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Federated Learning (FL) is a promising decentralized machine learning technique, which
can be efficiently used to reduce the latency and deal with the data privacy in the next 6th
generation (6G) of wireless networks. However, the finite computation and communication
resources of the wireless devices, is a limiting factor for their very low latency requirements,
while users need incentives for spending their constrained resources. In this direction, we
propose an incentive mechanism for Wireless FL (WFL), which motivates users to utilize
their available radio and computation resources, in order to achieve a fast global
convergence of the WFL process. More specifically, we model the interaction among
users and the server as a Stackelberg game, where users (followers) aim to maximize their
utility/pay-off, while the server (leader) focuses on minimizing the global convergence time
of the FL task.We analytically solve the Stackelberg game and derive the optimal strategies
for both the server and the user set, corresponding to the Stackelberg equilibrium.
Following that, we consider the presence of malicious users, who may attempt to
mislead the server with false information throughout the game, aiming to further
increase their utility. To alleviate this burden, we propose a deep learning-aided secure
mechanism at the servers’ side, which detects malicious users and prevents them from
participating into the WFL process. Simulations verify the effectiveness of the proposed
method, which result in increased users’ utility and reduced global convergence time,
compared with various baseline schemes. Finally, the proposed mechanism for detecting
the users’ behavior seems to be very promising in increasing the security of WFL-based
networks.

Keywords: wireles federated learning, incentive mechanism, stackelberg game, convergence time minimization,
deep learning

1 INTRODUCTION

The 6th generation (6G) of wireless networks, is envisioned to support ubiquitous artificial
intelligence services and be the evolution of wireless networks from “connected things” to
“intelligent things” Letaief et al. (2019). Conventional machine learning approaches are usually
conducted in a centralized manner, where a central entity collects the generated data, and performs
the training. However, the increasing computing capabilities of wireless devices as well as the
sensitive data-privacy concerns have paved the way for a promising decentralized solution, the
Federated Learning (FL) KonečnỲ et al. (2016), McMahan et al. (2017). The salient feature of FL lies
in the retention of the locally generated data at the device, thus, each learner individually trains the
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model locally without uploading any raw data to the server.
Hence, the learners collaboratively build a shared model with the
aid of a server, whose role is to update and redistribute the global
training parameters to the learners. In this manner, the user data
privacy is preserved, while the communication traffic is reduced
leading to low latency, due to the absence of raw and big volume
data transfer Li et al. (2020). In accordance with the key
requirements of 6G networks, it is evident that 6G could be
empowered by FL for ensuring low-latency and privacy
preserving intelligent services Bouzinis et al. (2022a), Bouzinis
et al. (2022b).

1.1 Motivation and State-of-the-Art
In the context of wireless networks, several studies have
investigated the improvement of FL, in terms of model
accuracy, energy efficiency, and reduced latency. For instance,
the authors in Chen et al. (2020b), Shi et al. (2020b), minimized
the training loss under latency and energy requirements, by
jointly optimizing the computation and radio resources, as
well as the user scheduling. Moreover, in another wireless FL
(WFL) setup, the users’ total energy consumption and/or latency
minimization, have been investigated in Tran et al. (2019), Chen
et al. (2020a), Yang et al. (2021).

Although, the aforementioned research works have
contributed for the efficient deployment of FL in wireless
networks, there is still an open challenge regarding users’
willingness to participate into the WFL process. In particular,
the users should be motivated, in order to contribute in this
process with their limited energy resources. Thus, incentive
designs are requisite, in order to attract the clients to be
involved in this resource-consuming procedure. The
considered incentives, could be expressed as a reward provided
by the task publisher. For example, in Kang et al. (2019) an
incentive mechanism for reliable FL was proposed, based on the
contract theory, while a reputation metric was introduced, in
order to measure the data-wise reliability and trustworthiness of
the clients. In similar direction, authors in Lim et al. (2020)
proposed an hierarchical incentive mechanism for FL. In the first
level, a contract theory approach was proposed to incentivize
workers to provide high quality and quantity data, while in the
second level, a coalitional game approach was adopted among the
model owners. In Zhan et al. (2020), a deep-reinforcement
learning incentive mechanism for FL has been constructed.
More specifically, a Stackelberg game was formulated, in order
to obtain the optimal pricing strategy of the task publisher and the
optimal training strategies of the edge nodes, which constituted
the client set. Moreover, in Sarikaya and Ercetin (2019), authors
formulated a Stackelberg game among workers and the task
publisher, aiming to minimize the latency of a FL
communication round, while in Khan et al. (2020), a
Stackelberg game was formulated for FL in edge networks.
Finally, in the context of a crowdsourcing framework, authors
in Pandey et al. (2020) proposed a Stackelberg game for
motivating the FL users to generate high accuracy models,
while the server focused on providing high global model
accuracy side. However, none of the above works designed an
incentive mechanism, by taking into account the minimization of

the FL global convergence time, which can finally result in
achieving decreased delay. It should be also highlighted, that
the number of scheduled devices affects the convergence speed of
the global model, and its effects have not been investigated. More
specifically, the trade-off between the duration of a global WFL
round and the number of total rounds until convergence, has not
been well-studied in the context of incentive criteria. Finally, it
should be noted that when examining clients’ strategies, all
previous works did not consider the joint optimization of the
communication and computation resources, which can further
enhance the performance and head towards meeting the strict
latency requirements of 6G networks.

Also, the modeling of the interaction among the server and the
users becomes more complicated when some of the users are not
legitimate, degrading the overall quality of experience. However,
this issue has not been considered by the existing literature,
despite the progress in the development of techniques that
have the potential to mitigate similar threats, such as deep
learning. Recently, the application of deep learning into
wireless communications has sparked widespread interest
Zappone et al. (2019), while it is expected to realize the vision
of 6G, which will heavily rely on AI services. For instance, deep
learning has been used for simplifying the physical layer
operations, such as data detection, decoding, channel
estimation, as well as for resource allocation tasks and efficient
optimization Sun et al. (2017). Owing to its encouraging results,
deep learning may be appropriate for ensuring an unimpeachable
interaction among the users and the server, as implied by the
incentive mechanism during the WFL procedure, by detecting
abnormal or malicious users’ behaviors.

