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Introduction
Ultra-low information-exchange latency assurance is of vital 
importance for vehicular communication networks. The current 
latency-sensitive information transmissions are mainly support-
ed by the fifth generation of wireless communications (5G) 
systems. However, even though 5G have been deployed for 
several years, the delay performances offered by the current 5G 
networks still cannot well meet the ever-increasing requirements 
of mission-critical vehicular applications. Therefore, ultra-reliable 
and low-latency communication (URLLC) in the vehicular net-
works remains to be one of the major concentrations in the 
study for beyond-5G and the sixth generation of mobile tele-
communications systems (6G) [1–4].

In current wireless transmission standard bodies, most tech-
niques to empower low-latency communications are derived 
via model-based analyses, which largely benefit from the fun-
damental communication theories, networking theories, and 
mathematical optimization methods. Model-based techniques 
can effectively reduce the delay control of small-scale commu-
nication scenarios. But with the rapidly increasing demands of 
mission-critical services, the delay quality-of-service (QoS) assur-
ance over URLLC networks will become more challenging and 
even intractable. To ease delay analyses and control in such 
scenarios, some inevitably oversimplified assumptions are made 
over the model-based approach for current research, which 
certainly weakens the performance in practical networks [5]. In 
addition, some optimization problems with essential nonconvex 

nature and discrete variables are difficult to solve by using tradi-
tional model-based approaches. Even though some margin can 
be gained via sophisticated conventional optimization tools, the 
extra delay introduced by heavy computing load is generally 
large, which makes delay-QoS assurance infeasible in URLLC. 
Thus, model-based techniques themselves might be hardly har-
monized with the future URLLC networks.

To facilitate the efficient control for URLLC, machine learn-
ing (ML) has shown the great potential as a competent candi-
date to complement model-based approaches [6–8]. Among 
diverse ML techniques, supervised deep learning (SDL) is 
capable of dealing with the large-scale complicated problems, 
which yet requires massive data to train the neutral networks. 
Although there have been a wealth of data sets produced by 
many terminal devices and base stations (BS), the generalization 
of the trained model fitting various scenarios is still extremely 
challenging. Federated learning, as a distributed learning algo-
rithm of ML, can be used for decomposing a centralized prob-
lems into multiple distributed sub-problems, and solving them 
in a parallel way, meanwhile the users privacy can be better 
protected in light of information isolation across users. Typical 
delay optimization problems in URLLC are nonconvex, discrete, 
and built on dynamic Markov decision process (MDP). Deep 
reinforcement learning (DRL), one of the unsupervised learning 
algorithms and specializing in MDP-based problems, can be 
considered to tackle these highly complicated problems. There 
are also many non-stationary nature related issues in URLLC. 
Deep transfer learning, which updates part of neutral networks 
in real-time by using the data obtained from non-stationary envi-
ronments, can be a promising processing strategy to ease the 
delay control. Inheriting mathematic rigorousness and power of 
artificial intelligence in dealing with more complex problems in 
communications systems and networks, the research communi-
ty has recognized the importance and tendency of integrating 
model-based solutions with ML-based processing technologies. 
Particularly, mathematic modeling technologies are responsible 
for describing the problems characterizing essential cores, and 
rigorously simplifying formulation in communications networks. 
On the other hand, ML-based tools are used to efficiently derive 
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the solver and identify the solution effectively. Following this 
mutual understanding, the model-ML integrated intelligence will 
become the key to unlock future URLLC.

Motivated by the above-mentioned paradigm, in this article 
we discuss how model-ML integrated intelligence empowers 
URLLC in vehicular networks from delay perspective. Specif-
ically, we first analyze the constitution of end-to-end (E2E) 
delay for URLLC and then introduce model-ML integrated 
intelligence to help reducing major delay components, includ-
ing access delay, queuing delay, and transmission delay. Next, 
we present an intelligent multi-tier-driven computing frame-
work for access delay reduction, where model-based and 
ML-based designs are elaborated on, respectively. Further-
more, we derive the queuing delay and transmission delay 
tradeoff and show how to use an efficient resource allocation 
approach driven by multi-DRL networks to achieve the opti-
mal balance between queuing delay and transmission delay. 
Finally, we share our opinions on open issues towards future 
URLLC and give the concluding remarks.

