreases, it still has to do preprocessing for all subsystems
(see (4)) as we have pointed out in Sec II-B, which is a bad
strategy in large-scale systems. Hence, the number of FLOPs
at the preprocessing stage dominates in the total number of
FLOPs by SASSD, which indicates that SASSD is hard to
scale to large-scale systems. As a contrast, EM-MLS only
need to perform preprocessing once, thus the number of
FLOPs decreases linearly with the number of generated nodes.
Therefore, EM-MLS becomes much faster and more efficient
than SASSD in large-scale systems.
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Fig. 8. Computing time versus SNR with Nt = 32, Na = 16 and QPSK
modulation.

Fig. 9. Computing time versus the excess degree of freedom with Nt = 32,
Na = 16 and QPSK modulation.

To further validate Theorem 3, we present simulation results
regarding complexity comparisons in Figs. 8-9. Specifically,
Fig. 8 illustrates the computing time comparison versus dif-
ferent SNRs, where Nt = 32, Na = 16 and SNR varies
from 15 dB to 25 dB. Fig. 9 illustrates the computing time
comparison versus different excess degree of freedom, where
Nt = 32, Na = 16 and Ne varies from 0 to 32. The size of
search space is 261 in the simulations, and the memory size
of EM-MLS is set to 1024. We can find from Fig. 8 that the
computing time decreases exponentially with the increasing
SNR for all the values of Ne. Similarly, we can also find
from Fig. 9 that the computing time decreases exponentially
with the increasing excess degree of freedom for all SNR
settings. In addition, the computing time converges to a certain
value with a sufficiently large Ne and a sufficiently high SNR.
Besides, the computing time of EM-MLS converges faster
with higher SNR and larger Ne. These observations obviously
support our theoretical complexity analysis. In further, we can

Fig. 10. Computing time versus SNR with Nt = 32, Na = 16 and 16-QAM
modulation.

see from the figures that the expected complexity usually
reaches the lowest complexity under practical conditions, and
the proposed algorithm performs much better under highly
overdetermined systems. In conclusion, these results suggest
that the proposed EM-MLS algorithm is feasible for large-
scale GSM-MIMO systems, especially when the system is
highly overdetermined.

In order to show the effectiveness of the proposed algorithm
with high-order modulation schemes, Fig. 10 is used to present
the computing time results versus SNR, where 16-QAM
is adopted, and the numbers of transmit antennas, receive
antennas and RF chains are 16, 32, and 10, respectively.
We can find from this figure that the computing time of
the proposed algorithm still outperforms the aforementioned
algorithms. Specifically, EM-MLS(64) runs 20 and 2.5 times
faster than SA-SSD and OMP, respectively. Moreover, the
computing time of EM-MLS(64) is very close to that of
EM-MLS(∞), which indicates that the proposed algorithm
can still run very efficiently with low memory requirement in
16-QAM 16 × 32 GSM-MIMO systems. These results further
verify the effectiveness of the proposed algorithm.

V. CONCLUSION

In this paper, we have studied the classical optimal sig-
nal estimation problem in large-scale GSM-MIMO systems.
We designed an efficient memory-bounded optimal signal
detection algorithm, which not only limits the memory usage,
but also can achieve the exact optimal maximum likelihood
detection performance with an affordable computational com-
plexity. To do so, we have proposed a memory-efficient
pruning strategy for search algorithms by leveraging the
combinatorial nature of the GSM signal structure. Based on
this proposed pruning strategy, we have further proposed an
efficient memory-bounded tree search algorithm, namely EM-
MLS. We have shown that the proposed algorithm guarantees
to find the optimal solution with limited memory space. Mean-
while, the computational complexity of the proposed algorithm
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decreases exponentially with the increasing SNR and the
excess degree of freedom, and usually converges to squared
time under practical conditions. Therefore, we confirm that
the proposed algorithm is feasible for large-scale GSM-MIMO
systems, especially when the system is highly overdetermined.

