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Abstract— In this letter, we consider a multiuser mobile edge
computing (MEC) system, where a mixed-integer offloading
strategy is used to assist the resource assignment for task
offloading. Although the conventional branch and bound (BnB)
approach can be applied to solve this problem, a huge burden of
computational complexity arises which limits the application of
BnB. To address this issue, we propose an intelligent BnB (IBnB)
approach which applies deep learning (DL) to learn the pruning
strategy of the BnB approach. By using this learning scheme, the
structure of the BnB approach ensures near-optimal performance
and meanwhile DL-based pruning strategy significantly reduces
the complexity. Numerical results verify that the proposed IBnB
approach achieves optimal performance with complexity reduced
by over 80%.

Index Terms— Mobile edge computing (MEC), branch and
brand (BnB), offloading assignment, deep learning (DL).

I. INTRODUCTION

SMART mobile devices (MDs) are indispensable in modern
daily life, whereas an increasing number of MDs has led to

a huge challenge of handling a massive amount of data. Mobile
edge computing (MEC) is an emerging architecture that can
potentially address this challenge [1], through providing the
ability of computation offloading to edge networks [2], which
accelerates data computing, and improves user experience.

Applying MEC, the MDs dynamically offload computation
tasks to the edge computing access points (CAPs) [3]. Solving
the resource assignment problem of task offloading plays an
essential role in the implementation of MEC, which ensures an
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efficient use of resources, low latency, and reduced energy con-
sumption [4]. Offloading assignment problem has been exten-
sively studied recently [5]–[7]. In [5], the authors considered
non-orthogonal multiple access (NOMA) transmission with
offloaded workloads and proposed a distributed algorithm.

The problem of resource assignment, however, is a combi-
natorial optimization problem, whose solution can be achieved
optimally by exhaustive search methods [6], or suboptimally
by, e.g., relaxation approaches of convex optimization [7].
Specifically in [7], linear-based and semidefinite-based meth-
ods were proposed to optimize the offloading problem. The
convex optimization based algorithms usually suffered from
noticeable performance loss due to the relaxation of dis-
crete assignment variables to continuous values. In order to
approach the optimal performance, exhaustive search based
algorithms, e.g., the branch and bound (BnB) approach [6],
were proposed for MEC. However, exhaustive search methods
are known to be computationally complex especially in a dense
communication network with blooming mobile terminals.

Recently, deep learning (DL) has attracted much atten-
tion for its excellent performance in fitting arbitrary smooth
functions [8]–[10]. In particular, the authors of [8] used
a deep neural network (DNN) to approximate the channel
characteristics. In [9], the authors further made use of con-
volutional neural network (CNN) to learn a transmit power
control strategy. However, these methods directly learnt the
resource assignment solutions, which may lead to unsat-
isfied classification accuracy and insufficient generalization
ability.

Motivated by the above, we propose an intelligent
BnB (IBnB) approach to solve the problem of offloading
resource assignment in a multiuser dynamic MEC system. The
contributions of this letter are summarized as follows.

1) We propose an IBnB approach by making use of a joint
model-driven structure of the conventional BnB and the
data-driven DL technique. This proposed approach uses
DL to learn the pruning strategy of BnB rather than
directly learning the assignment solution by a block-box
DNN, which improves the final prediction performance.

2) With the proposed IBnB approach, we further advice
an adaptive threshold procedure which automatically
adjusts the pruning threshold. Specifically, it enables
automatically adjusting the threshold value when the
initial threshold is too large to ensure a feasible solution.
By using this adaptive scheme, the proposed approach
enhances the model generalization capability and
robustness.
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3) Simulation results verify the superiority of the proposed
approach. It reduces the complexity by nearly an order-
of-magnitude while retaining the optimality of the solu-
tion in high probability.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MEC system with time-varying channel
consisting of a CAP and S MDs, denoted by set S =
{1, 2, · · · , S}, with insufficient resources. The MEC is applied
in an orthogonal frequency division multiple access (OFDMA)
scheme with time division duplexed (TDD) mode. There are
N time frames and K orthogonal subchannels, denoted by
K = {1, 2, · · · , K}. During each frame, all the tasks, coming
up in the S MDs, are suggested to be computed at the edge
CAP through the K subchannels. Let X be an indicator matrix
of size S × K corresponding to this task offloading. The
(s, k)th element of X is defined as

[X]sk =

{
1, if task s is offloaded through subchannel k,

0, otherwise.