1.2 Contribution
Driven by the aforementioned considerations, we propose a novel
incentive mechanism for WFL, by modeling the interaction
among users and the server/task publisher during an WFL
task, by using tools from game theory. In particular, users’
objective goal is to maximize their utility, which is subject to
their individual completion time of the WFL task and the energy
consumption for local training and parameter transmission,
given a reward for the timely task completion and an energy
cost, respectively. On the other hand, the server aims to minimize
the global convergence time of the WFL process. The
aforementioned interaction between the server/task publisher
and the users corresponds to a Stackelberg game, where the
server acts as the leader of the game and announces the delay
tolerance, and the users/clients constitute the set of followers and
receive their decisions based on the reward given by the server
and the announced delay tolerance. The convergence time is a
metric of paramount importance for providing low-latency
intelligent services in 6G networks, while its minimization has
not been examined in the aforementioned works. Therefore, one
of the main goals of the proposed incentive mechanism is to
accelerate the convergence of the WFL procedure. Moreover, the
convergence time is highly related with the number of
communication rounds between the users and the task
publisher, which is a function of the number of participating
users. Hence, during the Stackelberg game, we show that the task
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publisher should urge a certain number of users for participation,
in order to achieve the minimum convergence speed. This fact
highlights the significance of user scheduling during the game,
which aims to mitigate the straggler effect, i.e., excluding clients
who are responsible for the occurrence of long delays. To this end,
we consider the scenario where malicious users are involved into
the game, which may strive to misinform the server regarding
their consumed resources and possibly benefit from this action. In
order to avert such behaviors, we propose the use of a Deep
Neural Network (DNN), which aims to classify the users’ identity,
as honest or malicious, based on resource-related observations.
Through this approach, we aim to guarantee an irreproachable
interaction among the users and the server, and exclude clients
with malicious actions from the FL process.

The contributions of this work can be summarized as follows:

1) We construct an incentive mechanism, for motivating users to
utilize their resources during a FL task, through the
improvement of their utility, while the task publisher aims
to minimize the global convergence time of the WFL process.

2) We formulate and solve a Stackelberg game for the considered
user-server interaction. In particular, we obtain the optimal
strategy of the users for maximizing their utility, i.e., the
optimal adjustment of both computation and communication
resources. Furthermore, we obtain the task publisher’s
optimal strategies for minimizing the global convergence
time. This translates to the selection of the optimal delay
tolerance during a WFL communication round, based on the
number of scheduled users.

3) During the user-server interaction via the Stackelberg game,
we assume that malicious users may announce false
information regarding their utilized resources, aiming to
mislead the server and increase their pay-off. To tackle
with this issue, we construct a security mechanism at the
servers’ side, whose role is to recognize false announcements
and subsequently identify malicious users. Specifically, we
construct and train a DNN to accurately detect malicious
users. The training of the DNN is supervised and it is based on
observations regarding the users’ consumed resources.

4) Simulations were conducted to evaluate the performance of
the proposed approaches. The results verify the effectiveness
of the solutions to the game, in comparison with various
baseline schemes. Moreover, insights for the Stackelberg game
and its effects to the convergence time of the FL task are
provided. Furthermore, the joint optimization of radio and
computation resources is shown to result in increased user
utility. Finally, the considered DNN for detecting malicious
users, presents a quite satisfactory classification accuracy,
corroborating the effectiveness of this security mechanism.

2 SYSTEM MODEL

2.1 WFL Model
We consider a WFL system, consisting of K clients/users indexed
as k ∈ K � {1, 2, . . . , K} and a task publisher/server. Each user k
has a local dataset Dk � {xn,k, yn,k}Dk

n�1, where Dk � |Dk| are the

data samples, xn,k is the n-th input data vector of user k, while yn,k
is the corresponding labeled output on the respective input
sample. The total size of all training data of the users is
denoted as D � ∑K

k�1Dk.
The local loss function on the whole data set Dk is defined as

fk wk( ) ≜ 1
Dk

∑
n∈Dn

f wk, xn,k, yn,k( ), ∀k ∈ K, (1)

where f (wk, xn,k, yn,k) is the loss function on the input-output pair
{xn,k, yn,k} and captures the error of the model parameter wk for
the considered input-output pair. Therefore, each user is
interested in obtaining the wk which minimizes its loss
function. For different FL tasks, the loss function also differs.
For example, for a linear regression task the loss function is
f(wk, xn,k, yn,k) � 1

2(xTn,kwk − yn,k)2. Following that, the aim of
the FL training process is to find the global model parameter w,
which minimizes the loss function on the whole data set across all
users, which can be written as

J w( ) � 1
D

∑K
k�1

Dkfk w( ), (2)

i.e., to find w* � arg min
w

J(w).
The training process consists of N rounds, denoted by i. Thus,

the i-th round is described below

1) Firstly, the BS broadcasts the global parameter wi to all
participating users during the considered round. We
highlight that it is not mandatory that all users are
participating into the process. Let ak,∀k ∈ K, be a binary
variable which indicates whether user k is participating, i.e., ak
= 1. Furthermore, we define the set S ≜ {k ∈ K | ak � 1} ⊆ K,
which consists of all the scheduled users. Moreover, the
cardinality of S is given by |S| � ∑K

k�1ak.
2) After receiving the global model parameter, each user k ∈ S,

updates its local model by applying one step of the gradient

FIGURE 1 | WFL system model.
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descent method, towards minimizing its loss function on its
whole dataset, i.e., wi+1

k � wi − η∇fk(wi), where η is the
learning rate, and then uploads the local parameter wi+1

k to
the server.

3) After receiving all the local parameters, the server aggregates
them, in order to update the global model parameter, by
applying wi+1 � 1

D′∑k∈SDkwi+1
k , where D′ � ∑k∈SDk and

represents the total size of all training data among the
participating users.