Nevertheless, we only consider a fixed number of activated
antennas at the transmitter in this work. In practice, the number
of activated transmit antennas can be dynamic, which is one
of the interesting topics for future works. Besides, we can
further consider improving the search speed and robustness
of the proposed algorithm with data-driven methods, which
should be the major objective of our future research.

APPENDIX

PROOF OF THEOREM 3

To prove this theorem, we first introduce the following
useful results.

A. Upper Bound on the Gaussian Hypergeometric Function

Lemma 1: For any positive numbers a ≥ b > 0 and c > 1,
we have the following inequality

2F1(1, a; b + 1;
1
c
) ≤
�

c

c− 1

�a

, (A.1)

where 2F1(·, ·; ·; ·) denotes the Gaussian hypergeometric func-
tion.

Proof: According to the identities of the Gaussian hyper-
geometric function [37], [38], we have

2F1

�
1, a; b + 1;

1
c

�

=
�

c

c− 1

�a

2F1

�
b, a; b + 1;

1
1− c

�
(A.2)

=
�

c

c− 1

�a

2F1

�
a, b; b + 1;

1
1− c

�
(A.3)

=
�

c

c− 1

�a

b

� 1

0

tb−1�
1 + t

c−1

�a dt. (A.4)

Under the given conditions, it is clear that the following
inequality holds� 1

0

tb−1�
1 + t

c−1

�a dt ≤
� 1

0

tb−1dt =
1
b
. (A.5)

Thus, we have

2F1

�
1, a; b + 1;

1
c

�
≤
�

c

c− 1

�a

. (A.6)

B. Inequalities for the Gamma Function

Lemma 2 (See Theorem 5 in [39]): Let a > 0 and b > 0,
then

Γ
�

a + b

2

�
≤ [Γ(a)]

1
2 [Γ(b)]

1
2 , (A.7)

where Γ(x) =
�∞
0 tx−1e−tdt is the Gamma function.

Lemma 3: Let a > 0 be a positive real number, then we
have the following inequality

Γ(2a) ≤ 24a−1

πa
�
a + 1

2

�2 [Γ(a + 1)]2 . (A.8)

Proof: For a > 0, the Legendre Duplication Formula [40,
p. 58] states that

Γ(2a) =
22a−1

√
π

Γ(a)Γ
�

a +
1
2

�
. (A.9)

In addition, we have the following inequality
[39, Corollary 5]

Γ(a) ≤ 22a−1

√
πa2

Γ
�

a +
1
2

�
. (A.10)

Then, evaluating (A.10) successively gives

Γ
�

a +
1
2

�
≤ 22a

√
π
�
a + 1

2

�2 Γ (a + 1) . (A.11)

Thus, Lemma 3 can be proved by using the fact that Γ(a+1) =
aΓ(a) and substituting (A.11) into (A.9).

C. Proof

Now we are ready to complete the proof. Let Se be the set
of valid nodes to be expanded. From Theorem 2, we can bound
the probability of expanding a valid node ŝk (1 ≤ k ≤ Nt) as

Pr
�
ŝk ∈ Se

�
≤ Pr

�
G(ŝk) ≤ G(s∗)

�
(A.12)

≤ Pr
�
G(ŝk) ≤ G(s)

�
, (A.13)

where s is the transmitted signal vector, and s∗ denotes the
ML estimate of s. Let us partition the upper triangular matrix
R and the vector v � QHw as

R =
�
RNt−k,Nt−k RNt−k,k

0 Rk,k

�
and v =

⎡
⎣vNt−k

vk

vNe

⎤
⎦ ,

(A.14)

where RNt−k,Nt−k, RNt−k,k and Rk,k are the corresponding
(Nt − k) × (Nt − k), (Nt − k) × k and k × k parts of
R, respectively. Analogously, vNt−k, vk and vNe are the
corresponding (Nt − k) × 1, k × 1 and Ne × 1 parts of v,
respectively. Then, we have

Pr
�
G(ŝk) ≤ G(s)

