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Abstract—In Type 1 diabetes, the pancreatic beta cells re-
sponsible for producing insulin are destroyed by the immune
system. Insulin is needed to activate an insulin-dependent glucose
transporter, which is responsible for taking glucose into the
muscle cell for metabolism. Recent advances in nanotechnology,
bioengineering and synthetic biology are bringing the artificial
beta cell (ABC) closer to reality. In this paper, we model glucose
regulation by ABCs as a cooperative molecular communication
system, in which the glucose source is seen as the transmitter
and the muscle as the receiver. the last absorbs the glucose in
the presence of insulin, and the ABC is modeled as a a decode-
and-forward relay that detects glucose molecules and releases
insulin in response. Using this model, we analyze the end-to-
end system performance for ABC-assisted glucose regulation
by providing closed-form expressions for the probabilities of
hyperglycemia and hypoglycemia and the error probability of the
system. In addition, we present simulation results for quantifying
performance and validation of the analysis.

Index Terms—Cooperative molecular communication, decode-
and-forward relay, error probability, glucose, insulin

I. INTRODUCTION

Molecular communications (MC) have numerous advan-
tages over electromagnetic and acoustic communications for
biomedical applications. These advantages include the small
size of the system components, energy efficiency and bio-
compatibility. As a result, MC can be used in a plethora of
biomedical applications, such as early tumor detection and
smart drug delivery [1]. Moreover, enabled by the use of
nanomachines, MC systems are promising to contribute to the
Internet of Bio-Nano Things.

In order to increase the transmission range, several works
have considered a cooperative MC system (CMCS), where
signals from both direct and relay-assisted link are considered
to decode the transmitted bit. For instance, in [2], an equal-
gain combining scheme was employed in a 3D diffusive drift
channel, by optimizing the number of molecules and the
decision threshold. Also, the authors of [3] used an energy
detection method for the diffusion-based MC network and
obtained the optimal position of the relay node. Additionally,
in [4], the error performance of the CMCS was optimized
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among distributed receivers and, in [5], a symbol-by-symbol
maximum likelihood detection was proposed for the consi-
dered CMCS.

In general, a network of nanomachines in biological system
such as the human body performing complex tasks is envi-
sioned to accomplish early detection and treatment of some of
the most widespread chronic diseases such as diabetes [6], [7].
Type 1 Diabetes is a chronic autoimmune disease characterized
by hyperglycemia and the lack of insulin. More specifically,
as described in [6], when a meal is introduced, glucose is
released into the bloodstream. The glucose molecules bind
to specialized pancreatic cells known as beta cells. After
glucose reception and a series of chemical reactions, beta
cells produce insulin that moves through circulatory system.
When an insulin molecule locates a muscle or an adipose
cell binds to a receptor, a major insulin dependent glucose
transporter is enabled to transport glucose into the cell, which
is then used for metabolism. Finally, after glucose storage, the
concentration of glucose into the blood drops. However, the
number of pancreatic beta-cells, which are the only cells in
the body that can synthesize and release insulin, diminishes,
as the person’s age progresses. As a result, if pancreatic beta-
cells do not exist, there will be no insulin production, causing
unregulated high blood glucose levels.

Recent advancements in nanotechnology and in synthetic
biology have led to the creation of artificial beta cells (ABCs),
which can secrete insulin and hence substitute pancreatic
beta-cells [8]. In this paper, we introduce an information-
theoretic approach to model the insulin secretion system via
ABCs, which to the best of the authors’ knowledge has not
been proposed in the literature, yet. More specifically, insulin
secretion and glucose absorption can be modeled as a CMCS,
where glucose is the information received by the beta cell,
which uses the decode and forward (DF) protocol and re-
transmits insulin. The muscle or the adipose cell, which serves
as the receiver, utilizes the two parallel channels of glucose
and insulin and absorbs glucose based on the result of an
AND gate. It should be highlighted that, from an information-
theoretic aspect, the investigated CMCS can be considered as
a two-input two-output binary communication system. To this
end, we derive analytical expressions for the probability of
hyperglycemia and hypoglycemia and, consequently, the error
probability of the investigated system, which can be considered
as the probability of erroneous decision at the muscle cell.
Finally, simulations validate the analysis and illustrate the
performance of the considered system.

II. BIOLOGICAL AND COMMUNICATION MODEL
In this section, we focus on developing an abstract

communication-theoretical model that captures some key bio-
logical aspects of glucose absorption by the muscle cell.
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Fig. 1. Insulin-dependent absorption of glucose modeled as a cooperative
relay channel.