The whole procedure is repeated forN rounds, until a required
accuracy is achieved. During the first round, the global parameter
w0 is initialized by the server. The WFL model is depicted in
Figure 1. Also, Table 1 summarizes the list of notations used in
this article.

2.2 Computation Model
The computation resources for local model training, i.e., CPU
cycle frequency, of the k-th user is denoted as fk. The number of
CPU cycles for a user k to perform one sample of data in local
model training is denoted by ck. Hence, the computation time
dedicated for a local iteration, i.e., a step of the gradient descent
method, is given as

tcomp
k � ckDk

fk
, ∀k ∈ K, (3)

where Dk is the data size of the dataset Dk. Accordingly, the
energy consumption for a local iteration, can be expressed as
follows

Ecomp
k � ζckDkf

2
k, ∀k ∈ K, (4)

where ζ is a constant parameter related to the hardware
architecture of device k.

2.3 Communication Model
By using orthogonal frequency domain multiple access
(OFDMA) to transmit a model update to the server/BS, the
achievable transmission rate (bit/s) of user k can be written as

rk � B log2 1 + pkgk

BN0
( ), ∀k ∈ K, (5)

where B is the available bandwidth, N0 is the spectral power
density and pk, gk denote the transmit power, and channel gain of
user k, respectively. The channel gain is modeled as gk � |hk|2d−2k ,
where the complex random variable hk ~ CN (0, 1) is the small
scale fading and dk is the distance between user k and the BS. Let
tk be the transmission time of k-th user, dedicated for
transmitting the local training parameters to the server. To
upload the training parameters wk within the time duration tk,
the following condition should be satisfied

tkrk ≥ sk, ∀k ∈ K. (6)
where sk denotes the data size of the training parameters wk.
Moreover, the consumed energy for the considered transmission,
is given by

Ek � tkpk, ∀k ∈ K. (7)
Following that, the total time that a user should dedicate for

both computation and communication purposes, is given as

τk � tcomp
k + tk � ckDk

fk
+ tk, ∀k ∈ K. (8)

Since the transmit power of the BS is much higher than that of
the users’, we ignore the delay of the server for broadcasting the
global parameter to the users. Finally, the total energy
consumption of the k-th user during a communication round,
for executing local computations, and uploading the local training
parameters, can be written as

Ek � Ecomp
k + Ek � ζckDkf

2
k + tkpk, ∀k ∈ K, (9)

3USERUTILITYANDCONVERGENCE TIME
OF THE GLOBAL MODEL

In the considered system, the server should wait for all users to
terminate the local parameter transmission and afterwards update
the global model. Thus, users who present large τk are considered as
stragglers, since they will be responsible for the occurrence of large
delay during a communication round. More specifically, the total
delay of a round is given by max

k∈K
{τk}. Taking this into account, the

case where all users are participating in the FL process may lead to
increased delay, owing this to the poor wireless conditions that a
usermay suffer from.Moreover, it is of paramount importance that
users have incentives for being involved into the considered
procedure, since their participation comes at the expense of
energy consumption, while devices are energy-constrained. In
the continue, we proceed to the definition of users utility and
the task publisher’s objective goal, i.e., global convergence time
minimization.

3.1 User Utility Function
The utility function aims to quantify the incentive of a user for
being involved into the FL process, in terms of a money-based
reward, and it is a tool for facilitating the economic interaction
among the users and the task publisher. In order to ensure low
latency, we assume that the maximum delay tolerance that server
requires during a communication round is ~T. As a result, only the
users who are able to meet this delay demand should participate
in the process. Driven by this consideration, we define the utility
function of k-th user as

Uk ≜ ~T − τk( )q1 − Ekq2( )ak, ∀k ∈ K, (10)
where q1 > 0 is a constant reward given by the server to the user, for
a timely task completion. Thus, q1 is the price for a unit of time,
received by the users. It is obvious that smaller task completion
time τk, leads to higher earned reward. Moreover, q2 > 0, denotes
the cost of energy consumption and ak is a binary variable, which
indicates whether user k will participate in the process or not. We
assume that user k will participate, i.e., ak = 1, only if the condition
Uk > 0 is satisfied, otherwise user kwill decide not to be involved. In
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essence, the utility function consists of a term which reflects the
reward for the timely task completion, i.e., (~T − τk)q1, meeting the
delay requirement imposed by the server, and an energy cost which
is related with the resources consumption. Furthermore, it is
obvious that when the condition τk ≥ ~T holds, i.e., user k
cannot satisfy the delay tolerance condition, the utility function
will always be negative, while in this case the user will not indulge in
participating and will set ak = 0. Moreover, since smaller τk leads to
higher earned reward, users aremotivated to compute and send the
local training parameters as fast as possible. However, this will lead
to higher energy consumption. It should be highlighted, that the
utility function can also be negative even if the case τk < ~T holds,
owing this to an increased energy consumption. This fact implies
that user k can satisfy the delay requirement of the server, but
utilizes a great amount of resources for achieving low delay. As a
result, an interesting tradeoff appears between task completion
latency and energy consumption, since users are interested in
maximizing their utility function.

3.2 Global Convergence Time
The objective goal of the task publisher is to minimize the
convergence time of the FL process, in order to extract the
global training model. The convergence time can be expressed as

Tconv � Tmax × N, (11)
where Tmax is given by

Tmax � max
k∈K

τkak{ }, (12)

and represents the total delay in a communication round, since it
is determined by the slowest scheduled device, while N denotes
the number of total communication rounds. As shown in Li et al.
(2019), the total number of communication rounds to achieve a
certain global accuracy, is on the order of O(G(1 + 1

|S|) + Γ),
where G, Γ are parameters related with data distribution and the
FL settings. Hence, according to Shi et al. (2020a), the required

number of total rounds in order to achieve the convergence of the
global model, can be approximated as follows

N � β θ + 1
|S|( ), (13)

where the parameters θ and β can be determined through
experiments to reflect data distribution characteristics.
Moreover, this model can adopt both i.i.d. and non-i.i.d.
data distributions among users Li et al. (2019). From (13) it is
observed that by increasing the number of participating
users, i.e., increasing |S|, the number of total
communication rounds decreases. However, increased
number of scheduled users may lead to increased Tmax,
since it is more likely that users who present large τk will
also participate. Therefore, the global convergence time in
(11) is dependent on the number of scheduled users, in a non-
trivial manner.