(1)

Assuming that one subchannel can only handle the task from
a single MD at a time, we have the constraint for X as∑

s∈S
[X]sk ≤ 1. (2)

In addition, we consider a data partitioned oriented task
model, e.g., virus scan and file/figure compression, where the
tasks appear at MDs can be flexibly divided into several parts
as subtasks [11]. Define Ls as the size of the task generated
at MD s, and denoted by lsk as the size of one of the subtasks
that is offloaded through subchannel k. Then, all the subtasks
must be computed at the CAP, yielding,∑

k∈K
lsk = Ls. (3)

The parameter lsk can be reshaped as a matrix L of size
S×K and [L]sk = lsk. In general, we have lsk ≤ Ls where the
equality lsk = Ls occurs when the conveyed subtasks through
subchannel k happens to be the entire task.

In applications, latency and energy consumption are two
key criteria in MEC networks [3]. Typically, the offloading
resource assignment can be formulated in the following prob-
lem with the objective function

min
X,L

Ψ (X,L) � λtT (X,L) + λeE (X,L) , (4)

where λt and λe are the weights to balance the impor-
tance between latency, T (X,L), and energy consumption,
E (X,L). The two weights can be determined by the spe-
cific systems status, e.g., remaining battery life and tolerable
latency.

As we consider the problem of offloading resource assign-
ment, the system latency T (X,L) in (4) is the transmission
latency during offloading. Then, the transmission latency of
subchannel k due to the offloading is calculated as

tk =
∑
s∈S

[X]sklsk

Rsk
, (5)

where Rsk represents the uplink data rate of MD s over the
kth subchannel, which is defined as,

Rsk = B log2

(
1 +

Pshsk

N0

)
, (6)

where B is the communication bandwidth of the subchannel,
Ps is the transmit power of the sth MD, N0 is the variance
of the zero-mean additive white Gaussian noise (AWGN), and
hsk is the channel gain between the edge CAP and the sth
MD through the kth subchannel. Without loss of generality,
the channel gains are assumed to be block-independent, i.e.,
invariant within one time frame and varying independently
from one frame to another.

Considering the latency of the entire procedure of MEC,
all the subchannels transmit their corresponding subtask data
simultaneously. Then, the latency is in fact determined by the
maximum value among all tk

′s. It follows

T (X,L) = max
k∈K

tk. (7)

The energy consumption E (X,L) in (4) is defined as the
sum of consumed energy of all the serving MDs for task
data transmission. Accordingly, the energy consumption can
be evaluated as

E(X,L) =
∑
k∈K

∑
s∈S

Ps
[X]sklsk

Rsk
, (8)

Considering equations (1), (2), (3), (7), and (8), the opti-
mization problem of the offloading resource assignment is a
mixed integer optimization problem formulated as

min
X,L

Ψ (X,L) = λt max
k∈K

(∑
s∈S

[X]sklsk

Rsk

)

+λePs

∑
k∈K

∑
s∈S

[X]sklsk

Rsk
(9a)

s.t.
∑
s∈S

[X]sk ≤ 1, ∀k ∈ K (9b)

∑
k∈K

lsk = Ls, ∀s ∈ S (9c)

0 ≤ lsk ≤ Ls, ∀k ∈ K, ∀s ∈ S (9d)

[X]sk ∈ {0, 1}, ∀k ∈ K, ∀s ∈ S. (9e)

III. THE PROPOSED IBNB APPROACH

Note that the problem in (9) is a mixed integer nonlin-
ear programming (MINLP) problem. To solve this problem,
we propose a DL-based IBnB approach. By intelligently
learning the sample data, the trained DNN helps determine
the future resource assignment strategies, which significantly
reduces complexity and ensures near-optimal performance.

