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Abstract— Distributed optimization is ubiquitous in emerging
applications, such as robust sensor network control, smart grid
management, machine learning, resource slicing, and localiza-
tion. However, the extensive data exchange among local and
central nodes may cause a severe communication bottleneck.
To overcome this challenge, over-the-air computing (AirComp)
is a promising medium access technology, which exploits the
superposition property of the wireless multiple access channel
(MAC) and offers significant bandwidth savings. In this work,
we propose an AirComp framework for general distributed
convex optimization problems. Specifically, a distributed primal-
dual (DPD) subgradient method is utilized for the optimization
procedure. Under general assumptions, we prove that DPD-
AirComp can asymptotically achieve zero expected constraint
violation. Therefore, DPD-AirComp ensures the feasibility of
the original problem, despite the presence of channel fading
and additive noise. Moreover, with proper power control of
the users’ signals, the expected non-zero optimality gap can
also be mitigated. Two practical applications of the proposed
framework are presented, namely, smart grid management and
wireless resource allocation. Finally, numerical results confirm
DPD-AirComp’s excellent performance, while it is also shown
that DPD-AirComp converges an order of magnitude faster
compared to two digital orthogonal multiple access schemes,
specifically, time-division multiple access (TDMA), and orthogo-
nal frequency-division multiple access (OFDMA).
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I. INTRODUCTION

DISTRIBUTED optimization has drawn considerable
attention for addressing a plethora of problems in various

fields, ranging from distributed machine learning to resource
allocation and optimization of wireless networks [1], [2].
Distributed optimization refers to the idea of leveraging the
computational power of multiple devices/agents to solve an
optimization problem efficiently. Thus, to enable the imple-
mentation of distributed optimization, a problem needs to be
decomposed into disjoint subproblems of smaller size, and
each agent is assigned a specific subproblem. In the context
of wireless networks, distributed optimization can be realized
by allowing all the network’s participants, i.e., the central
coordinator and the devices in the underlying physical layer,
to actively collaborate towards obtaining a global solution,
facilitating the practical implementation of solutions that are
based on optimization in large networks [3].

Considering its benefits, distributed optimization is expected
to be one of the enablers of future wireless networks in the
sixth generation (6G) era [4], [5]. This is due to the fact
that 6G will aim to incorporate intelligence into the physical
(PHY) and the medium-access control layers of the network,
eventually, giving rise to new functionalities, such as intelli-
gent power control, intelligent interference management, and
joint optimization [3]. Traditional centralized algorithms are
an option for making those intelligent decisions, however,
they can be easily overwhelmed by the increasing number
of users and the huge amounts of data. Due to its inherent
scalability, distributed optimization can overcome this chal-
lenge. Nonetheless, distributed optimization requires wireless
transmission of big volumes of data between the participants,
which might cause communication bottlenecks and significant
transmissions overheads in large-scale networks.

In this direction, non-orthogonal protocols, such as power-
domain non-orthogonal multiple access (NOMA) and rate-
splitting multiple access (RSMA), where interference is
decoded, rather than suppressed, can be utilized to increase
spectral efficiency [6], [7]. Although breaking orthogonality
in the downlink has been well-investigated in the existing
literature, transmitting information in the uplink by using the
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same resources in the time, frequency, and code domains has
not been thoroughly investigated, despite its high practical
value for a vast number of wireless applications, including
the Internet of Things. Moreover, when the aim is to compute
a certain function of the distributed data, a promising non-
orthogonal technology, which aims to alleviate the burden of
increased congestion and communication traffic, is over-the-
air computing (AirComp) [8], [9], [10], [11], [12]. The core
idea of AirComp is to exploit the inherent wave superposi-
tion property of the multiple access channel (MAC) towards
computing a desired function. Specifically, the devices’ mes-
sages are simultaneously transmitted over the MAC and
aggregated “over-the-air” when arriving at the fusion center.
Notably, by appropriate preprocessing, AirComp enables the
computation of nomographic functions, and thus any other
function [10]. As a result, AirComp has the potential to accom-
plish ultra-fast data aggregation, and thus provides a simple
but effective protocol, upon which distributed optimization for
future wireless networks can be efficiently implemented.

A. Related Works

Distributed optimization has been extensively studied over
the years [13], [14], [15], [16], [17], [18], [19]. In [13],
distributed optimization was investigated for solving noncon-
vex optimal power flow problems in real large-scale power
systems. Moreover, in [14], an event-driven distributed
optimization scheme was developed in order to reduce com-
munication costs, with application to sensor network coverage
control. The impact of communication delay on distributed
optimization was examined in [15], where Lyapunov the-
ory for time delay systems was used and two illustrative
examples were presented. Furthermore, in [16], the effect of
limited capacity communication links on various distributed
subgradient algorithms was studied, while a dimensionality
reduction mechanism was proposed. In addition, in [17], the
convergence of the dual subgradient averaging method was
analyzed, in the context of distributed optimization, and the
impact of wireless communication was studied. Finally, in [18]
and [19], achieving consensus through distributed optimization
was examined. Specifically, in [18], the alternating direction
method of multipliers was adopted, while in [19], a lazy
mirror descent method was designed and the impact of limited
channel capacity was investigated.

To render distributed optimization more communication effi-
cient, various works have leveraged the concept of AirComp to
enable low-latency MAC communication. However, AirComp
has been extensively studied only in the context of federated
learning (FL) [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29]. For instance, in [20], an AirComp FL scheme
was developed aiming to cope with the heterogeinity of the
participating users. Also, in [23], an analog FL framework
was proposed in which the devices first sparsify their gradient
estimates and project the resulting sparse vectors into low-
dimensional vectors before transmitting them to a central
unit. Moreover, in [24] and [28], a joint device selection and
beamforming design was studied for improving over-the-air
FL, while in [26] NOMA and intelligent reflective surfaces

were integrated into AirComp FL. In addition, in [21] and [22],
a device-to-device (D2D) AirComp FL scheme was proposed,
and the impact of the communication between all nodes was
studied. Furthermore, in [25] and [27] the joint optimization of
power control and FL in an AirComp scenario was considered,
while in [29], a parallel FL framework based on AirComp
was proposed with joint receiver-combiner vector design and
device selection. Finally, in [30], an AirComp dual-averaging
framework was formulated, aiming to solve an optimization
problem in which all devices share the average of all local
devices’ objective functions.

B. Motivation and Contributions

Most existing works [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], which applied the AirComp concept to
distributed optimization problems, focused on federated and
distributed learning techniques. However, the latter approaches
may not adequately capture the structure of a wide range of
optimization problems. For instance, in FL, local solvers are
not subject to additional local or global constraints, while the
global objective function is usually separable, and given by the
sum of the local functions. Also, differentiable local functions
are usually assumed. On the other hand, the application of
AirComp to distributed optimization problems with a more
general structure, e.g., constrained non-differentiable problems
has yet to be examined.