Model-ML Integrated Intelligence 
Achieving Lower Delay

There are many time-varying variables in wireless environ-
ments. Traditional model-based techniques can adapt to them 
to support URLLC in some small-scale vehicular networks and 
experimental environments, but it remains ultra challenging on 
fighting against or even making use of time-varying conditions 
to lower the E2E delay and suppress the fluctuations in large-
scale vehicular networks and various environments. In this sec-
tion, we firstly anatomize the constitution of E2E delay, among 
which radio access network (RAN) delay is the major contribu-
tion due to random access procedures as well as highly-varying 
channel qualities over the limited yet precious wireless resourc-

es. Then, we investigate the causes of RAN delay. Finally, we 
elaborate on model-ML integrated intelligence for reducing 
major components of RAN delay in vehicular networks.

Delay Components in URLLC
As shown in Fig. 1, E2E delay in URLLC mainly consists of RAN 
delay, backhaul delay, and core-network delay. Because of sto-
chastic natures of the arrival traffics’ load and highly dynamic 
characteristics of wireless channels, the fluctuation of RAN 
delay impacted by them causes a severe bottleneck for delay 
control in URLLC. RAN delay is composed of access delay, 
queuing delay, transmission delay, processing delay, and prop-
agation delay. Specifically, access delay is the overall duration 
from a vehicular user equipment’s (VUE) connection attempt 
to its success, which has to follow the competition-based ran-
dom-access procedures required by the technique specifica-
tions. Queuing delay is the waiting time of each data packet in 
the buffer until it has been served. Processing delay is the time 
consumed in encoding, decoding, modulation, and demod-
ulation. Transmission delay is defined as the amount of time 
used for carrying a data packet, which is inversely proportion-
al to transmission rate. Propagation delay is defined as the 
duration of sending the signal from a VUE’s antennas to BS’s 
antennas over the air, which can be evaluated by dividing the 
distance between VUE and BS by velocity of electromagnetic 
waves. Since the velocity of electromagnetic waves is very 
high, the magnitude of propagation delay is typically far less 
than sub-millisecond level. In addition, the processing delay 
highly depends on the capability of hardware staying at almost 
a constant level. Processing delay and propagation delay are 
not the main causes of severe random delay over the RAN. 
As a consequence, how to control the access delay, queuing 
delay, and transmission delay is critical for URLLC to suppress 
the fluctuation as well as lower the RAN delay. To this end, we 

Figure 1. Model-ML integrated intelligence empowering URLLC in vehicular networks from the delay perspective.
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Fig. 1. Model-ML integrated intelligence empowering URLLC in vehicular networks from the delay perspective.
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Fig. 2. The multi-tier-driven computing framework to enhance access
efficiency for URLLC.
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will study model-ML integrated intelligence to 
reduce the access delay, queuing delay, and 
transmission delay, respectively.

Model-ML Based Techniques 
to Lower Access Delay

In current vehicular networks, which deploys 
the physical random access channel (PRACH) 
resources and enables the random access mode, 
the access delay caused by the standard hand-
shake procedures will inevitably exceed 1 ms. 
To guarantee millisecond-level latency, URLLC 
employs grant-free (GF) access mode. Differ-
ent from the traditional random access channel 
mode, the handshake phrase is skipped in GF 
access mode, in which the users are allowed 
to straight begin the transmission, and thus the access delay is 
reduced if no collision happens.

Active vehicular user detection is an important issue for GF 
access. When the number of URLLC users is small, the tradition-
al model-based detection schemes can work well. When the 
user group is getting relative large, these schemes will not work 
effectively. In this situation, ML-based technique is a competitive 
candidate to improve the detection efficiency. There has been 
some ML-driven active user detection schemes for GF access, 
while most of them are designed for massive machine type 
communications (mMTC), where users choose to backoff once 
the collision happens. Clearly, this paradigm is not friendly to 
delay-sensitive transmissions. On one hand, URLLC shall avoid 
backoff due to the stringent delay requirement. On the other 
hand, practical URLLC scheme might often enable redundancy 
in occupying random access resources by users to improve 
the successful access probability. The representative schemes 
to shorten the delay of URLLC are K-repetition random access 
scheme and the variants [9, 10], where each packet is transmit-
ted K times over different resource blocks and this operation 
can significantly reduce the access failure probability. In light of 
its simplicities, the K-repetition based schemes are a promising 
candidate for URLLC.

However, it costs extra resource usage. Efficient resource 
scheduling is another important problem to solve in GF access. 
Meeting the diverse QoS requirements meanwhile minimiz-
ing the overall resource consumption in URLLC is generally 
intractable especially when the size of URLLC user group is 
large. DRL can be employed to handle such complex situations 
lacking essential and clear mathematically-descriptive struc-
ture, which takes a try-error way to accumulate experience and 
finally find out the optimal scheduling policy. The fundamental 
challenge is how to integrate the basic elements of DRL, name-
ly, state, action, and reward, with corresponding parameters in 
resource scheduling problems.