A. Review of Conventional BnB Approach

The BnB approach is based on an exhaustive search mech-
anism, which systematically enumerates all feasible solutions
by traversing the BnB search tree. Specifically, the original
optimization problem in (9) is regarded as the root node of the
BnB tree, and then branching and bounding are implemented
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to construct and search the tree. Branching is the process of
dividing a big parent problem into two subproblems by adding
mutually exclusive and complete constraints. This process
is regarded as adding child nodes to the tree continuously.
Bounding is the process of solving and checking the upper
and lower bounds of the subproblems in the process of
branching. When the subproblem produces a better solution
than the current bound, the current node is reserved to branch.
Otherwise, this node is pruned.

Algorithm 1 The BnB Approach
1 Initialize: Set of the tree nodes: N = {N0}, Upper

bound of the objective value Ψ in (9a): ZUB =∞
2 While N �= ∅ do
3 j ← j + 1;
4 Nj ← pop the first node from N ;
5 Without considering the integer constraints in (9e),

calculate (x(j), l(j), Ψ(j)) using (9a), s.t. (9b), (9c),
(9d), and the special constraint Ct of this node Nj ;

6 if x(j) is not integer then
7 if Ψ(j) ≤ ZUB then
8 Find the first non-integer component x

(j)
i in x(j);

9 Branch the node into two child nodes N
(1)
j , N

(2)
j

by adding two constraints C(1)j , C(2)j respectively,

C(1)j : Cj ∪ {xi ≤ �x(j)
i 	},

C(2)j : Cj ∪ {xi ≥ �x(j)
i 	+ 1};

10 N ← N ∪ {N (1)
j , N

(2)
j };

11 end if
12 else if Ψ(j) < ZUB

13 ZUB ← Ψ(j);
14 x∗, l∗ ← x(j), l(j);
15 end if
16 end while

Algorithm 1 exemplifies the procedure of applying the
BnB approach, where we vectorize the solution matri-
ces X and L in (9) as equivalent vector variables
x = (x1, x2, · · · , xS×K)T and l = (l1, l2, · · · , lS×K)T.
Denote x(j) = (x(j)

1 , x
(j)
2 , · · · , x(j)

S×K)T and l(j) =
(l(j)1 , l

(j)
2 , · · · , l(j)S×K)T as the optimal relaxation solutions to

the subproblem of the jth node, and Ψ(j) is the corresponding
objective value in (9a), where j ∈ {0, 1, · · · , J}, and J is the
number of nodes of the BnB search tree.

As the number of nodes in the BnB search tree is the number
of iterations to solve the MINLP problem in (9), the com-
plexity of the BnB approach is directly determined by the
number of searched nodes. However, in the BnB search tree,
only a few branches point to the optimal solution. A large
number of redundant nodes lead to a high computational
complexity. A better pruning strategy can make it possible
to find the optimal solution with a lower complexity. In the
next subsection, we introduce a DL-based method to learn
an intelligent pruning strategy, which achieves the optimal
performance with significantly reduced complexity.

B. The Proposed Low-Complexity IBnB Approach

Based on recent researches, DL performs well in solving
some NP-hard and nonconvex problems [8]–[10]. However,

for combinational problems with binary, nonbinary and con-
tinuous variables, like the problem in (9), a direct application
of DL can hardly achieve a satisfactory solution. Moreover,
DL usually requires a large amount of training data, which
is a huge challenge for mobile communication applications
especially with MEC [12].

To solve the above problems, we propose a low-complexity
IBnB approach. Specifically, we design a novel pruning strat-
egy by applying DL, which avoids branching (almost) all
nodes as in the conventional BnB approach. We use a DNN to
approximate the unknown mapping between the attributes of
BnB tree nodes and the pruning decisions in the BnB search
tree. In particular, the proposed DNN consists of 6 layers,
which respectively has {m, 256, 256, 256, 256, 1} neurons in
each layer, where m is the input dimension of the training
sample data. At each layer except for the last one, the hyper-
bolic tangent function, tanh f(x) = (ex − e−x)/(ex + e−x),
is used as the activation function. In the last layer, we use
the sigmoid function, f(x) = 1/(1 + e−x), to map the output
to the interval (0, 1). The Adam algorithm is chosen as the
optimizer in the training phase, and the cross-entropy is used
as the loss function.