An efficient approach to solve a general, non-differentiable,
constrained optimization problem with non-separable objective
function in a distributed manner is the primal-dual subgradient
method. Primal-dual subgradient optimization [31], [32] can
be applied to a variety of problems and in many different
fields, including wireless communications. It is beneficial for
solving large-scale optimization problems where a large num-
ber of variables may render the problem intractable, e.g., when
second-order methods are adopted. Moreover, Lagrangian
duality is an effective tool for providing lower bounds on
the optimal value of nonconvex optimization problems, which
often arise in wireless communication applications.

Driven by the aforementioned considerations, we investi-
gate the utilization of AirComp as uplink multiple access
protocol, to accelerate the iterative solution of constrained
optimization problems with general structure in a distributed
manner. Specifically, we adopt the distributed primal-dual
subgradient method, where users utilize AirComp to convey
the dual variables to a central server, whose responsibility
is to update the primal variables and broadcast them back
to the users. After designing and presenting the proposed
distributed primal dual AirComp (DPD-AirComp) algorithm,
we rigorously examine its convergence behavior to answer
the question of whether DPD-AirComp can provide a feasible
and optimal solution, despite the presence of channel fading
and noise. We note that this important issue has not been
addressed in the existing literature. Finally, we evaluate the
performance of the proposed DPD-AirComp algorithm both
in terms of optimality and convergence speed, by applying
it to two practical optimization scenarios, namely, smart grid
management and wireless resource allocation. The contribu-
tions of this paper can be summarized as follows:
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• A novel AirComp framework for distributed primal-dual
optimization is proposed, namely DPD-AirComp, which
can be used for solving a wide-range of distributed
optimization problems, while promoting communication
efficiency and guaranteeing high convergence speed.
Specifically, we adopt a distributed primal-dual subgradi-
ent method, where users utilize AirComp to convey the
dual variables to the central server, which subsequently
updates the primal variables and broadcasts them back to
the users.

• The convergence of the proposed DPD-AirComp
algorithm is analyzed. Based on the principles of Air-
Comp, only a subset of the total available users participate
in each round. Notably, it is shown that the expected con-
straint violation of the optimization problem tends to zero
asymptotically, highlighting that the partial user partici-
pation in DPD-AirComp does not affect the feasibility of
the obtained solution. However, partial user participation
does create a non-zero optimality gap, which, though, can
be mitigated by properly preprocessing the users’ transmit
signals.

• The proposed DPD-AirComp algorithm is applied to two
distributed optimization use cases. Specifically, a smart
grid energy management system and a frequency-division
multiple access (FDMA) distributed resource alloca-
tion problem are considered. The proposed algorithm
is analyzed and tested, given the particularities of each
considered scenario. Simulations are conducted to eval-
uate the performance of the proposed DPD-AirComp
algorithm. The results verify the effectiveness of the
proposed method, highlighting its near-optimal perfor-
mance and the significant convergence time acceleration
of DPD-AirComp compared to both time-division mul-
tiple access (TDMA), and orthogonal frequency-division
multiple access (OFDMA).

C. Notation

R represents the set of real numbers, while R+ represents
the set of real positive numbers. | · | denotes the cardinality
of a set or the absolute value of a number, depending on
the respective context. Bold characters denote vectors. ⟨x,y⟩
denotes the inner product of two vectors of equal dimension,
x and y. Moreover, ∥·∥ represents the standard Euclidean
norm and E[·] denotes expectation. ⪰ denotes an element-wise
vector inequality, while [·]+ stands for max{0, ·}. A list with
symbols and notations used in this paper is provided in Table I.

II. PROBLEM STATEMENT AND AIRCOMP
IMPLEMENTATION

In this section, the proposed system architecture is intro-
duced. First, in Subsection II-A, we provide background
information on DPD optimization. Then, in Subsection II-
B, the AirComp implementation of DPD optimization is
discussed, which results in a distributed optimization AirComp
framework, namely, DPD-AirComp.

A. Distributed Primal-Dual Optimization

We consider a wireless network consisting of N devices,
indexed by i ∈ N = {1, 2, . . . , N} and a base station (BS)

collocated with a central server. Both the devices and the BS
are equipped with a single antenna. We assume that the central
server is interested in minimizing a global objective function
f0 : RD → R, subject to the local constraints associated with
each individual device, and global constraints which have to
be met by all devices and/or the BS. The considered problem
can be formally written as follows

min
x

f0 (x)

s.t. fi (x) ≤ 0, i ∈ N ,
x ∈ X , (1)

where the functions f0, f1, .., fN : RD → R are convex,
not necessarily differentiable, and indicate the devices’ local
constraints. Also, X ⊂ RD is a nonempty, compact, and
convex set, reflecting the set of global constraints.

We aim to solve the problem in (1) in a distributed manner.
A common approach for solving such a problem is the dis-
tributed primal-dual method [31], [32]. Specifically, the dual
problem of (1) is defined through the Lagrangian relaxation
of the inequalities constraints, and can be written as follows

max
λ

q (λ)

s.t. λ ⪰ 0,

λ ∈ RN , (2)

where the dual objective function is defined as

q (λ) = inf
x∈X
L (x,λ) . (3)

In (3), L (x,λ) : X × RN
+ → R is the Lagrangian function

defined as

L (x,λ) = f0 (x) +
N∑

i=1

λifi (x) , (4)

where λi is the Lagrange multiplier associated with the i-
th constraint. Since we do not assume differentiability of
functions f0, fi, ∀i ∈ N , we define

Lx (x,λ) = g0 (x) +
N∑

i=1

λigi (x) , and

Lλ (x,λ) = F (x) , (5)

to denote the subgradients of L (x,λ) with respect to
(w.r.t.) x and λ, where g0, g1, . . . , gN denote the subgradi-
ents of functions f0, f1, . . . , fN , respectively, and F (x) =
[f1 (x) , . . . , fN (x)]T . Specifically, g(x′) ∈ RD is a subgra-
dient of a convex function f : RD → R for a given vector
x′ ∈ X , when the following relation holds:

f(x′) + ⟨g(x′),x− x′⟩ ≤ f(x). (6)

The primal-dual algorithm iteratively updates the primal and
dual variables with the aid of the sub-gradient method. Specif-
ically, in the k-th iteration/round, the variables are updated as
follows:

xk+1 = PX
[
xk − akLx

(
xk,λk

)]
= PX

[
xk − ak

(
g0

(
xk
)