4 STACKELBERG GAME FORMULATION
AND SOLUTION

4.1 Two-Stage Game Formulation
As discussed previously, each user is interested in maximizing
its own utility function by optimally adjusting the available
resources i.e., CPU clock speed fk, transmission time tk,
transmit power pk, and finally decide whether he will
participate in the training process or not, by adjusting ak.
Moreover, the value of the utility function is being affected by
the delay demand that the task publisher requires. On the other
hand, the task publisher is willing to minimize the total
convergence time of the FL process, by adjusting the
maximum delay tolerance ~T of a communication round,
which influences users decision regarding participation into
the procedure. Therefore, a two-stage Stackelberg game can be
applied to model the interaction among users and the server,
where the users are the followers while the server is the leader.
Initially, an arbitrary value of ~T is being set and users decide
their optimal strategies. Given the response of the users, the
server, i.e., the leader, announces the delay tolerance ~T, being
aware of the users’ decisions. It is noted that correctly
classifying a game is of paramount importance, since its
classification specifies the solution concept and, thus, the
best actions of the involved players. In the case of
Stackelberg game, this set of actions is termed as
Stackelberg Equilibrium (SE). From the practical point of
view, an equilibrium is an optimal decision for a player,
given that the strategy of the other player is also optimized.
Thus, if the users optimize their utility functions ignoring the
type and the structure of the game and deviate from the SE,
then they will achieve worse pay-off. In the continue we
proceed to the problem formulation regarding both the
followers and the leader.

Clients’ goal is to maximize their utility function, given a value
of ~T. The problem can be formally given as

FIGURE 2 | Deep neural network structure.
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P1: max
tk,pk,fk,ak

Uk

s.t. C1: tkB log2 1 + pkgk

BN0
( )≥ aksk,

C2: 0≤pk ≤pmax
k , 0≤fk ≤fmax

k , tk ≥ 0,
C3: ak ∈ 0, 1{ },

(14)

where

Uk � ~T − tk − ckDk

fk
( )q1 − tkpk + ζckDkf

2
k( )q2[ ]ak. (15)

C1 represents the data transmission constraint, while pmax
k ,

fmax
k are the maximum values of transmit power and CPU

frequency of user k, respectively.
On the other hand, the optimization problem at the side of the

task publisher for minimizing the global convergence time, can be
formulated as

P2: min
~T

Tconv

s.t. C1: ∑K
k�1

~T − τk( )akq1 ≤Q, (16)

where

Tconv � max
k∈K

τkak{ }β θ + 1∑Kak
( ), (17)

while the left-hand-side of C1 represents the overall fee that the
task publisher is paying to all participating clients and Q denotes
the total budget that the task publisher posses. The server is
responsible for optimally adjusting ~T, in order to enforce a certain
number of users to be scheduled for participation. It can be
observed that problems P1 and P2 are coupled, since the delay
tolerance ~T influences the number of participating users and
users’ decisions, which also impact the global convergence time in

turn. The manner that ~T affects the number of participating users,
will be discussed in the subsequent subsection.

Towhat follows, the definitions regarding the users’ and server’s
optimal actions, as well as the SE, are provided Başar and Olsder
(1998), Pawlick et al. (2019). The Stackelberg games are solved
backwards in time, since the followers move after observing the
leader’s action. The optimal actions for each follower, i.e., the
optimal values of fk, pk, tk, ak that are denoted by fk* , pk* , tk* , ak*,
respectively, to respond to the leader’s action, i.e., ~T, are the ones
that satisfy the following inequality

Uk
~T, fk*, pk*, tk*, ak*( )≥Uk

~T, fk, pk, tk, ak( ), ∀k ∈ K. (18)
Based on the anticipated followers’ response, the leader

chooses its optimal action T*, which satisfies

Tconv ~T*, f *, p*, t*, a*( )≤Tconv ~T, f *, p*, t*, a*( ). (19)
Then, by using the aforementioned definitions of the optimal

actions for each player, the point (~T*, f *, p*, t*, a*) is the Stackelberg
equilibrium, if the following set of inequalities are satisfied

Tconv ~T*, f *, p*, t*, a*( )≤Tconv ~T, f *, p*, t*, a*( )
Uk

~T*, fk*, pk*, tk*, ak*( )≥Uk
~T*, fk, pk, tk, ak( ), ∀k ∈ K.

(20)

4.2 Proposed Solution of the Stackelberg
Game
4.2.1 Users’ Utility Function Maximization
As stated previously, users are eager to participate only if their utility
function is positive, otherwise they set ak= 0 and do not spend any of
their available communication and computation resources. The
optimization problem P1, for maximizing the utility function Uk

of each user, given that ak = 1, can be formulated as follows

max
tk,pk,fk

~T − tk − ckDk

fk
( )q1 − tkpk + ζckDkf

2
k( )q2

s.t. C1: tkB log2 1 + pkgk

BN0
( )≥ sk,

C2: 0≤pk ≤pmax
k , 0≤fk ≤fmax

k , tk ≥ 0,

(21)

The optimization problem in (21) is non-convex due to the
coupling of tk and pk. However it can be easily proved that z

2Uk

zf2
k
< 0,

which indicates that Uk is strictly concave with respect to fk.
Hence, by taking zUk

zf � 0, it is straightforward to show that the
optimal fk is given by

fk* � min �fk, f
max
k{ }, (22)

where

�fk � 3
���
q1
ζq2

√
. (23)

It is obvious that fk* does not depend on tk and pk. After
obtaining the optimal fk* the optimization problem can be
transformed as follows

FIGURE 3 | Impact of number of scheduled users on the average
convergence time of the FL task.
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max
tk,pk

−tkq1 − tkpkq2

s.t. C1: tkB log2 1 + pkgk

BN0
( )≥ sk,

C2: 0≤pk ≤pmax
k , tk ≥ 0.