To train the DNN, we generate the dataset through the
conventional BnB approach, denoted by D = {I,O}, where I
is the input dataset and O is the output dataset. The input data
is the attributes of the node, including the variables j, g, x(j),
l(j), Ψ(j), and f , where j is the node number, g is the level of
the node in the tree, x(j) and l(j) are the relaxation solutions
of the subproblem of this node, Ψ(j) is the objective value
corresponding to the solutions, and f is the flag indicating
whether the subproblem is solvable. The output data in O is a
binary variable {0, 1} indicating whether the input node is a
parent node of the node corresponding to the optimal solution.
If it is true, the output is 1, which means that the node is
reserved to branch. Otherwise it is 0, which means that the
node needs to be pruned. Fig. 1(a) depicts a diagram of the
training procedure.

The training process is periodically performed offline to
update the parameters of the DNN. The trained DNN serves
as a classifier in the process of the branching. The input of
the trained DNN is the attributes of the node, while the output
of the trained DNN is a scalar variable ranging in the interval
(0, 1), which is used to indicate the pruning strategy. Denote
by ŷ as the output of the trained DNN. A threshold, denoted by
θ, is set to distinguish the pruning decision ρ. By comparing
the values of ŷ and θ, we set

ρ =

{
1, if ŷ > θ,

0, otherwise.
(10)

Note that ρ = 1 implies that the current node is decided to
branch into two child nodes, otherwise ρ = 0 corresponds to
a pruned node. Fig. 1(b) elaborates the DL-based branching
process with an example.

Obviously, the threshold θ has an impact on the performance
of the proposed IBnB approach. A lower threshold results
in more nodes to be searched, which lifts the computation
complexity, while a higher threshold may prune the branch
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Fig. 1. Schematic diagram of the proposed IBnB approach.

Algorithm 2 The Proposed IBnB Approach
1 Initialize: N = {N0}, θ = θ0, ZUB =∞
2 While ZUB =∞ do
3 While N �= ∅ do
4 Same as Step 3-5 of Algorithm 1;
5 if x(j) is not integer then
6 if Ψ(j) < ZUB then
7 Input j, g, f, x(j), l(j), Ψ(j) to the trained

DNN;
8 Output ŷ;
9 Calculate ρ using (10);
10 if ρ = 1 then
11 Same as Step 8-9 of Algorithm 1;
12 end if
13 end if
14 else if Ψ(j) < ZUB

15 ZUB ← Ψ(j);
16 x∗, l∗ ← x(j), l(j);
17 end if
18 end while
19 θ0 ← θ0 ×Δθ;
20 end while

with the optimal solution. By choosing an appropriate θ,
we flexibly reduce the number of searched nodes and guar-
antee the optimal performance of the proposed IBnB. It is
clear that the best case is to prune all the nodes that do not
lead to the optimal solution. However, an extreme case is
over-pruning, which can lead to no feasible solution. Another
extreme case is that a bitty threshold prunes few nodes, and
has almost the same complexity as the conventional BnB.

Here, we design an adaptive threshold procedure to guar-
antee a feasible solution. This procedure enables to adjust the
threshold automatically when the initial value of the threshold
is too large to ensure a feasible solution for the optimization
problem in (9). Specifically, an initial threshold is set, which in
most cases can find the optimal solution but prune redundant
nodes as much as possible. When the initial threshold is too
large, excessive nodes are pruned and there can be no feasible
solution left. To fix this, the threshold is lifted by a small step,
i.e., θ ← θ · Δθ, and then those search trace back a layer to
check the IBnB tree to find a solution.

The IBnB algorithm is summarized in Algorithm 2.
In steps 4 and 11, the proposed IBnB performs the same steps
to solve the relaxation problem of (9) and branch as the
conventional BnB. In steps 7-9, the trained DNN is used to
prune some redundant nodes with an appropriate threshold θ,

Fig. 2. Comparison of the number of searched nodes of the BnB and the
proposed IBnB algorthms in different time frames.

thereby reducing the number of searched nodes to significantly
reduce complexity. Step 19 shows the process of adaptive
threshold adjustment. The threshold adjustment and learning
procedure repeats until a feasible solution is reached.