+
N∑

i=1

λk
i gi

(
xk
))]

(7)
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TABLE I
LIST OF SYMBOLS AND NOTATIONS

and

λk+1 = PD
[
λk + akLλ

(
xk,λk

)]
= PD

[
λk + akF

(
xk
)]
, (8)

where ak ∈ (0, 1) is the stepsize of the k-th round, while PS [·]
denotes the projection operator onto set S and it is defined as

PS [z] = argmin
s∈S

∥s− z∥2 . (9)

Set D contains the Lagrange multipliers, and it is compact
and convex. According to [31], under the Slater condition,
dual variable λ is bounded, and thus, an appropriate choice of
D is given as follows [31]

D =
{

λ ⪰ 0
∣∣∣∣ ∥λ∥∞ ≤ f0 (x̄)− q̃

γ
+ r

}
, (10)

where x̄ is a vector satisfying the Slater condition, q̃ =
q(λ), for any λ ⪰ 0, γ = min

1≤i≤N
{−fi(x̄)} and r is any

value from R+. We note that the projection onto set D can
be executed individually by each user, since the operation
∥λ∥∞ ≤

f0(x̄)−q̃
γ + r can be equivalently written as λi ≤

f0(x̄)−q̃
γ + r, ∀i ∈ N . Therefore, the i-th user does not need

feedback from the other users regarding the value of their
Lagrange multipliers λj ̸=i,j , which enables the distributed
calculation of the dual variables. Therefore, each individual
device calculates

λk+1
i = PD

[
λk

i + akfi

(
xk
)]
, ∀i ∈ N . (11)

In contrast, the primal variable x is updated at the server in
a centralized fashion, according to (7), after having collected
the dual-variable updates from all devices in the k-th iteration.

B. Over-the-Air Implementation

As mentioned in the previous subsection, the central server
and the devices aim to collaboratively solve the optimization
problem in (1), with the aid of the distributed primal-dual
method. The collaboration between the BS and the users is
organized in K communication rounds, where each commu-
nication round includes the uplink data aggregation at the
BS and the downlink broadcast from the BS to the users.

To that end, the BS first broadcasts the vector xk to all devices
during the k-th round. Following that, each individual device
calculates λk+1

i and afterwards transmits λk
i gi(xk) to the BS.

Finally, the server updates the primal variable xk+1 and the
process is repeated until convergence. As one can observe
from (7), the server is not actually interested in acquiring each
devices’ λk

i separately, but instead, it requires only knowledge
of the sum

∑
i∈N λk

i gi

(
xk
)
, across all devices. Driven by this

observation, we propose to adopt the concept of AirComp for
the uplink message transmission of the devices to the BS. The
core idea of AirComp is to exploit the wave superposition
property of the MAC. As a result, the devices’ messages,
i.e., λk

i gi

(
xk
)
, ∀i ∈ N , are simultaneously transmitted

and aggregated “over-the-air” at the BS. Hence, the received
aggregated signal at the BS, in round k, can be written as

yk =
N∑

i=1

hk
i wk

i + nk, (12)

where wk
i ∈ RD is the transmitted signal of the i-th user,

hk
i is the channel coefficient of the i-th user, and nk is

additive white Gaussian noise (AWGN), with variance σ2.
Here, the uplink communication is divided into D symbol
slots, corresponding to the size of vector wk

i . Moreover
the channel coefficients are assumed to be quasi-static, i.e.,
static in a single round, but varying from one round to the
next. Also, perfect local channel state information (CSI) is
assumed to be available at all N transmitters, which can be
acquired with the aid of the BS via pilot symbols. Furthermore,
we assume that packet symbol-level synchronization among
the transmitting devices is facilitated by a synchronization
channel (e.g., “timing advance” in LTE systems [33]).

Assuming a peak power constraint, Pmax, for each user,
we have ∥∥wk

i

∥∥2 ≤ Pmax, ∀i ∈ N . (13)

In order to mitigate the destructive effects of fading, a channel
inversion strategy is adopted [20]. As such, each user sets

wk
i =

{
sk

i√
βhk

i

,
∥∥∥ sk

i

hk
i

∥∥∥2

≤ βPmax

0, otherwise
, (14)
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Fig. 1. System model.

where sk
i = λk

i gk
i (xk) and β is a preprocessing scalar to

guarantee that all users meet their power constraint in (13).
Specifically, its purpose lies in regulating the power of the
transmitted signal (14) of all users, so that (13) is satisfied.

Furthermore, due to the power constraint of the users’
transmitters and the channel inversion strategy, only a subset
of users will participate in any given communication round.
We make the assumption that if there exists a bottleneck device
with severe path-loss for all transmission rounds, which does
not allow channel inversion within the given power budget, this
device will be excluded from the optimization procedure [34].
Thus, the local constraints of that device are not taken into
account. For all other devices, by using (14), and the power
constraint in (13), we have

∥∥wk
i

∥∥2 ≤ Pmax ⇔ |hk
i |2 ≥

∥∥sk
i

∥∥2

βPmax
, (15)

which reflects the condition for a user to participate. By taking
this into account, the subset of participating users in the k-th
round is given by

Ak ≜

{
i ∈ N

∣∣∣∣ |hk
i |2 ≥

∥∥sk
i

∥∥2

βPmax

}
⊆ N , (16)

with |Ak| = Ak. Notice here that the number of participating
users may differ from round to round, due to small-scale fading
variations. The probability that the i-th user participates during
the k-th round is given by

γk
i (β) = Pr

{
|hk

i |2 ≥
∥∥sk

i

∥∥2

βPmax

}
, ∀i ∈ N . (17)

Finally, according to (12), the received signal at the BS is be
given as

yk =
∑
i∈Ak

sk
i√
β

+ nk. (18)

In order to recover the desired signal,
∑

i∈N sk
i , the BS

multiplies the received signal with
√
β and obtains

ỹk =
∑
i∈Ak

sk
i +

√
βnk. (19)

We note that the received signal, ỹk, is a distorted version
of the target signal

∑
i∈N sk

i , owing to the AWGN and the

partial user participation. The overall DPD-AirComp architec-
ture is shown in Fig.1, while the DPD-AirComp optimization
procedure is summarized in Algorithm 1.