(24)

The problem is non-convex in its current formulation.
However, it is easy to verify that the constraint C1 always hold
with equality, since the selection of larger tk or pk will lead to the
decrease of the objective function. Following that, it holds

tk � sk

B log2 1 + pkgk
BN0

( ), (25)

and by substituting tk in (24), the optimization problem is
equivalent to the following formulation

min
pk

skq1 + skq2pk

B log2 1 + pkgk

BN0
( )

s.t. 0<pk ≤pmax
k .

(26)

Although problem (26) is non-convex, it can be transformed
and solved efficiently with the aid of fractional programming. By
observing the objective function in (26), it can be expressed as
G(pk) � Φ(pk)

Ψ(pk), where Φ(pk) = skq1 + skq2pk and
Ψ(pk) � B log2(1 + pkgk

BN0
). Furthermore, Φ(pk) is an affine

function of pk, while Ψ(pk) is a concave function of pk and it
also holds that Ψ(pk) > 0, ∀pk. The case of pk = 0 is trivial and is
being excluded, since it would implied that user k is not willing to
participate. Thus, the considered problem can be solved via the
Dinkelbach’s algorithm Dinkelbach (1967). According to
Dinkelbach (1967), solving (26) is equivalent to finding the
unique root of

F λ( ) � min
pk

Φ pk( ) − λΨ pk( ){ }. (27)

For a given λ, the function Z (pk) ≜Φ(pk) − λΨ(pk) is convex
with respect to pk, since Φ(pk) is affine and Ψ(pk) is concave.
Therefore, the optimal solution that minimizes Z (pk), can be
easily derived by taking dZ(pk)

dpk
� 0, yielding

�pk � min
B gkλ −N0q2sk ln 2( )( )

gkq2sk ln 2( ) , pmax
k{ }. (28)

Hence, the optimal pk* of problem (26) can be found
iteratively, by updating p(n)

k and λ(n) in each step n, according
to Algorithm 1.

Algorithm 1. Dinkelbach’s Algorithm for solving (26), ∀k

1: Initialize: ϵ> 0, n � 0, p(0)
k

2: repeat
3: n ← n + 1
4: λ(n) ← Φ(p(n−1)

k
)

Ψ(p(n−1)
k

)
5: p(n)

k ← arg min
pk

{Φ(pk) − λ(n)Ψ(pk)}, using (28)

6: until {Φ(p(n)
k ) − λ(n)Ψ(p(n)

k )}≤ ϵ
7: pk* ← p(n)

k

After obtaining the optimal pk*, the optimal tk* can also be
calculated by using (25). Following that, the resolution of the
optimization problem in (21) has been completed, since the
optimal fk* , pk* , tk*, which maximize the utility function Uk,
have been obtained. Also, we highlight that each user
independently decides the optimal variables for
maximizing its utility, since this decision is not subject to
the residual users decisions. Moreover, the execution of
Algorithm 1 is not computationally intensive for the
devices, since the Dinkelbach’s algorithm is quite efficient,
converging at a superlinear rate Schaible (1976). It is further
observed that the optimal solutions fk* , pk* , tk* are
independent of the value ~T. However, ~T can affect the sign
of the utility function and subsequently the selection of ak*. It
should be noted that the optimal solutions do not guarantee
that Uk(fk* , pk* , tk* , )> 0. Thus, the maximization of the utility
function, subject to fk, pk, tk, does not ensures that the k-th
user is eager to participate in the federating learning task. The
condition that should be satisfied, to ensure that the k-th user
has positive utility function, is given as follows by
manipulating (10)

~T> τk*q1 + Ek*q2
q1

≜ Lk*, ∀k ∈ K, (29)

where τk* � ckdk
fk*

+ tk* and Ek* � pk*tk* + ζckDkf
*2
k . If the condition

in (29) is satisfied, i.e., Uk* > 0, then user k sets ak* � 1, otherwise
sets ak* � 0. As it can be observed, Lk* is the threshold value of ~T,
which determines if user k is eager to participate into the FL
process. In the continue, without loss of generality we assume that
L1* > L2* > . . . , > Ll′> . . . , > LK* . Following that, let ~T � Ll′, which
yields

a1* � a2* � . . . � al′ � 0,
al+1* � . . . � aK−1* � aK* � 1,

(30)

since the condition ~T> Lk* will hold ∀ k ∈ {l + 1, . . . , K − 1, K}. As
a matter of fact, ~T acts as an adjusting factor that determines
which users will be scheduled for participation.

4.2.2 Global Convergence Time Minimization
Next, we proceed to the minimization of the convergence time,
which is executed by the task publisher. As discussed previously,
the server is able to dynamically adjust the value of ~T among the
set of levels L � {L1*, L2* , . . . , LK* }, in order to determine the
number of participating users. Given the optimal τk* and Ek*
the server can derive Lk* , ∀k ∈ K, from (29). Following that, the
problem P2 can be written as

min
~T

max
k∈K

τk*ak*{ }β θ + 1∑Kak*
⎛⎝ ⎞⎠

s.t. C1: ~T≤

Q

q1
+∑Kτk*ak*∑Kak*

, ~T ∈ L,

(31)

where the constraint C1 has occur by manipulating the C1 in (16).
In order to solve the problem in (31), the server will execute a
search among the K possible values of ~T from the setL and finally
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select the value that minimizes the objective function, while the
selected value should also satisfy the constraint C1. It should be
again highlighted that τk* is irrelevant of the ~T selection, since ~T
only affects the number of scheduled users. Recall that during the
selection of ~T*, the server has knowledge of users’ upcoming
decision, i.e., ak* in (30), and can exploit this information to solve
(31). For example, if the optimal ~T equals to ~T* � Ll′, by using
(30) we conclude to

|S| � K + 1 − l + 1( ) � K − l, (32)
which implies that the number of scheduled users will be K − l,
while the specific user participation is described by (30).