A. Biological Aspects

Glucose Source: A mechanism that allows glucose to exit
the blood vessel is to enter peripheral endothelial cells through
fluid-phase endocytosis. Once inside the cell, it may remain
unphosphorylated within vesicles of the endocytic system and
eventually be transported across the cell through exocytosis
[9]. When vesicles fuse with the cell membrane in exocytosis
glucose is released immediately in the extracellular fluid in a
discrete way [10].

Channel: After glucose molecules are released by exocy-
tosis, they enter the extracellular fluid which is the space be-
tween the endothelial cell and the muscle cell [11]. According
to [12], approximately 75% of the extracellular fluid in skeletal
muscle is composed of water.

Muscle Cell: In order to absorb the glucose, the GLUT-
4 glucose transporter protein needs to be translocated from
intracellular vesicles to the cell surface membrane of muscle
cell. This process is insulin-dependent, meaning that insulin
signaling triggers the translocation of GLUT-4 to the cell sur-
face [11]. In addition, the percentage of GLUT-4 transporters
on the plasma membrane is regulated by the concentration of
insulin, which follows a sigmoidal dose-response curve [13].

B. Biological Conditions

From a communication perspective, depending on the ability
of ABCs and the muscle cells to perform correct molecule
detection, the following conditions may occur.

Hyperglycemia: A condition, in which glucose concentra-
tion in blood vessels is above the normal range, is called
hyperglycemia. This occurs, e.g., in Type 1 Diabetes, where
the pancreatic beta-cells, which are responsible for the insulin
secretion, are destroyed by the immune system.

Hypoglycemia: Conversely, when the blood glucose level
becomes too low (e.g., due to too much glucose absorption),
the corresponding biological condition is called hypoglycemia.

In this paper, we focus on glucose regulation via insulin
generation by ABCs, which serves as a treatment for Type 1
Diabetes.

C. End-to-end Channel Model

Next, we model the insulin-dependent absorption of glucose
and its regulation by ABC molecules as a cooperative relay
channel. This information-theoretic model enables us to ana-
lyze the end-to-end system performance which is relevant for

assessing the treatment of Type 1 Diabetes. In particular, we
consider a diffusion-based MC network which consists of a
transmitter representing a glucose source (node 1), a DF relay
representing an ABC (node 2), and a receiver representing
a muscle cell (node 3). We also consider a stationary liquid
environment with uniform temperature and viscosity. Consid-
ering that glucose is released through exocytosis, we model the
activation of the glucose source by a binary process considered
as on-off keying (OOK) modulation, releasing Q1 molecules
of glucose with probability π1 for the transmission of bit 1 and
zero molecules with probability π0 for bit 0. The molecules
released by the transmitter are assumed to make Brownian
motion following the Fick’s law and propagate towards both
the ABC and the muscle cell with diffusion coefficient D1.

If the ABC detects glucose molecules transmitted by the
glucose source, it releases insulin molecules, which, from a
communication system’s point of view, can be interpreted
as a DF strategy with OOK modulation. More specifically,
after decoding the information by the glucose source, the
ABC performs OOK and transmits to the muscle cell Q2

insulin molecules for bit 1 with diffusion coefficient D2 and
zero molecules for bit 0. It is assumed that the ABC is a
passive receiver not absorbing glucose molecules in order not
to interfere with glucose propagation and not to affect the
received signal at the muscle cell, which is in line with [8],
where the ABC does not interact with glucose propagation.

Furthermore, the muscle cell is assumed to be an absorbing
receiver, which absorbs insulin whenever available whereas
absorbs glucose only if sufficient concentration of insulin is
simultaneously available. In addition, molecules absorbed by
the muscle cell are removed from the environment.

To this end, we consider 3 subsystems, the glucose source
to ABC system denoted as (1,2), the glucose source to muscle
cell system denoted as (1,3), and the ABC to muscle cell
system denoted as (2,3). The number of the received molecules
for each receiving node at the k-th arrival is given by

y(a,b)[k] = N c
(a,b)[k] +Np

(a,b)[k] +No
(a,b)[k], (1)

where a ∈ [1, 2], b ∈ [2, 3], N c represents the number of
molecules released at the k-th arrival from the ABC or the
glucose source, Np represents the inter symbol interference
(ISI) for previous transmissions, No represents the external
noise and k is used to compactly describe the operation of
the proposed system in the two time slots. Specifically, for
the n-th transmission, the glucose transmission occurs at time
k = n, while insulin transmission occurs at time k = n+ 1.