Algorithm 1 DPD-AirComp

1: Initialize β, x0, λ0 and a0
2: for k = 0, 1, 2, . . .K do
3: The BS broadcasts the primal variable xk to all users
4: Users update the dual variable λk+1

i based on (8)
5: sk

i ← λk
i gk

i (xk) and wk
i ←

sk
i√

βhk
i

, ∀i ∈ N
6: if

∥∥wk
i

∥∥2 ≤ Pmax then
7: The i-th user transmits wk

i to the BS
8: else
9: The i-th user does not participate

10: end if
11: The BS receives ỹk =

∑
i∈Ak sk

i +
√
βnk

12: xk+1=PX
[
xk−ak

(
g0 (x)+ỹk

)]
13: k ← k + 1
14: Update ak
15: end for

III. CONVERGENCE ANALYSIS

In this section, we examine the convergence behavior of the
DPD-AirComp framework. First, we introduce some standard
assumptions to facilitate the convergence analysis.

Assumption 1: For compact sets X and D, and convex
functions f0, f1, . . . fN over Rn, the following uniform upper
bound exists [32],∥∥λigi(x

k)
∥∥ ≤ G, ∀i ∈ N , ∀k. (20)

As a consequence, the subgradients of L are also uniformly
bounded, i.e., there is a constant L > G such that∥∥∥Lx

(
xk,λk

)∥∥∥ ≤ L and
∥∥∥Lλ

(
xk,λk

)∥∥∥ ≤ L, ∀k.
(21)

Assumption 2: Given that set X is compact, then for the
primal optimal value x∗, and for any k ≥ 0, a positive
number R exists, which satisfies E

[∥∥xk − x∗
∥∥] ≤ R. This

assumption also implies that E
[
xk − x∗

]
⪯ R.

We note that Assumption 1 was proven in [32], while
Assumption 2 follows directly from the definition of com-
pact sets. Moreover, we select a square summable, but not
summable diminishing step size, i.e.,

ak ≥ 0,
∞∑

k=0

a2
k <∞,

∞∑
k=0

ak =∞. (22)

Next, let the running weighted averages x̂k and λ̂
k
, be

x̂k =

k−1∑
j=0

ajx
j

k−1∑
j=0

aj

and λ̂
k

=

k−1∑
j=0

ajλ
j

k−1∑
j=0

aj

, (23)

which will be used to provide approximate solutions to
problem (1), as well as convergence bounds for both the
expected constraint violation and the optimality gap of the
objective function. We note that a constraint violation occurs
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if E
[∥∥∥∥[F (x̂k

)]+∥∥∥∥] > 0. Based on the above assumptions,

we introduce the following theorems and lemmas:
Theorem 1: The expected constraint violation of the pro-

posed algorithm, i.e., the measure of infeasibility of the
obtained solution at x̂k, is bounded as

E
[∥∥∥∥[F (x̂k

)]+∥∥∥∥]
≤ 1
rZk

(
RG

k−1∑
j=0

(
N − Āj (β)

)
aj

+ 2
(
f0 (x̄)−q̃

γ
+r
)2

+
(
βσ2 +

3L2

2

) k−1∑
j=0

a2
j

+
∥∥x0 − x∗

∥∥2

+ 2LG
k−1∑
j=0

(
N − Āj (β)

)
a2

j + L2
k−1∑
j=0

(
N − Āj (β)

)2
a2

j

)
,

(24)

where Zk =
∑k−1

j=0 aj , and Āk(β) denotes the average number
of participating users in the k-th round.

Proof: See Appendix A.
Corollary 1: By selecting r, in the k-th round, as

r∗k =

√
ζ2 +

δkZk

2
, (25)

where ζ = f0(x̄)−q̃
γ and

δk =
1
Zk

(
RG

k−1∑
j=0

(
N − Āj (β)

)
aj +

(
βσ2 +

3L2

2

) k−1∑
j=0

a2
j

+
∥∥x0 − x∗

∥∥2
+ 2LG

k−1∑
j=0

(
N − Āj (β)

)
a2

j

+ L2
k−1∑
j=0

(
N − Āj (β)

)2
a2

j

)
, (26)

we obtain

lim
k→∞

E
[∥∥∥∥[F (x̂k

)]+∥∥∥∥] = 0. (27)

Proof: See Appendix B.
Theorem 2: An expected upper bound on the optimality

gap, f0
(
x̂k
)
− f∗0 , where f∗0 is the optimal value of the

objective function, is given by

E
[
f0

(
x̂k
)
− f∗0

]
≤ RG

Zk

(
1
2

∥∥λ0
∥∥2

+
∥∥x0 − x∗

∥∥2

+
(
βσ2 +

3
2
L2

) k−1∑
j=0

a2
j + 2LG

k−1∑
j=0

(
N − Āj (β)

)
a2

j

+ L2
k−1∑
j=0

(
N − Āj (β)

)2
a2

j

)
+
RG

Zk

k−1∑
j=0

(
N − Āj (β)

)
aj .

(28)

Proof: See Appendix C.
Theorem 3: An expected lower bound on the optimality

gap, f0
(
x̂k
)
− f∗0 , is given by

E
[
f0

(
x̂k
)
− f∗0

]
≥ −f0 (x̄)− q

γ
E
[∥∥∥∥[F (x̂k

)]+∥∥∥∥] . (29)

Proof: The proof is similar to that of Theorem 1 and 2,
and thus, omitted for brevity.

Remark 1: According to Corollary 1, by optimally selecting
the parameter r, the expected constraint violation tends to zero
asymptotically. Therefore, the proposed AirComp implemen-
tation guarantees the feasibility of the obtained solution, i.e.,
the solution satisfies all the problem constraints. This is a
notable result, indicating that the partial user participation in
each round, stemming from the AirComp principles, does not
affect the feasibility of the extracted solution. It is highlighted
that since Corollary 1 holds for the simple strategy of channel
inversion, it is expected to also hold for more sophisticated
power allocation schemes, which can further facilitate user par-
ticipation.

Remark 2: According to Theorem 3, the lower bound of the
expected optimality gap depends on the value of the expected

constraint violation E
[∥∥∥∥[F (x̂k

)]+∥∥∥∥]. Thus, by also con-

sidering Corollary 1, it is concluded that the lower bound
of the expected optimality gap tends asymptotically to zero.
Regarding the upper bound of the expected optimality gap
in Theorem 2, it can be verified that only the last term
on the right-hand-side (RHS) of (28) does not converge to
zero, and thus, creates a non-zero optimality gap. Specifically,
the considered term decreases as the average number of
participating users increases and vanishes when Āj(β) = N ,
i.e., all users participate in each round. In order to mitigate the
effects of partial user participation and reduce the optimality
gap, one should suitably adjust the value of the preprocessing
scalar β. As can be observed from (17) and (60), higher values
of β allow more users to participate in each round. However,
larger β also increase the noise variance, i.e., βσ2. We recall
that the term βσ2

Zk
appears in the optimality gap of (28) and

(29). Although it can be seen that the impact of noise vanishes
asymptotically, i.e., Zk → ∞ as k → ∞, this may not hold
in a practical implementation when the value of βσ2 becomes
comparable to the value of Zk. In this case, βσ2

Zk
does not

necessarily tend to zero. The impact of β on the convergence
gap will be investigated numerically in Section V.