Towards the aforementioned topics, we present an intelli-
gent multi-tier-driven computing framework to enhance access 
efficiency, where model-based and ML-based implementation 
will be given, respectively, with more details later.

Model-ML Based Techniques to Lower Queuing Delay
Queuing model has been extensively studied for many years. In 
the area of vehicular communications, Markov-chain model and 
large-deviation-principle (LDP)-based effective bandwidth/capacity 
model are the sharp weapons to analyze and control queuing delay. 
Specifically, Markov-chain model is often used to analyze the aver-
age queuing delay, and the effective bandwidth/capacity is pow-
erful to bound queuing delay. With support by these tools, many 
efficient resource allocation solutions for URLLC are proposed, 
which are mostly derived by using convex optimization. Whereas, 
most of these schemes are base on ideal communications systems 
or with some necessary assumptions. For practical yet sophisticated 
URLLC systems, using the traditional optimization methods is hard 
to find the optimal solution. Although iterative algorithms are often 

able to track the solution closely, the duration 
of each iterative period is unaffordably long and 
thus not suitable for URLLC.

Most queuing-delay-related problems are pro-
posed with communications domain knowledge 
and resolved by using machine learning (ML) 
techniques. Generally, the aim of tackling cor-
responding problems is to derive the efficient 
scheduling policy. Since the present and future 
states of queuing systems are highly affected by 
the scheduling policy, the formulated problems 
can be regarded as a Markov dynamic process 
(MDP). Following this characteristic, DRL can 
be a candidate for these intractable problems 
to find the optimal scheduling policy. Also, for 
effective bandwidth/capacity based problems, 

because the formulation usually leads complicated mathematics 
and thus the closed-form solution is not readily obtained, using 
deep learning networks to approach the near optimal solution 
can be an effective alternative, which is promising to avoid long 
processing delay compared with model-based iterative algorithms.

Model-ML Based Techniques to Lower Transmission Delay
Due to the fixed frame numerology in long-term evaluation (LTE) 
assisted vehicular networks, the transmission delay inevitably 
exceeds 1 ms. In order to meet strict end-to-end (E2E) delay bound 
outlined by the 3rd generation partnership project (3GPP) for 
time-sensitive services, 5G new radio (NR) is proposed and stan-
dardized, which has the potential to offer very small transmission 
delay. Specifically, the transmission time interval (TTI) is set to 0.5, 
0.25, 0.125, and 0.0625 ms, respectively and the corresponding 
subcarrier spacing is 30, 60, 120, and 240 kHz. Different TTIs 
have its own unique advantages. Long TTI, corresponding to short 
subcarrier spacing, has a long cycle prefix, which is beneficial to 
covering large-scale cell and accommodating more users. Short 
TTI leads to small transmission delay and also corresponds to small 
blocklength. The achievable channel coding rate with respect to 
small blocklength is less than that of long blocklength [11]. Thus, 
the spectrum efficiency of short TTI is lower than that of long TTI, 
which results in a tradeoff between queuing delay and transmission 
delay. More information about this tradeoff will be shared later. 
Further, how to flexibly schedule these TTIs to well serve diverse 
URLLC traffics becomes a critical issue, which can be regarded 
as a classification problem. Alternatively, we can firstly generate 
the dataset through system-level simulation, in which the support 
to the diverse URLLC services can be tested. Then, the obtained 
dataset is used to train deep neural networks (DNN) via supervised 
deep learning (SDL). The well-trained DNN can then be deployed 
everywhere to implement the efficient and flexible TTIs schedule.

Intelligent Multi-Tier-Driven Computing 
Framework for High Access Efficiency

Although grant-free access technique has been a promising 
candidate for reducing access delay, existing works are mostly 
based on the fixed resource allocation strategy. However, since 
network load in URLLC is typically time-varying, the static allo-
cation often leads to low resource utilization efficiency under 
light network load or severe collisions under heavy network 
load. To well match the resource to network load, we depict 
a multi-tier-driven computing framework, and then introduce 
the associated algorithms at each tier powered by model-based 
technique and ML technique, respectively. This multi-tier-driven 
computing framework can significantly improve access efficien-
cy and is an effective solution for the issues presented later.