�

= Pr
�




�
Rk,k

0

�
s̃k +

�
vk

vNe

� 



2 ≤





⎡
⎣vNt−k

vk

vNe

⎤
⎦



2

�
,

(A.15)

where s̃k � sk − ŝk denotes the difference vector. It is
important to emphasize that we only consider the probability
of expanding the valid nodes lying on the wrong paths in
the proof, i.e. s̃k �= 0, since the nodes lying on the correct
path must be expanded. According to [31] and [41], one can
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always find a (Ne + k) × (Ne + k) unitary matrix Θ whose
distribution is independent of Rk,k, such that

H̄ � Θ
�
Rk,k

0

�
, (A.16)

whose distribution is the same as the lower (Ne + k) × k
part of H . Accordingly, we also have

w̄ � Θ
�

vk

vNe

�
, (A.17)

whose distribution is the same as the lower (Ne + k)× 1 part
of w. Then, (A.15) can be written as

Pr
�
G(ŝk) ≤ G(s)

�
(A.18)

= Pr
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2
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2
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vNt−k
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dk

⎞
⎟⎟⎠ (A.20)

= Pr (δk ≤ dk) , (A.21)

where δk �



H̄s̃k




2 + 2w̄HH̄s̃k and dk � 
vNt−k
2 ≥
0. Given H̄s̃k, it is obvious that δk is normally distributed
with

E{δk|ηk} = ηk and Var{δk|ηk} = 4ηk, (A.22)

where ηk �



H̄s̃k




2 ≥ 0. Besides, εk

ρ�s̃k�2 is a chi-square

random variable with (Ne +k) degree of freedom, while dk is
a chi-square random variable with (Nt−k) degree of freedom.
Note that 
s̃k
2 ≥ 1 holds for any ŝk �= sk. Using the
Chernoff bound, we can bound the probability as

Pr(δk ≤ dk|ηk, dk) = Q(
ηk − dk

2
√

ηk
)

≤
"

e
− (ηk−dk)2

8ηk , ηk > dk

1, ηk < dk

(A.23)

where Q(x) = 1√
2π

�∞
x e−

t2
2 dt is the Gaussian Q-function.

Since the three random variables H̄s̃k, w̄ and vNt−k are
mutually independent, averaging over ηk and dk gives the
upper bound on the expected probability as

Pr (δk ≤ dk)

= E{εk,dk}
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�
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For the first integral in (A.27), it can be bounded as
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where γ(·, ·) denotes the incomplete gamma function. Note
that the inequality in (A.30) holds from Lemma 1, the inequal-
ity in (A.31) holds from Lemma 2, and the inequality in (A.32)
holds according to Lemma 3. For the second integral in (A.27),
it can be bounded as� ∞

0

e
dk
4

(1 + ρ
4 )

Ne+k
2

fdk
(t)dt =

2
Nt−k

2

(1 + ρ
4 )

Ne+k
2

(A.33)

< 2
Nt−k

2

�ρ

4

�−Ne+k
2

. (A.34)

By substituting (A.32) and (A.34) into (A.27), we have

Pr
�
ŝk ∈ Se

�
<

�
[Γ (Nt − k)]

1
2

Γ
�

Nt−k
2

� + 2
Nt−k

2

��ρ

4

�−Ne+k
2

.

(A.35)

Now it is clear to find from (A.35) that with fixed Nt, the
expected probability of expanding a k-level valid node lying
on the wrong path, will decrease exponentially with increasing
ρ and Ne. Since the total number of valid nodes are fixed, the
expected complexity of the proposed algorithm will decrease
exponentially as well. In particular, when ρ and Ne are
sufficiently large, the expected probability in (A.35) vanishes
for each wrong valid node. In this case, only the correct
nodes will be eventually expanded by the algorithm. Since
the computational complexity of the algorithm only depends
on the number of expanded nodes, we can conclude that the
expected computational complexity of the algorithm converges
to O �N2

t

�
, which is the time complexity of computing the

cumulative cost of the correct path.
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