1) Glucose to ABC System: As a passive receiver, the ABC
is assumed to be able to count the number of molecules within
its volume at any time instant, while propagating molecules
diffuse through it. The probability of observing a glucose
molecule inside V2 at time t is given by [14, eqs. (34), (35)]

F(1,2)(t) =


V2

(4πD1t)3/2
exp

Å
−d2

(1,2)

4D1t

ã
, r2/d(1,2) ≤ 0.15

1
2 (erf (τq) + erf (τu))

+
√
D1t

d(1,2)

√
π

Ä
e−τ2

q − e−τ2
u

ä
, r2/d(1,2) > 0.15,

(2)
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where τq =
r2+d(1,2)

2
√
D1t

, τu =
r2−d(1,2)

2
√
D1t

, r2 is the radius of the
sensing volume of the ABC, d(1,2) is the distance between the
glucose source and the center of the receiver, T is the time
between arrivals, and erf(·) denotes the error function.

At the ABC, the received signal at the current arrival follows
the Binomial distribution [14], i.e.,

N c
(1,2)[n] ∼ B

Ä
Q1W1[n], F

(0)
(1,2)

ä
, (3)

where W1[n] ∈ {0, 1} is the bit sent from the transmitter at the
n-th arrival and F

(i)
(1,2)=F(1,2) (iT + ts) with T being symbol

duration and ts = d2
(1,2)/6D1 being the sample time. The ISI is

described as the sum of Binomial random variables [3], i.e.,

Np
(1,2)[n] ∼

L∑
i=1

B
Ä
Q1W1[n− i], F

(i)
(1,2)

ä
, (4)

where L denotes the ISI length of the channel. The external
noise follows the normal distribution [3], i.e.,

No
(1,2)[k] ∼ N

(
µo
(1,2),

Ä
σo
(1,2)

ä2)
. (5)

When Q1 is sufficiently large and Q1F
(0)
(1,2) is not zero, (1)

can be approximated for system (1,2) by [3]

y(1,2)[n] ∼ N
Ä
Q1W1[n]F

(0)
(1,2), Q1W1[n]F

(0)
(1,2)

Ä
1− F

(0)
(1,2)

ää
+

L∑
i=1

N
Ä
Q1W1[n− i]F

(i)
(1,2), Q1W1[i]F

(i)
(1,2)

Ä
1− F

(i)
(1,2)

ää
+N

(
µo
(1,2),

Ä
σo
(1,2)

ä2)
. (6)

2) Insulin or Glucose to Muscle Cell System: In the follow-
ing subsection, both systems with the absorbing receiver, i.e.,
systems (1,3) and (2,3), are described. For either glucose or
insulin transmission and a specific time period, the molecules
hitting the receiver can be described by [15]

F(a,3) (t) =
r3

r3 + d(a,3)
erfc

Å
d(a,3)√
4Dat

ã
, (7)

where r3 is the radius of the receiver, d(a,3) represents the
distance from the center of node a to the surface of the
receiver, and erfc(·) denotes the complementary error function.
It is worth noting that for the glucose molecules the absorption
depends on whether insulin is present.

The received signal at the receiver follows the Binomial
distribution [14], i.e.,

N c
(a,3)[k] ∼ B

Ä
QaWa[k], F

(1)
(a,3)

ä
, (8)

where F
(i)
(a,3) = F(a,3) (iT ) and Wa[k], a ∈ {1, 2} denotes for

a = 1 the bit transmitted by the glucose source and for a = 2
the bit transmitted by the ABC. The ISI is represented by the
sum of Binomial random variables, i.e.,

Np
(a,3)[k] ∼

L∑
i=1

B
Ä
QaWa[k − i], q

(i)
(a,3)

ä
, (9)

where q
(i)
(a,3) = F

(i+1)
(a,3) −F

(i)
(a,3). The external noise follows the

normal distribution [15], i.e.,

No
(a,3)[k] ∼ N

(
µo
(a,3),

Ä
σo
(a,3)

ä2)
. (10)

When the Qa is sufficiently large and QaF (T ) is not zero,
(1) can be approximated by [15]

y(a,3)[k] ∼ N
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+N

(
µo
(a,3),

Ä
σo
(a,3)

ä2)
. (11)

III. ERROR PROBABILITY ANALYSIS

The information-theoretic description of the considered
CMCS corresponds to a discrete channel with two binary
inputs and two binary outputs. The first input-output pair
corresponds to the direct link between the transmitter (glucose
source) and the receiver (muscle cell), while the second pair
corresponds to the cooperative link, i.e., between the relay
(ABC) and the receiver. The receiver decides to absorb glucose
if it detects both glucose and insulin, i.e., when both outputs
are equal to one. In this direction, the receiver absorbs glucose
based on the result of an AND gate, thus the detected symbol,
i.e., glucose absorption, is given by

z = ŷ(1,3) × ŷ(2,3), (12)

where

ŷ(1,b) = I
[
(1−W1)y0(1,b) +W1y1(1,b) ≥ ξ(1,b)