4.2.3 Stackeleberg Equilibrium
The whole procedure of the Stackelberg’s game is summarized in
Algorithm 2. More specifically, in step 1, the server initializes the
delay tolerance ~T with an arbitrary value, which is announced to
the users. Following that, the users solve P1 for the given ~T,
derive the optimal fk* , pk* , tk* and afterwards upload the values of
τk* and Ek* to the server. In step 3 and 4, the server calculates L*,
obtains the optimal ~T* ∈ L which solves problem P2 and
announces ~T* to the users. After the announcement of ~T*, in
step 5, users make a decision regarding participating or not in the
training process, while the server is a-priori-aware of these
impeding decisions, since ~T* is being selected with the
knowledge of users’ incentive, which is the sign of their utility
function. With the termination of the Stackelberg game, the
server has managed to obtain the optimal delay tolerance of
the FL round which minimizes the convergence time, while the
users have adjusted their resources, so as to maximize their utility
function.

Algorithm 2. Stackelberg equilibrium

1: Server initializes ~T with an arbitrary value.
2: Each user derive fk* , pk* , tk* by solving (21) and uploads the

values of τk* , Ek* to the server.
3: Server calculates Lk* , ∀k ∈ K, by using (29).
4: Server selects ~T* ∈ L that minimizes the objective in (31) and

announces ~T* to the users.
5: Users decide if they will participate, i.e., if Uk* > 0, set ak* �

1, ∀k ∈ K.

5 DETECTING AND PREVENTING
MALICIOUS USERS FROM THE FL
PROCESS
5.1 Malicious Users
During the considered interaction among users and the task
publisher, a question that may arise is the following: What if users
were malicious and announced false values of τk* and Ek* to the
server, aiming to further improve their pay-off? Firstly, we
assume that users could falsely announce their latency time, as
τk′ , instead of τk*. However, they are not really willing to deviate

from the optimal strategy τk*, since this policy would reduce their
utility function. Hence, in this case, the task publisher would
notice this time divergence, since it is expected that user k finishes
the transmission of the local parameters within τk′ duration, while
he actually finishes within τk*. As a result, the task publisher can
immediately detect an abnormal behavior and exclude those users
from future participation. However, users could falsely announce
Ek′ instead of Ek*, since the server has no knowledge of users’
computing capabilities and subsequently their consumed energy.
As a result, users can influence Lk only by accordingly adjusting
Ek, in a effort to mislead the task publisher and benefit from this
action. Next, any possible benefits of the aforementioned users’
action will be discussed.

Firstly, we assume that only one user is dishonest, e.g., the m-
th user. In order to improve his utility, user m may select to
announce Lm′ > Lm* , aiming to influence the delay tolerance
threshold that the server imposes, i.e., increasing the delay
tolerance and subsequently increasing its pay-off. Following
that, we consider the case where
L1* > L2* > . . . , > Lm* > . . . , > Ll′> . . . , > LK* and ~T* � Ll′,
meaning that the optimal strategy of the server is to enforce
K − l users to participate. In this case, if the m-th user decides to
announce Lm′ , will not have any impact in the outcome, since it
holds ~T′ � ~T* � Ll′< Lm′ , and user m will not be scheduled for
participation. Next, we consider the case
L1* > L2* > . . . , > Ll′> . . . , > Lm* > . . . , > LK* and ~T* � Ll′. Now,
if user m selects to announce Lm′ and it holds Ll′> Lm′ , again user
m can not benefit from such behavior since ~T′ � ~T* � Ll′< Lm′ .
This means that the m-th user will participate, as he would if he
had announced the true value of Lk*, while his utility function will
stay unchanged. Only if the condition Lm′ > Ll′ is satisfied, then it
yields ~T′ � min{Ll−1* , Lm′ }> ~T* and the selected delay tolerance of
the server changes. However in this case, usermwill not intend to
participate, since his utility will be less than or equal to zero. As a
result, in none of the aforementioned cases, could user m benefit
from announcing a false value of Lm, or equivalently Em.
However, in the later case it holds ~T′> ~T*, which implies that
the server will select a larger value for the delay tolerance and
subsequently all the participating users will benefit from this
selection, since users’ utility function is monotonically increasing
with respect to ~T. Therefore, the task publisher will end up paying
additional rewards. Although, an independently acting user
posses no motives for adopting the considered behavior, in a
scenario where multiple dishonest users are present who probably
act as a cooperating coalition, it is really hard to predict whether
its secure for the task publisher to tolerate such behaviors. The
reason for this is that the considered malicious users may
exchange information regarding their available resources and
also exchange pay-offs, e.g., splitting their pay-offs.

5.2 Deep Learning-Aided Malicious Users
Detection
Driven by the aforementioned scenario, a secure mechanism which
detectsmalicious/abnormal users’ behavior should be constructed, in
order to ensure an irreproachable clients-task publisher interaction.
Therefore, the servers’ aim is to recognize whether the users’
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transmitted tuple {τk, Ek}, ∀k ∈ K, is reliable or not. Considering
the underlying correlation between the task completion time τk and
the consumed energy Ek, we invoke the use of a deep neural network
to identify if the declared {τk, Ek}, could be realistic. We foresee this
process, as a supervised-learning task which trains the neural
network, given that the labels of the training tuple {τ, E}, belong
to the set of classes {True, False}, specifying whether the considered
tuple is reliable or not, respectively. Note that we slightly abuse the
notation by dropping the subscript index k for simplicity. After the
completion of the training process, the neural network is expected to
successfully classify the forthcoming unknown {τ, E}, that each user
will announce to the server. Hopefully, the server will be capable of
recognizing dishonest users and prevent them from future
participation.