IV. APPLICATION OF DPD-AIRCOMP IN
PRACTICAL USE CASES

In this section, we examine the application of the proposed
DPD-AirComp algorithm in two distributed optimization use
cases. The following analysis will shed light on the practical
implementation of the proposed algorithm and serve as the
basis for its performance evaluation in Section V. Specifically,
we examine the following two application use cases:

1) Use Case A: The energy management of a smart grid
system, for which a Stackelberg game is formulated.

2) Use Case B: The resource allocation for a conventional
FDMA system, where the users’ sum rate is to be maximized.
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A. Smart Grid Energy Management

1) Model and Problem Formulation: The considered sys-
tem includes several primary and secondary load subscribers,
as well as a smart energy manager (SEM) [35]. After meeting
the demands of the primary consumers, the smart grid wishes
to sell its excess energy (if any) to the secondary subscribers
connected to it, such as plug-in electric vehicles (PEVs). Set
N , consists of N PEVs which can wirelessly communicate
with the SEM. Also, we assume that the maximum amount of
energy that the power grid can sell to the PEVs is C. The
power grid aims to optimize the distribution of its excess
energy to the PEVs which maximizes its revenue. Hence,
it will set an appropriate price p per unit of energy. On the
other hand, all PEVs, ∀n ∈ N , intent to satisfy their energy
demands, by requesting a certain amount of energy un from
the grid. That request varies among PEVs based on parameters
like their battery capacity bn. The interaction between the
PEVs and the power grid can be modelled as a Stackelberg
game. See [35] for more details. The utility function of the
grid is given by

z (p,u) = p
N∑

n=1

un, (30)

and captures the total revenue of the grid when selling the
energy required by all PEVs at a price p per unit of energy.
Vector u contains the energy demand un of all N subscribers.
The SEM’s goal is to maximize its utility function, which is
equivalent to maximizing its profit. On the other side, for a
fixed price p the utility function of the n-th PEV is

Un (un) = bnun −
1
2
snu

2
n − pun, (31)

where sn is a satisfaction parameter. The interaction between
the SEM and the PEVs can be modelled as a two stage
Stackelberg game, which is described as follows [35]

SEM stage:

max
p

p
N∑

n=1

un (32)

PEV stage (the following problem is solved ∀n):

max
un

bnun −
1
2
snu

2
n − pun

s.t.
N∑

n=1

un ≤ C. (33)

According to [35], problem (32) maximizes the revenue of
the SEM, while the solution of problem (33), for the n-th
PEV, yields its optimal energy demand un, with respect to
the price per unit p. Given that all PEVs have obtained their
optimal energy demand un,∀n ∈ N , by solving problem
(33), then, the optimal price of the SG is given by [35]

p∗ = bn − snu
∗
n. (34)

Nonetheless, in large-scale smart grids having a significant
number of PEVs, the communication overhead between the
grid and the mobile consumers can be prohibitive. This is

attributed to the global constraint in (33), which implies that
each PEV has to have knowledge of the energy demands
un,∀n ∈ N , of all other PEVs. Thus, due to its scalability and
low communication overhead, we will employ the proposed
DPD-AirComp for solving problem (33). First we transform
problem (33) to the form of (1). From [35], the socially optimal
Nash equilibrium of the PEV stage can be found by solving
the following problem

max
u

N∑
n=1

Un

s.t.
N∑

n=1

un ≤ C. (35)

The objective value of (35) is the sum of the PEV’s utility
functions, while the constraint imposes a global constraint
to the total energy demand of all PEVs. Then, by rewriting
problem (35) into its epigraph form, we obtain

max
x

N∑
n=1

yn

s.t. yn ≤ Un,

x ∈ X . (36)

We define the vector y, which contains the yn for all N users.
By also defining x = {u,y}, f0(x) = −

∑N
n=1 yn, fn(x) =

yn−Un,∀n ∈ N , and the feasible set X of global constraints
as follows

X =

{
x
∣∣∣ ∑

n∈N
un ≤ C, u ⪰ 0, y ∈ RN

}
,

problem (36) is convex and in the form of (1). Thus, its
solution can be obtained according to Algorithm 1. After
Algorithm 1 has converged, the power grid will obtain its
optimal value p∗ according to (34) and it will broadcast this
value to all PEVs. Based on that new pricing, and by utilizing
DPD-AirComp, all PEVs will renew their energy demands.
This AirComp interaction between the SEM and the PEVs is
repeated until an equilibrium between the power grid and the
PEVs is reached.

2) Choice of Set D: It is noted that for many optimization
problems finding the optimal set D as given in (69) may not
be straightforward, or in some cases, as difficult as solving
the original optimization problem itself. To address this chal-
lenge, we consider a suboptimal set D. From the analysis in
Section III, it can be observed that the optimal choice of r∗k
holds for any ζ ≥ 0. Thus, in practice, instead of finding a
point which satisfies the Slater conditions, an arbitrary point
ζ ′ ≥ 0 can be selected. However, the optimal choice of r∗k still
requires knowledge of parameters which may be unknown in
practice, such as the bound L of the subgradients. Nonetheless,
by following the exact same steps as in Appendix B, it can be
verified that any rk of the form

rk = ϑ ·

√√√√k−1∑
j=0

aj , ϑ > 0, (37)
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guarantees that limk→∞ E
[∥∥∥[F (x̂k)]+

∥∥∥] = 0. Hence,
in practice, the following set can be used

Dk =

λ ≥ 0
∣∣∣∣ ∥λ∥∞ ≤ ζ ′ + ϑ

√√√√k−1∑
j=0

aj

 , (38)

while the impact of the constant values ζ ′ and ϑ on the
convergence will be studied numerically. Also, the value of
the preprocessing factor β will be determined based on a
few Monte Carlo iterations. Specifically, the value of β which
provides the best average DPD-AirComp performance will be
selected, while its impact on the obtained solution will be
numerically investigated.