Multi-Tier-Driven Computing Framework
As shown in Fig. 2, the multi-tier-driven computing framework con-
sists of three tiers, namely, network-load evaluation, network-load 
prediction, and adaptive resource allocation [9, 12]. Specifically, in 

Although grant-free access 
technique has been a 

promising candidate for 
reducing access delay, 

existing works are most-
ly based on the fixed 

resource allocation strategy.
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GF access mode, the wireless resources, i.e., resource blocks, will 
be randomly occupied by URLLC users who attempt to transmit 
data. Thus, the states of resource blocks, including success, colli-
sion, and idle, inevitably carry the information of network load in 
an implicit and hidden manner. Inspired by this thought, we design 
the network-load evaluation tier to extract the network-load infor-
mation from the current states of resource blocks. The evaluated 
network-load information will be stored into history data pool. 
Then, the network-load prediction tier is to evaluate the network 
load for the next cycle by learning the history network-load infor-
mation. Finally, the adaptive resource allocation tier yields the 
amount of resources desired to accommodate the coming net-
work load, along with the QoS requirement of each one.

Model-/SDL-Based Technique Implementing 
Evaluation-Prediction Tier

Model-Based: Adjacent-occupation K-repetition GF access is con-
sidered as it is simple to implement without extra handshake. We 
can offer two model-based candidates for network-load evaluation. 
The first one is single-slot maximum likelihood with least squares 
(LS) estimation, derived by identifying the optimal N maximizing 
P(Rsuc, Rcol, Ridl | N), where N represents the number of active 
vehicular users and P() represents probability observing Rsuc, Rcol, 
and Ridl, i.e., the numbers of resource blocks in success, collision, 
and idle states, respectively. Then, multiple separate slots can be 
fusioned to a more precise result by the LS algorithm. The com-
puting complexity of this algorithm is comparatively low but the 
performance can be weakened because it does not sufficiently use 
the state information of other slots. The secondary one is multi-slot 
maximum likelihood indirect estimation, in which maxN P(Rsuc, 
Rcol, Ridl | N) should be tackled. Rsuc is the vector in the form of 
(R1suc, R2suc, …), which contains all information in successive states 
within the current K-repetition access cycle. Similarly, Rcol and Ridl 
corresponds to that of collision and idle, respectively. The value 
evaluated using this algorithm is more accurate but bringing in 
much more complexity than that of the first one.

There are many model-based algorithms to predict network 
load, including simple equalling, moving average, exponential 
smoothing, and so on. For simple equalling algorithm, the next 
expected value is equal to the current observed value, which 
always falls behind the real change. The exponential smoothing 
algorithm is in the absence of long-term prediction. Alternatively, 
the moving average algorithms, especially the auto-regressive 
integrated moving average, which uses statistical tools to analyze 
the historical data and then predict future trends for stationary 
and part of non-stationary time series, are very suitable for sens-
ing and predicting the burst real-time URLLC network-loads.

SDL-Based: The major challenge of using SDL to obtain the 
network-load function with respect to the state of resource 
block is how to fetch a wealth of learning samples. Generally, 
we can design an intermediator which takes initiative to harvest 
network-load information from users and state of resource from 
BS. Then, the state of resource in current cycle and the com-
mon network-load information corresponding the next cycle 
are grouped as a learning sample. Also, we can use the former 
model-based algorithms to generate samples then using these 
samples to train neutral networks in SDL. The SDL-based algo-
rithm takes short processing delay compared with model-based 
algorithm when URLLC user group is large.

Model-/DRL-Based Techniques Implementing Scheduling Tier
Model-Based: For increasingly diverse services in URLLC, an 
effective scheduling scheme not only fits for the time-varying 
network load also satisfies the different QoS requirements. The 
URLLC traffic can be categorized into two folds:
1. Bursty traffic
2. Uniform traffic
Most of bursty traffic are critical control information, which are prior 
to uniform traffic, like state information. For model-based resource 
allocation scheme, the resource is scheduled in a priority way. 

When the resource is superfluous or the network load is slight, we 
set the QoS requirement of uniform traffic in hard mode. We aim 
to minimize the resource consumption meanwhile satisfying the 
QoS requirement of both bursty traffic and uniform traffic. When 
the resource is inadequate or the network load is heavy, the QoS 
requirement of uniform traffic is set in soft mode. Resource block is 
prior scheduled for bursty traffic and then for uniform traffic. Only 
when the lower-bound of QoS requirement for uniform traffic can-
not be satisfied, the traffic is regarded as failed to support.

DRL-Based: We consider designing two DRL models. The first 
model aims to minimize overall allocated resource on the premise 
of assuring the QoS requirements and the second model is to not 
only minimize the overall allocated resource but also try the best 
to guarantee the QoS requirements. Specifically, for the first DRL 
model, each resource allocation action has been assured to satisfy 
the QoS requirements of bursty and uniform traffic. In contrast, the 
second model incorporates QoS requirements into the reward func-
tion, because the QoS requirements cannot be fully fulfilled. When 
traffic is low, the first DRL model is active while the second one 
remains dormant. When traffic is high, the second model becomes 
active while the first model is disabled. By alternating between the 
two models, our design allows us to access slight or heavy traffic 
loads with minimal resources, accommodating different traffic loads.