5.2.1 Deep Neural Network Structure
We consider a feed-forward DNN consisting of an input layer, an
output layer and M − 1 fully connected hidden layers. All layers
are indexed from 0 to M. We denote the number of nodes in the
m-th layer as lm. For the hidden layers, the output of the i-th node
in the m-th layer, is calculated as follows

a m( )
i � ReLU ∑lm−1

j�1
w m( )

ij a m−1( )
j + b m( )

i
⎛⎝ ⎞⎠, (33)

where w(m)
ij represents the weight that connects the j-th node of

the (m − 1)-th, with the i-th node of the m-th layer, a(m−1)
j is the

output of the j-th node in the (m − 1)-th layer and b(m)
i is the bias

term of the i-th node in the m-th layer. Furthermore, ReLU(·) =
max (·, 0), denotes the Rectified Linear Unit function, which is a
widely used activation function for neural networks. The output
of a(0)1 , a(0)2 are by default the inputs of the neural network,
i.e., a(0)1 � τ and a(0)2 � E. Finally, for the output layer, we use
the softmax activation function, which extracts the probabilities
pT, pF of the input vector {τ, E}, to belong to the class True or
False, respectively, while pT + pF = 1. Therefore, it holds a(M)

1 �
pT and a

(M)
2 � pF. The DNN’s structure is illustrated in Figure 2.

In the continue, the data generation, training and testing stages
are discussed.

5.2.1.1 Data Generation
The data are generated in the followingmanner. The τ* and E* are
derived according to the proposed method, for many channel
realizations, in order to generate multiple samples. In the case
where the user is honest, the label of {τ*, E*} is set as y = True. In
the continue, the data set for the malicious users is generated. As
mentioned previously, malicious users falsely declare the
consumed energy as E′> E*. To model this behavior, we
consider that their declared tuple is {τ*, E′}, with
E′ � E*(1 + Δ), where Δ is a random variable, uniformly
distributed in [δ1, δ2], with δ2 > δ1 > 0 being constants. In
this case, the label is set as y = False. Thus, the entire data set, T ,
consists of samples corresponding to both honest and dishonest
users. More specifically, the whole data set is described by the
tuple ({τ(t), E(t)}, y(t))t∈T , where y(t) ∈ {True, False} and the
superscript (t) is used to denote the t-th sample. Similarly, a
validation data set V is constructed.

5.2.1.2 Training Stage
The entire training data set ({τ(t), E(t)}, y(t))t∈T is used to
optimize the weights and biases of the neural network. The
loss function that we use in order to capture the error
between the true label y(t) and the predicted label ŷ(t), is the
categorical cross entropy. Moreover, the validation set is used for
evaluating the neural network’s performance and accordingly
adjusting the hyperparameters of the training process such as the
learning rate (LR), total number of training epochs, batch
size, etc.

5.2.1.3 Testing Stage
In the testing stage, a test set is generated, in a similar manner
with the training stage. Following that, the test set is passed
through the trained neural network and the predictions are
collected. The predicted label of a test sample is given by

ŷ � True, if pT >pF

False, if pT <pF.
{ (34)

Finally, the classification accuracy is evaluated, i.e., the ability
of the neural network to detect in which user category, honest or
dishonest, do the testing samples correspond.

6 NUMERICAL RESULTS AND
PERFORMANCE EVALUATION

We consider K = 20 uniformly distributed users in a circular cell
with radius R = 500 m, while the BS is located at the center of the
cell. The wireless bandwidth is B = 150 KHz, the noise power
spectral density is N0 = −174 dBm/Hz, the maximum transmit
power of the users is pmax

k � 20dBm, the maximum CPU clock
speed is fmax

k � 1.5GHz, ∀k ∈ K and the effective capacitance is ζ
= 10−27. Finally we set q2 = 15. All variables retain their respective
values, unless specified otherwise.

Next, we set β = 27.773 and θ = 0.941 2 Shi et al. (2020a). These
values correspond to a specific data distribution when the MNIST
data set is used, which is a well-known handwritten digit dataset.
In particular, according to Shi et al. (2020a), the considered values
of β, θ reflect an i.i.d. data distribution among users. Furthermore,
we also adopt the classification of the handwritten digits as the FL
task. Following that, the user training data has been set as Dk =
1.6 Mbit, the size of the training parameters is sk = 1Mbit and ck is
uniformly distributed in the interval [10, 40] cycles/bit. It is noted
that in the following figures, all results are averaged over 10,000
trials, by means of Monte Carlo.

In Figure 3 the impact of the number of scheduled users on the
average global convergence time is demonstrated, for various
values of the task publisher’s reward q1. Furthermore, we consider
that users employ the optimal proposed strategy, in order to
maximize their utility. As it can be observed, neither enforcing all
users nor a small portion of them to participate, will lead to the
average convergence time minimization. This phenomenon can
be explained as follows. By scheduling a large amount of users to
participate it is more likely that the latency during a
communication round will be large, owing this to the straggler
effect, while the convergence time will be negatively affected. On
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the contrary, by urging a small number of users to be involved, the
required number of communication rounds to achieve global
convergence will highly increase, deteriorating the convergence
time. Moreover, it can be observed that higher reward q1 leads to
smaller convergence time. This is reasonable, since when the
reward is higher, users are motivated to spend their available
resources for a fast local training and parameter transmission to
the server, leading to a decreased delay during each
communication round.

Following that, in Figure 4, the average convergence time
versus the reward q1 is depicted. We compare the proposed
method with the following cases. Firstly, the server randomly
selects the number of participating users and secondly, the server
always schedules 10 users for participation. It can be seen that the
proposed method outperforms the considered cases. Therefore,
the importance of wisely selecting the delay tolerance ~T, in order

to enforce a certain number of users to be involved in the training
process, is corroborated. In addition to this, the significance of the
user scheduling, which is performed by the server through the
incentive design for minimizing the convergence time, is revealed.
Thus, user scheduling should be a driving factor for the incentive
design during the FL process.