C. Complexity Analysis

As shown in Section III-A, as long as there are enough iter-
ations, the optimal solution to (9) can be found. As the training
process is usually performed offline to update the parameters
of the DNN, the structure and training process of DNN have a
marginal impact on the complexity of the proposed approach
when it is used online. In both the conventional BnB and
the proposed IBnB approaches, the complexity comes from
the process of repeatedly solving the MINLP problem in (9).
Denote by O(S) as the complexity of solving the objective
function once during the iteration. Then, the complexity of
the conventional BnB is O(S × J), and with an increasing
number of MDs, J will grow exponentially. Denote T as the
number of nodes of the IBnB search tree, so the complexity
of the proposed IBnB is O(S × T ). By setting an appropriate
threshold, the IBnB approach prunes most redundant nodes,
and T becomes proportional to the number of MDs. Obviously,
the IBnB approach prune a large number of redundant nodes
through an intelligent pruning strategy to greatly reduce the
complexity.

IV. EXPERIMENTAL RESULTS

This section validates the efficiency of the proposed IBnB
approach through simulations. In the simulations, the transmit
power Ps is chosen from a uniform distribution in the range of
[1.0, 1.5] W. The communication bandwidth B is 10 MHz. The
channel gain hsk is generated from a Rayleigh fading channel
model as in [13], and N0 is set to −110 dBm. The CPU
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Fig. 3. Complexity comparison.

frequency of the CAP is r = 2 × 109 cycles/sec. The weight
λt is set to 1, and λe is set to 0.25. Two initial thresholds are
set to θ = 10−7 and θ = 10−12, and the adaptive threshold
step parameter is set to Δθ = 10−5.

As the number of searched nodes in the BnB approach
directly affects the complexity of the approach, we com-
pare the number of searched nodes to reflect the complexity of
the two approaches in Fig. 2. It shows that the complexity of
the proposed IBnB is much less than that of the conventional
BnB in all time frames. Moreover, from Fig. 2, it is verified
that the variance of the complexity of our proposed IBnB is
also greatly reduced compared to the conventional BnB. This
signifies that the proposed IBnB is robust and appropriate for
the delay-turbulance-sensitive tasks.

In Fig. 3, we provide the cumulative distribution func-
tion (CDF) of the number of searched nodes for the conven-
tional BnB and proposed IBnB under different values of θ.
From Fig. 3, the proposed IBnB with the threshold of 10−7

can reduce the complexity of the conventional BnB to about
10%, while the proposed IBnB with the threshold of 10−12 can
reduce the complexity to about 20%. Hence, we can conclude
that the proposed IBnB is computationally efficient.

The average cost of the objective value Ψ reflects the
performance of the two approaches. In Fig. 4, we compare
the performance of the two approaches under different weights
of latency and energy consumption of (9a). The different
weights may suit for different application scenarios. We can
find from Fig. 4 that the proposed IBnB with the threshold
of 10−12 approaches 98% of the optimal performance by the
conventional BnB, while at the complexity of only 20%. When
the threshold is 10−7, the approach can also approach 80% of
the optimal performance. The experimental results show that
our proposed approach improves the model’s generalization
capability under different scenarios.

By adaptively adjusting the threshold, we can always find
a feasible solution. In fact, if the initial threshold is low, e.g.,
lower than 10−12, the number of searched nodes becomes
high and the complexity increases. On the other hand, if the
initial threshold is high, e.g., higher than 10−7, the probability
of achieving the optimal solution, or a feasible solution,
decreases. After setting the initial threshold based on specific
scenario parameters, e.g., the parameters of variable channels
and the size of the offloading tasks, the trained DNN is in
general able to find a feasible solution approaching the optimal
performance, consuming less computation resource.

Fig. 4. Performance comparison of the BnB and the proposed IBnB algorthms
under different weights of latency and energy consumption.

V. CONCLUSION

In this letter, we presented a model-and-data-driven offload-
ing resource assignment approach in a MEC system. The
proposed IBnB approach learnt the pruning strategy of the
decision-making tree to significantly reduce the complexity.
Simulation results were demonstrated to validate that the
performance of the proposed IBnB is very close to the optimal
one, and the complexity is only one-fifth or even lower
compared to that of the conventional BnB.
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