Model-DRL Integrated Intelligence 
for Joint Queuing Delay and 

Transmission Delay Minimization
In this section, we first discuss the tradeoff between queuing 
delay and transmission delay for URLLC, and clarify that there 
exists the optimal resource allocation scheme which can achieve 
the optimal balance between them. Then, we introduce how 
DRL can be used to seek the optimal resource allocation scheme.

Finite Blocklength Causing Queuing Delay 
and Transmission Delay Tradeoff

To lower transmission delay, short TTIs are designed in 5G. 
Short TTIs correspond to the finite blocklength. In the finite 
blocklength regime, the authors of [11] derived the more accu-
rate limits for the channel achievable rate than Shannon capac-
ity. Specifically, the achievable channel coding rate in finite 
blocklength, denoted by R, is given as follows:
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evaluation tier to extract the network-load information from
the current states of resource blocks. The evaluated network-
load information will be stored into history data pool. Then,
the network-load prediction tier is to evaluate the network
load for the next cycle by learning the history network-
load information. Finally, the adaptive resource allocation tier
yields the amount of resources desired to accommodate the
coming network load, along with the QoS requirement of each
one.

B. Model-/SDL-Based Technique Implementing Evaluation-
Prediction Tier

Model-Based: Adjacent-occupation K-repetition GF access
is considered as it is simple to implement without extra
handshake. We can offer two model-based candidates for
network-load evaluation. The first one is single-slot maximum
likelihood with least squares (LS) estimation, derived by
identifying the optimal N maximizing P (Rsuc, Rcol, Ridl|N),
where N represents the number of active vehicular users and
P (·) represents probability observing Rsuc, Rcol, and Ridl,
i.e., the numbers of resource blocks in success, collision, and
idle states, respectively. Then, multiple separate slots can be
fusioned to a more precise result by the LS algorithm. The
computing complexity of this algorithm is comparatively low
but the performance can be weakened because it does not suf-
ficiently use the state information of other slots. The secondary
one is multi-slot maximum likelihood indirect estimation, in
which maxN P (Rsuc,Rcol,Ridl|N) should be tackled. Rsuc

is the vector in the form of (R1
suc, R

2
suc, ...), which contains

all information in successive states within the current K-
repetition access cycle. Similarly, Rcol and Ridl corresponds
to that of collision and idle, respectively. The value evaluated
using this algorithm is more accurate but bringing in much
more complexity than that of the first one.

There are many model-based algorithms to predict network
load, including simple equalling, moving average, exponential
smoothing, and so on. For simple equalling algorithm, the
next expected value is equal to the current observed value,
which always falls behind the real change. The exponential
smoothing algorithm is in the absence of long-term prediction.
Alternatively, the moving average algorithms, especially the
auto-regressive integrated moving average, which uses statisti-
cal tools to analyze the historical data and then predict future
trends for stationary and part of non-stationary time series,
are very suitable for sensing and predicting the burst real-time
URLLC network-loads.

SDL-Based: The major challenge of using SDL to obtain
the network-load function with respect to the state of resource
block is how to fetch a wealth of learning samples. Generally,
we can design an intermediator which takes initiative to
harvest network-load information from users and state of
resource from BS. Then, the state of resource in current cycle
and the common network-load information corresponding the
next cycle are grouped as a learning sample. Also, we can use
the former model-based algorithms to generate samples then
using these samples to train neutral networks in SDL. The
SDL-based algorithm takes short processing delay compared
with model-based algorithm when URLLC user group is large.

C. Model-/DRL-Based Techniques Implementing Scheduling
Tier

Model-Based: For increasingly diverse services in URLLC,
an effective scheduling scheme not only fits for the time-
varying network load also satisfies the different QoS require-
ments. The URLLC traffic can be categorized into two folds:
1) bursty traffic and 2) uniform traffic. Most of bursty traffic
are critical control information, which are prior to uniform
traffic, like state information. For model-based resource alloca-
tion scheme, the resource is scheduled in a priority way. When
the resource is superfluous or the network load is slight, we set
the QoS requirement of uniform traffic in hard mode. We aim
to minimize the resource consumption meanwhile satisfying
the QoS requirement of both bursty traffic and uniform traffic.
When the resource is inadequate or the network load is
heavy, the QoS requirement of uniform traffic is set in soft
mode. Resource block is prior scheduled for bursty traffic and
then for uniform traffic. Only when the lower-bound of QoS
requirement for uniform traffic cannot be satisfied, the traffic
is regarded as failed to support.