In the continue, Figure 5 exhibits the average utility of the
users given that ~T � 0.6 s. We compare our proposed solution
for users’ utility function maximization with the following
baseline schemes. Firstly, in Scheme 1 (S1), users select the
optimal CPU frequency fk* from (22), but they set pk = pmax,
i.e., select to transmit with the maximum available power.
Secondly, in Scheme 2 (S2), users transmit with the optimal
power pk* as extracted by Algorithm 1, but use the whole CPU
frequency for local training, i.e., fk � fmax, ∀k ∈ K. It is clearly
seen that our proposed method outperforms the baseline ones,

FIGURE 7 | Batch size selection.

FIGURE 6 | Learning rate selection.

FIGURE 5 | Average utility of users versus q1.

FIGURE 4 | Average convergence time versus q1.
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which verifies the significance of the proposed optimization
regarding users’ utility function maximization. Also, this
example highlights the performance gains that the joint
optimization of the wireless and computation resources could
offer. In this manner, users are motivated to participate into the
FL process, given that the resource allocation is tactfully
conducted, which leads to increased utility. Furthermore, we
highlight that when the utility is equal to zero, users do not
intend to participate, while to do so, they would require higher
reward q1 for a timely task completion.

6.1 DNN Setup and Performance
The neural network consists of three hidden layers. The first
hidden layer contains 200 neurons, while the rest two layers
contain 80 neurons. The optimization algorithm we use for
minimizing the loss function of the neural network is the
RMSprop, which is an efficient implementation of the mini-
batch stochastic gradient descent method. The decay rate has
been set as 0.9. In order to select suitable values for the learning
rate and the batch size, the validation set was used for the
evaluation of the loss function. More specifically, in Figure 6
and Figure 7, the evolution of the loss function throughout the
training epochs is demonstrated. It can been observed that when
the learning rate is equal to 0.001, the smallest loss is achieved.
Moreover, the batch size which achieves the smallest loss is 100,
which is finally adopted. In addition, the number of training

epochs has been set as 200, since at this point the loss function is
relatively close to a steady level. For the training of the neural
network 36,000 samples were generated, while the validation set
consists of 4,000 samples. Also, we used 5,000 testing samples, in
order to evaluate the accuracy of the neural network. We
highlight that throughout the generation of the training,
validation and testing set, the ratio of honest to dishonest
users was 1:1. Moreover, throughout the generation of the
training and validation set, we fix δ1 = 0.2 and δ2 = 1, which
means that Δ ~ U(0.2, 1) and subsequently E′ ~ U(1.2E*, 2E*).
Finally, the parameter selection of the neural network is
summarized in Table 2.

In Figure 8, the testing accuracy is evaluated, after passing the
testing set through the DNN. Various values of δ1 are considered,
while we set δ2 = 1. This implies that the malicious users’ false
declared energy consumption E′, is uniformly distributed in
[E*(1 + δ1), 2E*]. It can been seen that as δ1 increases the
accuracy also increases. An interpretation of this result comes
as follow. For smaller δ1, it is more likely that the honest users’
tuple {τ*, E*} and the malicious users’ tuple {τ*, E′} will be quite
similar, which can be justified by observing the distribution of E′.

TABLE 2 | DNN’s parameters.

Parameter Value

Number of neurons in the 1st layer 200
Number of neurons in the 2nd layer 80
Number of neurons in the 3rd layer 80
Decay rate 0.9
Learning rate 0.001
Batch size 100
Epochs 200
Number of training samples 36,000
Number of validation samples 4,000
Number of testing samples 5,000 FIGURE 8 | DNN’s testing accuracy.

TABLE 1 | List of notations.

Notation Description Notation Description

K, K Number of users, set of users tk Transmission time of user k
Dk Local dataset of user k pk Power of user k
Dk Local dataset’s size of user k sk Size of wk

{xn,k, yn,k} n-th input-output pair of user k Ek Energy consumption of user k
wk Model parameter of user k τk Task completion time of user k
fk (wk) Loss function of user k ~T Delay tolerance of a FL round

w Global model parameter Uk Utility function of user k
J(w) Global loss function N Number of FL rounds
ak Decision variable of user k q1 Reward for timely task completion
S Set of participating users q2 Energy cost
fk CPU cycle frequency of user k Lk Threshold of user k
ck CPU cycles’ number of user k Q Task publishers’ total budget
tcomp
k Computation time of user k Tconv Convergence time of the FL task
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Therefore, in such case, it is harder for the DNN to correctly
classify the users’ identity. However, it is evident that the neural
network’s ability to identify the label of the participating users, as
honest or dishonest, is quite satisfactory. Therefore, through this
mechanism the task publisher can exclude users who are likely to
be malicious and subsequently increase the levels of security
throughout the Stackelberg game. Moreover, we compare the
performance of the DNN with a Support Vector Machine (SVM)
classifier. It is obvious that the DNN outperforms the SVM, in
terms of classification accuracy.

7 CONCLUSION

In this paper, we propose a secure incentive mechanism for WFL
in 6G networks. Specifically, we formulate a Stackelberg game
between the clients and the server, where the clients aim to
maximize their utility, while the server is focusing on minimizing
the global convergence time of the FL task. The optimal solution
to the game is obtained while the efficiency of the proposed
solution is verified, leading to reduced latency, owing to the
decreased global convergence time and increased user-utility.
Moreover, we consider the presence of malicious users
throughout the game, who may attempt to misinform the
server regarding their utilized resources, aiming to further
increase their profit. To prevent such behavior, we construct a
deep neural network at the server’s side, which focuses on
classifying the users’ identity, as malicious or honest.
Simulation results validate the effectiveness of the proposed
mechanism, as a promising solution for detecting malicious
users. To this end, in order to further increase the incentive
design efficiency, additional FL features may be taken into
account. In this direction, an interesting future topic could be

the consideration of the clients’ data quality and quantity
throughout the construction of the incentive mechanism, as
well as the investigation of their impact on the total
convergence time of WFL.
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