3) Projection Onto Sets D and X : In this subsection, the
projection onto sets D and X will be discussed. The projection
of λ onto set D is straightforward. On the contrary, the
projection of x is not straightforward. Set X imposes two sets
of inequality constraints on vector u, which do not necessarily
hold with equality, and thus, there is no closed-form expression
to describe the projection explicitly. Still, it can be computed
by standard convex optimization tools, such as second-order
methods, at the expense of an increased complexity, roughly
of O

(
N3
)

for interior-point methods [36]. Therefore, we pro-
pose an alternative low-complexity projection algorithm for
vector u. The projection process in the k-th round can be
formulated as follows

min
u

∥∥u− uk
∥∥2

s.t.
N∑

n=1

un ≤ C,

u ⪰ 0. (39)

To solve (39), first we project uk onto set RN
+ , stemming from

the constraint u ⪰ 0. As a consequence, we obtain uk
new =[

uk
]+

, and compute
∑N

n=1 u
k
n,new = C ′. If C ′ ≤ C, then

the projection process terminates, since a feasible solution has
been found. In the following, we assume that C ′ > C. Also,
we define set

M =
{
n ∈ N

∣∣∣uk
n,new = 0

}
and N ′ = N \M. (40)

Then, the projection problem can be rewritten as

min
u∈N ′

∥∥u− uk
new

∥∥2

s.t.
|N ′|∑
n=1

un ≤ C, (41)

where, hereinafter, uk
new contains only the terms for which

uk
n,new > 0,∀n ∈ N ′, holds. We note that problem (41)

is convex. By introducing a Lagrange multiplier ψ for the
inequality constraint and applying the KKT conditions, it is
straightforward to prove that at the optimal point of (41) it
holds that

u∗n =
2uk

n,new − ψ∗

2
,∀n ∈ N, and

ψ∗

 N ′∑
n=1

u∗n − C

 = 0. (42)

According to the complementary slackness condition, there are
two possible outcomes that need to be investigated. The first
is

ψ∗ = 0 and
|N ′|∑
n=1

u∗n−C < 0, (43)

which according to (42) further implies that
∑N

n=1 u
k
n,new <

C, and therefore, the initial vector of uk
new is already in set

U , which is false by contradiction. As such, the following has
to hold

ψ∗ > 0 and
|N ′|∑
n=1

u∗n−C = 0. (44)

From the equality condition and relation (42) we have

N ′∑
n=1

u∗n = C ⇔ ψ∗ =
2
|N ′|

(C ′ − C) , (45)

and from the optimal ψ∗ the projected version of uk
new is given

below by

u∗n = uk
n,new −

C ′ − C
|N ′|

,∀n ∈ N . (46)

The overall projection process is summarized in Algorithm 2.
The worst case complexity of Algorithm 2 can be found equal
to O

(
N2
)
.

B. FDMA Joint Power and Bandwidth Allocation

As a second use case, we consider a classic wireless com-
munication resource allocation problem. Specifically, we focus
on maximizing the sum rate of network users, in a distributed
manner, by jointly optimizing the power and bandwidth allo-
cation. We assume N mobile users, and a total of K frequency
bands. The power, the fraction of the bandwidth and the
channel coefficient of the n-th user in the k-th frequency
band are denoted as pk,n, wk,n, and hk,n, respectively. The
considered problem is formulated as follows

max
p,w

K∑
k=1

N∑
n=1

Rk,n

s.t. Rn ≥ Rth,
K∑

k=1

N∑
n=1

pk,n ≤ P,

K∑
k=1

wk,n = 1,

pk,n ≥ 0, wk,n ≥ 0, (47)

where Rk,n = wk,nB
K

(
1 + pk,nh2

k,n

wk,nN0
B
K

)
, Rn =

∑N
n=1Rk,n,

and Rth is a quality of service threshold. Also, p and w
denote the vectors which contain all variables pk,n and wk,n,
respectively, N0 denotes the power spectral density of the
AWGN, and B denotes the total bandwidth available at the
BS. It is easy to verify that the problem is convex. More-
over, we define x = {p,w}, f0(x) =−

∑K
k=1

∑N
n=1Rk,n,
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Algorithm 2 Proposed Projection Algorithm
1: Given uk, C
2: u←

[
uk
]+

3: N ′ = N
4: while ∃n ∈ N for which un < 0 or

∑N
n=1 un > C do

5: u← [u]+
6: N ′ = {un|un > 0,∀n ∈ N}
7:

∑|N ′|
n=1 un = C ′

8: un ← un − C′−C
|N ′| ,∀n ∈ N ′

9: end while
10: u∗ ← u

TABLE II
SIMULATION PARAMETERS

fn(x) = Rth−Rn,∀n ∈ N , and the feasible set X of global
constraints as follows

X =

{
x

∣∣∣∣∣
K∑

k=1

N∑
n=1

pk,n ≤ P,
K∑

k=1

wk,n = 1, p ⪰ 0, w ⪰ 0

}
.

We note that problem (47) is in the form of problem (1), thus,
based on Algorithms 1 and 2, its DPD-AirComp implementa-
tion is straightforward.

V. PERFORMANCE EVALUATION AND DISCUSSION

In this section, simulation results are provided to evaluate
the performance of DPD-AirComp for both use cases A
and B in Section IV. Also, we compare the performance of
the proposed scheme with a benchmark employing error-free
transmission, as defined below.

Error-free transmission: Two digital orthogonal multiple
access communication schemes are considered. All users trans-
mit with a rate below the Shannon capacity limit, with transmit
power Pmax, thus, attaining the global optimal solution of the
optimization problem. Without loss of generality, we assume
the TDMA and OFDMA communication protocols.

For the links between all devices and the BS,
according to [37], we assume Rician fading, h =√
GT0(d/d0)−a

(√
ϵ

ϵ+1hLoS +
√

1
ϵ+1hNLoS

)
, where ϵ

is the Rician factor, G is a 3dB antenna gain, and hLoS

and hNLoS denote the line-of-sight and the non-line-of-sight
components, respectively. Moreover, T0 is the path loss at the

Fig. 2. The impact of step size ak for use case B.

reference distance of d0, d denotes the distance between the
transmitter and the receiver, and a is the path loss exponent.
We note that all users are uniformly distributed in a ring
around the BS. The radius of the inner and outer circles of
the ring are given in Table II. Unless specified otherwise,
the selected step size for use case A is ak = 2

3+k , and it is
ak = 1

105+k for use case B. Both step size choices satisfy
the square summable but not summable diminishing step size
requirement, as defined in (22). All the simulation parameters
are also given in Table II. All results have been averaged
over 500 individual runs in a Monte Carlo fashion. The initial
points of Algorithm 1 are chosen randomly.