]
, (13)

ŷ(2,3) = I
[
(1−W2) y0(2,3) +W2y1(2,3) > ξ(2,3)

]
, (14)

× is the modulo 2 multiplication and I[·] is the indicator
function. Also, considering that W2 denotes the ŷ(1,2), i.e.,
the detected symbol at the ABC, the detected symbol in (12)
also depends on the detection at the ABC, as expected. Thus,
z = 1 when glucose is absorbed by the muscle cell and
z = 0 when it is not absorbed. Also, ξ(a,b) is the threshold and
ŷ(a,b) represents the information bit detected by the receiver
in system (a, b). Moreover, using binary hypothesis testing for
the two types of receivers in (6) and (11), where H0 represents
the absence of molecules and H1 denotes the presence of
molecules, yx(a,b) is given by

Hx : yx(a,b) ∼ N
Ä
µx(a,b), σ

2
x(a,b)

ä
, (15)

where µx(a,b) is the mean for bit x ∈ {0, 1} and system
(a, b), while σx(a,b) is the corresponding variance, which for
the case of the passive receiver, i.e., system (1,2), are given,
respectively, by [3]

µx(1,2) = xQ1F
(0)
(1,2) + π1Q1

L∑
i=1

F
(i)
(1,2) + µo

(1,2), (16)
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+π1π0Q
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+ π1Q1
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i=1

F
(i)
(1,2)

Ä
1− F

(i)
(1,2)

ä
+
Ä
σo
(1,2)

ä2
.

(17)

Likewise, for the absorbing receiver they are given by [15]

µx(a,3) = xQaF
(1)
(a,3) + π1Qa

L∑
i=1

q
(i)
(a,3) + µo

(a,3), (18)
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(19)

In the following theorem, we provide the probability of
hyperglycemia, i.e., glucose is falsely not detected, and hy-
poglycemia, i.e., glucose is erroneously absorbed.

Theorem 1: The probabilities of erroneous decision at the
muscle cell, at the (n+1)-th arrival, leading to hyperglycemia
or hypoglycemia, are given, respectively, by

Phyper[n+ 1] = 1−Q

Ç
ξ(1,3) − µ1(1,3)

σ1(1,3)

å
×
ñ
1−Q

Ç
ξ(2,3) − µ1(2,3)

σ1(2,3)

å
Q

Ç
µ1(1,2) − ξ(1,2)

σ1(1,2)

å
−Q

Ç
ξ(1,2) − µ1(1,2)

σ1(1,2)

å
Q

Ç
µ1(2,3) − ξ(2,3)

σ1(2,3)

åô
,

(20)

Phypo[n+ 1] = 1−Q

Ç
µ0(1,3) − ξ(1,3)

σ0(1,3)

å
×
ñ
1−Q

Ç
µ0(2,3) − ξ(2,3)

σ0(2,3)

å
Q

Ç
ξ(1,2) − µ0(1,2)

σ0(1,2)

å
−Q

Ç
µ0(1,2) − ξ(1,2)

σ0(1,2)

å
Q

Ç
ξ(2,3) − µ0(2,3)

σ0(2,3)

åô
,

(21)

where Q (x) = 1√
2π

∫∞
x

e−
t2

2 dt is the Gaussian Q function.
Proof: The proof is provided in the Appendix.

Remark 1: The probability of erroneous decision at the
muscle cell, at the (n+ 1)-th arrival, which is defined as the
error probability of the considered CMCS, can be obtained as

Per[n+ 1] = π1Phyper + π0Phypo, (22)

which can be expressed in closed form through substituting
(20) and (21) in (22).