DRL-Based: We consider designing two DRL models. The
first model aims to minimize overall allocated resource on
the premise of assuring the QoS requirements and the second
model is to not only minimize the overall allocated resource
but also try the best to guarantee the QoS requirements. Specif-
ically, for the first DRL model, each resource allocation action
has been assured to satisfy the QoS requirements of bursty
and uniform traffic. In contrast, the second model incorporates
QoS requirements into the reward function, because the QoS
requirements cannot be fully fulfilled. When traffic is low,
the first DRL model is active while the second one remains
dormant. When traffic is high, the second model becomes
active while the first model is disabled. By alternating between
the two models, our design allows us to access slight or heavy
traffic loads with minimal resources, accommodating different
traffic loads.

IV. MODEL-DRL INTEGRATED INTELLIGENCE FOR JOINT
QUEUING DELAY AND TRANSMISSION DELAY

MINIMIZATION

In this section, we first discuss the tradeoff between queuing
delay and transmission delay for URLLC, and clarify that
there exists the optimal resource allocation scheme which can
achieve the optimal balance between them. Then, we introduce
how DRL can be used to seek the optimal resource allocation
scheme.

A. Finite Blocklength Causing Queuing Delay and Transmis-
sion Delay Tradeoff

To lower transmission delay, short TTIs are designed in
5G. Short TTIs correspond to the finite blocklength. In the
finite blocklength regime, the authors of [11] derived the more
accurate limits for the channel achievable rate than Shannon
capacity. Specifically, the achievable channel coding rate in
finite blocklength, denoted by R, is given as follows:

R = log2(1 + γ)−
√

V

n
f−1
Q (ε) log2 e+O

(
log n

n

)
, (1)	 (1)

where g is signal-to-noise (SNR) ratio, V is channel dispersion, n 
is blocklength, e is block error rate,
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where γ is signal-to-noise (SNR) ratio, V is channel disper-
sion, n is blocklength, ε is block error rate, O

(
log n
n

)
is the

remainder term of log n
n , and f−1

Q (·) is the inverse of Gaussian
Q-function.

Equation (1) implies that the channel coding rate increases
as blocklength increases. On one hand, as the channel coding
rate increases, the service rate increases and the queuing
delay accordingly decreases. On the other hand, as blocklength
increases, the transmission delay increases. Short blocklength
leads to small transmission delay but large queuing delay,
and large blocklength results in large transmission delay but
small queuing delay [13]. Therefore, there exists a tradeoff
between transmission delay and queuing delay, and fine-tuning
the blocklength is necessary to achieve the optimal balance,
i.e., to minimize the sum of transmission and queuing delay.
It is worth mentioning that the optimal blocklength is highly
affected by data traffic load. When the traffic load is slight,
queuing delay often can be ignored, and thus we should
shorten blocklength to reduce transmission delay. As traffic
load becomes heavy, we should increase blocklength so as to
obtain a large service rate helping reducing queuing delay.
In practical vehicular networks, data traffic load is always
time-varying. Thus, the adaptive blocklength, i.e., resource
allocation, schemes should be studied to cater for the time-
varying traffic load.

B. Optimal Resource Allocation Approach Driven by Multi-
DRL Networks

Most of optimization problems related to the finite block-
length design are generally nonconvex and thus difficult to
solve by using traditional model-based optimization methods.
Facing this challenge, we attempt to employ DRL to resolve
such problems. Specifically, deep Q-learning and deep deter-
ministic policy gradient (DDPG) are the prevailing strategies
in DRL to find the optimal solution for the formulated prob-
lems. Deep Q-learning is suitable for the discrete action space
while DDPG is for continuous action space. Moreover, when
the dimension of action space is large, multiple parallel DRL
networks can be a competitive candidate to accelerate the
convergence of learning and training process.

To achieve the optimal balance between queuing delay
and transmission delay, we formulate the joint queuing de-
lay and transmission delay minimization problem for multi-
VUE downlink communications. We use the multiple DRL
networks, shown in Fig. 3, to solve this problem. Since the
subchannel is discrete and TTI is continuous, N deep Q-
learning networks (DQN) are deployed for subchannel allo-
cation and L DDPG networks are used for TTI optimization,
respectively. Specifically, the environment variables, including
queue states, i.e., the number of packets in the buffers, and
CSI of wireless channel, are packaged and then informed to all
action-selection modules. Then, the action-selection modules
select the specified actions based on the environment variables,
where the probabilistic greedy policy and the random noise
policy are used for DQN and DDPG, respectively, to avoid
falling into sub-optimal solutions. Next, all of selected actions
are aggregated to reward modules, which take charge of

calculating reward value. After that, the environment variables,
action, and reward are grouped as a piece of experience data
to store in memory. Finally, a fraction of experience data is
chosen to periodically train and update DNN in DQN and the
critic network in DDPG.