Choosing an appropriate step size for subgradient methods
is of paramount importance. Despite their theoretical conver-
gence properties, in practice subgradient methods often do not
achieve an exact zero constraint violation gap for all step size
choices [38]. In Fig. 2b, the constraint violation for different
step size choices is illustrated, for use case B. It is observed
that for bigger step sizes the algorithm converges more rapidly
to a stationary point, nonetheless, the achieved performance is
poor. In constrast, for step size ak = 1

105+k , the constraint
violation of DPD-AirComp converges to zero in 50 iterations,
which is also the case for the error-free case. Moreover,
in Fig. 2a, the maximized sum rate for use case B is illustrated
for the same step size choices, as considered in Fig. 2b. It can
be seen that, for all considered step sizes, DPD-AirComp
achieves an inferior sum rate compared to the identical error-
free scheme, while for ak = 1

105+k it closely approaches
the error-free scheme. It is noted that the optimality gap is
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Fig. 3. The impact of preprocessing factor, β, for use case B.

attributed to partial user participation, since according to the
combination of Theorems 2 and 3 the optimality gap becomes
equal to zero when all users participate in the optimization
procedure.

In Fig. 3, the impact of the preprocessing factor β is
investigated for use case B. As can be seen, the value of β
affects both the expected maximum constraint violation of the
problem and the optimal value. According to the convergence
analysis in Section III, a larger value of β enables more users
to participate in each round, however, it also increases the
effective noise power at the BS. For β = 104 and β = 108,
the value of the objective function approximates the one of
the error-free scheme, while for β = 1010, the optimality gap
is larger, since β = 1010 increases the noise power levels.
That is also the case in Fig. 3b, where it is observed that
the expected maximum constraint violation for β = 1010 is
approximately double compared to the case of β = 108. For
β = 104 the constraint violation goes to zero. Therefore, the
trade-off between the number of participating users per round
and the noise power level at the receiver should be carefully
balanced, when the value of β is selected.

The considered trade-off is further showcased in Fig. 4,
where the impact of β for use case A is studied. Specifically,
from Fig. 4a, it is evident that by selecting β = 106, the
DPD-AirComp algorithm achieves identical expected con-
straint violation as the error-free scheme, while asymptotically
achieving a zero constraint violation. However, that is not the
case for the other values of β. For instance, for β = 104,
the AirComp scheme does not converge, since only a few

Fig. 4. The impact of preprocessing factor, β, for use case A.

users participate in each round. Furthermore, for β = 108,
the AirComp scheme performs worse than for β = 106. For
β = 108, although an increased number of users participate
in each round, the increased noise level slows down the
convergence of the algorithm and causes a larger constraint
violation. We note that Theorem 1 states that for a proper
selection of ak, rk, and β the solution obtained from DPD-
AirComp asymptotically achieves a zero expected constraint
violation. From Fig. 3b and Fig. 4a this can be seen to hold
for both use cases.

In Fig. 4b, the price per MWh obtained from the Stackelberg
scheme is plotted for various values of β. It is noticed that for
β = 106, the Stackelberg price obtained with DPD-AirComp is
equal to the error-free scheme. On the other hand, for β = 108,
the price value is less than the optimal price value of the error-
free scheme, and eventually the power grid looses revenue.
Nonetheless, this is a favorable condition for the PEVs, since
they can purchase energy cheaper. This can be attributed to
the fact that the optimal price of p, according to (34), depends
on the solution of problem (36). However, due to AWGN and
channel fading, the solution obtained by DPD-AirComp can
be suboptimal, thus, resulting in a suboptimal price p.

Moreover, in Fig. 5 the impact of set D, as given in (38),
is illustrated. Set D bounds the maximum value of λ. The
values of λ are used to regulate the constraint violation of the
problem, and Theorem 1 shows that the choice of D influences
the expected constraint violation. Indeed, from Fig. 5 it can be
verified that the choice of set D is of paramount importance.
For ζ = 1, θ = 1 it is seen that DPD-AirComp does not

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 26,2023 at 09:25:21 UTC from IEEE Xplore.  Restrictions apply. 



MITSIOU et al.: ACCELERATING DISTRIBUTED OPTIMIZATION VIA OVER-THE-AIR COMPUTING 5575

Fig. 5. Impact of set D.

Fig. 6. Convergence time comparison.

converge at all, while for ζ = 3, θ = 3 and ζ = 5, θ = 5, DPD-
AirComp is not stable, eventually, converging to a constraint
violation of 10−3. On the other hand, for ζ = 2, θ = 2, the
constraint violation of the DPD-AirComp algorithm closely
approaches that of the error-free scheme.

In Fig. 6, we compare the convergence rate, w.r.t. the
unit of time in seconds, of the proposed DPD-AirComp
scheme and two error-free baselines. For DPD-AirComp, time
duration of one communication round between the BS and
all users, is given as L

B , where L is the total number of
symbols to be transmitted. For use case B, L = 2KN .
The time duration of one iteration for the error-free TDMA
scheme is calculated as dTDMA =

∑N
i=1

64+L(1+log2(1+q1))

B log2(1+
Pmax|hi|2

N0B )
,

where log2(1 + q1) = 16, representing the quantization
level [39]. For the error-free OFDMA scheme, the time
duration, in seconds, of one round is given as dOFDMA =

maxi

{
64+L(1+log2(1+q1))

B/(NK)
∑

k log2

(
1+

(Pmax/K)|hi|2
N0B/(NK)

)
}
,∀i ∈ N , where we

assume that all users utilize the same bandwidth B
NK and

power Pmax
K per subcarrier. We assume K = 16 subcarriers.

As can be seen, the DPD-AirComp scheme significantly
outperforms both error-free schemes, in terms of convergence
rate. Specifically, DPD-AirComp converges within the first
0.065 seconds, while the TDMA baseline converges after
1 second. Moreover, it is observed that OFDMA is faster than
TDMA, nonetheless OFDMA is still an order of magnitude
slower than DPD-AirComp. Specifically, OFDMA converges
after 0.5 seconds. Therefore, the DPD-AirComp scheme is
an order of magnitude faster than both OMA-based error-free

Fig. 7. The impact of number of users, case A.

schemes, while achieving a near-optimal performance, which
corroborates the effectiveness of AirComp on accelerating
distributed optimization.

Moreover, in contrast to OMA protocols, the transmission
duration of AirComp does not increase with the number
of participating users in general. Thus, to further showcase
the merits of the proposed scheme when serving large-scale
networks, in Fig. 7, the convergence properties of DPD-
AirComp for different numbers of users are demonstrated.
In Fig. 7a, the maximum constraint violation is depicted for
20, 40, and 50 users. As can be observed, DPD-AirComp’s
constraint violation decreases as the number of iterations
increases. Also, in Fig. 7b, the convergence of the objective
function is illustrated. For all considered number of users,
DPD-AirComp’s performance is near-optimal, thus, motivating
its use in large-scale networks.