IV. SIMULATIONS

In this section, numerical results validate the theoretical
analysis and illustrate the performance of the considered
CMCS. It should be mentioned that the numerical results
were acquired through Monte Carlo with 106 realizations,
aiming to simulate the communication process. The diffusion
coefficients of the glucose and insulin molecules are calculated
by D = (kBT0) / (6πηR), where kB = 1.38 × 10−23 JK−1

is the Boltzmann’s constant, T0 is the temperature in K, η is
the (dynamic) viscosity of the fluid and R is the radius of the
molecule [14]. The hydrodynamic radius of the glucose and
insulin molecules are 0.38 nm and 2.86 nm, respectively [16].
The viscosity of the water is 0.6915×10−3 kg/(m·s) for body
temperature 37◦C [17]. As a result, the diffusion coefficients
of the glucose and insulin molecules can be calculated as
D1 = 864.12 µm2/s and D2 = 114.81 µm2/s, respectively.
In addition, r2 = 0.4 µm, r3 = 0.2 µm and Q2 = cQ1, where
c ≪ 1 , thus the number of molecules released by the glucose
source is much greater than the insulin molecules released by
the ABC. Also, the thresholds are chosen as the maximum

TABLE I
SIMULATION PARAMETERS

d12 3 µm L 10 π1 0.5
d23 3 µm µo 100 π0 0.5
d13 6 µm (σo)2 100 T 0.1 s
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Fig. 2. Error probabilities

likelihood threshold in [15]. The rest of the parameters are
given in Table I. It should be highlighted that in all figures
the simulations coincide with the theoretical results which
validates the provided analysis.

Fig. 2 illustrates the probability of hypoglycemia and hy-
perglycemia versus the number of released glucose molecules
at the muscle cell. It is obvious that the performance improves
by increasing the number of released molecules form both the
glucose source and the ABC. Moreover, the change of the
declining slope of the error probability when c = 0.05 implies
that there exists a threshold for c after which the slope becomes
steeper. This observation is also confirmed by Fig. 3.

In Fig. 3 the error probability performance of the CMCS
is plotted versus c, highlighting that after a certain point we
reach a floor at the error performance. As it is also observed in
Fig. 2, it is obvious that the number of insulin molecules that
should be transmitted by the relay-acting ABC is substantially
lower than the one of glucose molecules.

Fig. 4 illustrates the hypoglycemia and hyperglycemia prob-
abilities and the trade-off between them for different values of
Q1, considering that Q2 = 6 × 103. The figure is derived
by setting different thresholds at the ABC, since the threshold

1 3 5 7
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Fig. 3. Impact of insulin molecules release
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determines the corresponding probabilities. The results suggest
that the threshold should be prudently selected at the ABC to
prevent negative health effects, because it can lead to erroneous
decision of muscle cell and potentially cause hypoglycemia or
hyperglycemia. It should be highlighted that this insight is in
line with the results in [8], where the appropriate utilization
of ABCs mitigates these two conditions.

V. CONCLUSION

In this paper, we have proposed a generic model of a
CMCS that captures some key biological aspects of glucose
absorption. More specifically, through the ABC, insulin can
be regulated based on the glucose levels. Furthermore, con-
sidering that false decision at the muscle cell can lead to
hyperglycemia or hypoglycemia, we have provided a closed-
form expressions for the probabilities of hyperglycemia and
hypoglycemia and the error probability of the considered
system. From the numerical results, it can be concluded that,
a big spike in glucose, i.e., high concentration of glucose
molecules can improve the system’s error performance and,
thus, controlling the insulin molecules and the threshold at
the ABC is crucial for minimizing the error at the muscle
cell. Future work may include modeling glucose transport
through the capillaries, adding drift to the model and including
endocytosis uptake as a more realistic model for muscle cell
absorption.

APPENDIX

The receiver decides erroneously to absorb glucose or not,
leading to hypoglycemia or hyperglycemia, respectively. Thus,
the corresponding probabilities are given by
Phyper = Pr(z = 0|W1 = 1)

= 1− Pr(ŷ(1,3) = 1|W1 = 1)Pr(ŷ(2,3) = 1|W1 = 1)
(23)

and
Phypo = Pr(z = 1|W1 = 0)

= 1− Pr(ŷ(1,3) = 0|W1 = 0)Pr(ŷ(2,3) = 0|W1 = 0),
(24)

where
Pr(ŷ(2,3) = x|W1 = x)

= Pr(ŷ(2,3) = x|W1 = x,W2 = x)Pr(W2 = x|W1 = x)

+ Pr(ŷ(2,3) = x|W1 = x,W2 ̸= x)Pr(W2 ̸= x|W1 = x).
(25)

Depending on the transmission bit, the error probability for
system (a, b) is given by

Pr
(
ŷ(a,b) = 1|Wa = 0

)
= Q

Ç
ξ(a,b) − µ0(a,b)

σ0(a,b)

å
(26)

and

Pr
(
ŷ(a,b) = 0|Wa = 1

)
= 1−Q

Ç
ξ(a,b) − µ1(a,b)

σ1(a,b)

å
. (27)

Substituting (25), (26), and (27) in (23) and (24), (20) and
(21) are derived, respectively, which completes the proof.
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