Figure 4 shows the performance of multi-DRL networks
in solving joint queuing delay and transmission delay min-
imization problems. Specifically, Fig. 4(a) depicts the loss
with respect to training iterations using different network
parameters. For comparison, we also simulate the performance
of using single-DQN to solve this problem. To simplify the
writing, we use DDPG-DQN referring to the above multi-
DRL networks. It can be seen from Fig. 4(a) that setting a
small learning rate and a rational drop probability can make
DNN fit well, where the random dropout is adopted to avoid
DNN overfitting. Moreover, Fig. 4(b) shows the end-to-end
(E2E) delay performance of DDPG-DQN, single-DQN, and
the baseline schemes in 5G NR, where the drop probability
is set to 0.5, the learning rate is set to 0.001, the SNR is
set to 10 dB, the bandwidth is set to 10 MHz, and block
error rate is set to 10−5. For the different lengths of TTIs in
5G NR, shorter TTI can achieve a lower E2E delay when
the average number of packets in the buffer is small. As
the average number of buffering packets increases, the E2E
delay corresponding to short TTI generally increases and then
exceeds that corresponding to long TTI. Since the adaptive
TTI is designed, DDPG-DQN can always achieve lowest E2E
delay among these schemes. It can be also observed that the
delay performance of single-DQN is poor, since the large
step size associated with the large action space results in the
performance degraded.

V. OPEN ISSUES TOWARDS FUTURE URLLC

We anatomize the constitution of the E2E delay for URLLC
and elaborate on two special cases above to lower E2E delay
by using model-ML integrated intelligence. There remain
typically critical issues and challenges expected to be studied,
which are presented as follows:

Challenge 1: Massive raw data cleaning as well as
ML modeling for URLLC. Developing ML models requires
a high-quality dataset. However, although there is a wealth
of raw data available in vehicular networks, there are few
valuable datasets regarding URLLC. Therefore, sifting through
the massive raw data in vehicular networks is a critical issue.
In addition, optimizing resource allocation for URLLC poses
some complicated problems that can potentially be resolved by
using heuristic ML algorithms. However, constructing robust
neural network structures suitable for these problems while
ensuring fast convergence rates to fulfill URLLC requirements
in vehicular networks has not been fully understood.

Challenge 2: Metrics integrating delay and AoI. Delay
performance has been extensively evaluated and enhanced in
existing literatures. Recently, the concept of age of information
(AoI) has been flourishing in the area of real-time status update
services, which are one of typical services in URLLC. AoI
focuses on the information freshness, which is impacted by
not only delay but also source sampling rate. It has been
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in DRL to find the optimal solution for the formulated prob-
lems. Deep Q-learning is suitable for the discrete action space
while DDPG is for continuous action space. Moreover, when
the dimension of action space is large, multiple parallel DRL
networks can be a competitive candidate to accelerate the
convergence of learning and training process.

To achieve the optimal balance between queuing delay
and transmission delay, we formulate the joint queuing de-
lay and transmission delay minimization problem for multi-
VUE downlink communications. We use the multiple DRL
networks, shown in Fig. 3, to solve this problem. Since the
subchannel is discrete and TTI is continuous, N deep Q-
learning networks (DQN) are deployed for subchannel allo-
cation and L DDPG networks are used for TTI optimization,
respectively. Specifically, the environment variables, including
queue states, i.e., the number of packets in the buffers, and
CSI of wireless channel, are packaged and then informed to all
action-selection modules. Then, the action-selection modules
select the specified actions based on the environment variables,
where the probabilistic greedy policy and the random noise
policy are used for DQN and DDPG, respectively, to avoid
falling into sub-optimal solutions. Next, all of selected actions
are aggregated to reward modules, which take charge of

calculating reward value. After that, the environment variables,
action, and reward are grouped as a piece of experience data
to store in memory. Finally, a fraction of experience data is
chosen to periodically train and update DNN in DQN and the
critic network in DDPG.