VI. CONCLUSION

In this paper, we proposed the DPD-AirComp framework
for distributed optimization over the wireless medium. Assum-
ing convexity, but not necessarily differentiability, and for a
general objective function, we proved that the proposed DPD-
AirComp can asymptotically achieve zero expected constraint
violation. Therefore, DPD-AirComp ensures the feasibility of
the original problem, despite the presence of channel fading
and additive noise. Moreover, with proper power control of
the users’ signals, the non-zero expected optimality gap can be
reduced. Furthermore, two practical use cases were presented,
namely, smart grid energy management and FDMA resource
allocation, and the implementation of DPD-AirComp for
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those use cases was extensively discussed. Simulation results
confirmed the excellent performance of the DPD-AirComp.
Specifically, it was shown that the errors caused due to fading
and noise can be properly handled by DPD-AirComp, while its
convergence time is an order of magnitude faster compared to
that of error-free TDMA and OFDMA. Finally, we note that,
in this paper, we focused on DPD-AirComp with perfect CSI.
The analysis of the case with imperfect CSI is an interesting
topic for future research.

APPENDIX A
PROOF OF THEOREM 1

We begin the proof by first proving some key lemmas.
Lemma 1a: For all x ∈ X and k ≥ 0, we have

E
[∥∥xk+1 − x∗

∥∥2
]

≤−2akE
[
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xk,λk

)
− L
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)]
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]
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Proof: We take∥∥xk+1 − x∗
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− x∗

∥∥∥2

≤
∥∥∥xk − akL̃x

(
xk,λk

)
− x∗

∥∥∥2

, (49)

where L̃x is given by
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and
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)
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xk
)

+
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Therefore, (49) leads to∥∥xk+1−x∗
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(52)

By the definition of the subgradient in (6), the term I1 on the
RHS of (52) is bounded as

I1 ≤ −L
(
xk,λk

)
− L

(
x∗,λk

)
. (53)

Moreover, I2 can be bounded as
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where (a) follows from the Cauchy-Schwarz inequality, (b)
from Assumption 1 and 2, while

1S (i) =

{
1, if i ∈ S,
0, otherwise

. (55)

denotes the indicator function. Finally, I3 can be written as
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Next, we take the expectation in both sides of (52). For term
I2 in (54), we have

EAk

[∑
i∈N

1N\Ak (i)

]
=

N∑
A=0

Pr
{
|Ak| = A

}
(N −A)

= N − Āk (β) , (57)

where the expectation is taken w.r.t. the randomness of user
participation, while Āk (β) ≜

∑N
A=0A · Pr

{
|Ak| = A

}
,

denotes the average number of users participating during the
k-th round and

Pr
{
|Ak| = A

}
=
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( ∏
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i∈N\Au

(
1− γk

i (β)
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,

(58)

where Au is the u-th subset, among all
(
N
A

)
subsets, with

cardinality A. Furthermore, it is straightforward to show that
the second term on the RHS of (54) has zero expectation due
to the zero mean of the AWGN, which leads to

E [I2] ≤ RG
(
N − Āk (β)

)
. (59)

Similarly, for term I3 in (56), we have

E [I3] ≤ L2
((
N − Āk (β)

)2 + 1
)

+ 2LG
(
N − Āk (β)

)
+ βσ2, (60)

where we have used Jensens’ inequality by considering the
convexity of ∥·∥2. By combining (53), (54), (56), (57), and
(60) we obtain Lemma 1a, which completes the proof.
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Lemma 1b: We have
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Proof: The proof is similar to that of Lemma 1a, and thus,
ommited due to space limitations.
Lemma 2: The following holds
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Proof: By rearranging the terms in (48) and consecutively
adding both sides of the inequality for j = 0, 1, . . . , k − 1,
yields
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Since, the function L (x,λ) is concave in λ, for any fixed
x ∈ X , it holds that

L
(
x∗, λ̂

k
)
≥
∑k−1

j=0 ajL
(
x∗,λj

)∑k−1
j=0 aj

, (64)

Next, we divide both sides of (63) by Zk =
∑k−1

j=0 aj and
combine it with (64). Finally, by utilizing the saddle-point
theorem [32], which states that for a saddle point (x∗,λ∗),
any x ∈ X , and for any λ ∈ D the following holds

L (x∗,λ) ≤ L (x∗,λ∗) ≤ L (x,λ∗) , (65)

the proof is completed.
Now, we are ready to prove Theorem 1. The rest of the

proof can be conducted in a similar manner as the proofs of
Corollary 1 and Lemma 2, as well as Proposition 5.1a in [32].
One needs to define s =

∑k−1
j=0 ajF

(
xj
)
, and take into

account the convexity of F (x), and Lemma 2. Afterwards,
by following the same steps as the proof of Proposition 5.1a
in [32], it is straightforward to show that
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Then, by dividing both sides by Zk, exploiting the convexity
of functions fi (x) , i ∈ N , using Lemma 2, and the fact that
λ ∈ D, the proof of Theorem 1 is completed.

APPENDIX B
PROOF OF COROLLARY 1

Given k ≥ 1, we aim to minimize the RHS of (24) by
properly selecting the value of r. Specifically, the optimal
value r∗, satisfies

r∗ = arg min
r>0

{
1
r

(
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2
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, (67)

where δk and ζ are chosen such that the term
1
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(
δk+ 2

Zk
(ζ+r)2

)
is equal to the RHS of (24). Hence,

ζ = f0(x̄)−q̃
γ and δk is given in (26). Since r depends on the

given round k, it is denoted as rk, hereinafter. Next, in order
to find the optimal value of r∗k, we have
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Following that, the optimal projection set Dk in the k-th round
is given by
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By substituting r∗k in (24), we obtain
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Notice that δk contains terms of the form
∑k−1

j=0 (N−Āj(β))aj
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and
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. These terms converge when k → ∞.

Specifically,
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. Therefore,

since limk→∞N
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= 0 we obtain
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j=0 (N−Āk(β))a2
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Zk
= 0. It is concluded then,

that limk→∞ δk < ∞. Then, since limk→∞ Zk = ∞, it is
straightforward to show that

lim
k→∞

E
[∥∥∥∥[F (x̂k
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APPENDIX C
PROOF OF THEOREM 2

By considering the convexity of the objective function
f0 (x) and taking into account that L(x∗,λ∗) = f∗0 , we have
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Thus, by using Lemma 2, we conclude that
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Next, we need to provide an upper bound for the

term −E
[∑k−1

j=0 aj⟨λj ,F (xj)⟩∑k−1
j=0 aj

]
. Similarly to [32], exploiting

Lemma 1b and by taking into account that Lemma 1b holds
for all λ ∈ D, we get
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By adding both sides of inequality (79), for j=0, . . . , k − 1,
and then by dividing both sides with

∑k−1
j=0 aj , we obtain the

following
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Substituting (75) in (73) and taking into account that Zk =∑k−1
j=0 aj , the proof is completed.
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