Figure 4 shows the performance of multi-DRL networks
in solving joint queuing delay and transmission delay min-
imization problems. Specifically, Fig. 4(a) depicts the loss
with respect to training iterations using different network
parameters. For comparison, we also simulate the performance
of using single-DQN to solve this problem. To simplify the
writing, we use DDPG-DQN referring to the above multi-
DRL networks. It can be seen from Fig. 4(a) that setting a
small learning rate and a rational drop probability can make
DNN fit well, where the random dropout is adopted to avoid
DNN overfitting. Moreover, Fig. 4(b) shows the end-to-end
(E2E) delay performance of DDPG-DQN, single-DQN, and
the baseline schemes in 5G NR, where the drop probability
is set to 0.5, the learning rate is set to 0.001, the SNR is
set to 10 dB, the bandwidth is set to 10 MHz, and block
error rate is set to 10−5. For the different lengths of TTIs in
5G NR, shorter TTI can achieve a lower E2E delay when
the average number of packets in the buffer is small. As
the average number of buffering packets increases, the E2E
delay corresponding to short TTI generally increases and then
exceeds that corresponding to long TTI. Since the adaptive
TTI is designed, DDPG-DQN can always achieve lowest E2E
delay among these schemes. It can be also observed that the
delay performance of single-DQN is poor, since the large
step size associated with the large action space results in the
performance degraded.

V. OPEN ISSUES TOWARDS FUTURE URLLC

We anatomize the constitution of the E2E delay for URLLC
and elaborate on two special cases above to lower E2E delay
by using model-ML integrated intelligence. There remain
typically critical issues and challenges expected to be studied,
which are presented as follows:

Challenge 1: Massive raw data cleaning as well as
ML modeling for URLLC. Developing ML models requires
a high-quality dataset. However, although there is a wealth
of raw data available in vehicular networks, there are few
valuable datasets regarding URLLC. Therefore, sifting through
the massive raw data in vehicular networks is a critical issue.
In addition, optimizing resource allocation for URLLC poses
some complicated problems that can potentially be resolved by
using heuristic ML algorithms. However, constructing robust
neural network structures suitable for these problems while
ensuring fast convergence rates to fulfill URLLC requirements
in vehicular networks has not been fully understood.

Challenge 2: Metrics integrating delay and AoI. Delay
performance has been extensively evaluated and enhanced in
existing literatures. Recently, the concept of age of information
(AoI) has been flourishing in the area of real-time status update
services, which are one of typical services in URLLC. AoI
focuses on the information freshness, which is impacted by
not only delay but also source sampling rate. It has been
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Figure 2. The multi-tier-driven computing framework to enhance 
access efficiency for URLLC.
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Fig. 1. Model-ML integrated intelligence empowering URLLC in vehicular networks from the delay perspective.
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Fig. 2. The multi-tier-driven computing framework to enhance access
efficiency for URLLC.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 26,2023 at 20:01:41 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Internet of Things Magazine • September 202366

Equation 1 implies that the channel coding rate increases 
as blocklength increases. On one hand, as the channel cod-
ing rate increases, the service rate increases and the queuing 
delay accordingly decreases. On the other hand, as blocklength 
increases, the transmission delay increases. Short blocklength 
leads to small transmission delay but large queuing delay, and 
large blocklength results in large transmission delay but small 
queuing delay [15]. Therefore, there exists a tradeoff between 
transmission delay and queuing delay, and fine-tuning the 
blocklength is necessary to achieve the optimal balance, i.e., to 
minimize the sum of transmission and queuing delay.

It is worth mentioning that the optimal blocklength is high-
ly affected by data traffic load. When the traffic load is slight, 
queuing delay often can be ignored, and thus we should short-
en blocklength to reduce transmission delay. As traffic load 
becomes heavy, we should increase blocklength so as to obtain 
a large service rate helping reducing queuing delay. In practical 
vehicular networks, data traffic load is always time-varying. Thus, 
the adaptive blocklength, i.e., resource allocation, schemes 
should be studied to cater for the time-varying traffic load.

Optimal Resource Allocation Approach 
Driven by Multi-DRL Networks

Most of optimization problems related to the finite blocklength 
design are generally nonconvex and thus difficult to solve by 
using traditional model-based optimization methods. Facing this 
challenge, we attempt to employ DRL to resolve such prob-
lems. Specifically, deep Q-learning and deep deterministic pol-
icy gradient (DDPG) are the prevailing strategies in DRL to 
find the optimal solution for the formulated problems. Deep 
Q-learning is suitable for the discrete action space while DDPG 
is for continuous action space. Moreover, when the dimension 
of action space is large, multiple parallel DRL networks can be a 
competitive candidate to accelerate the convergence of learn-
ing and training process.

To achieve the optimal balance between queuing delay 
and transmission delay, we formulate the joint queuing delay 
and transmission delay minimization problem for multi-VUE 
downlink communications. We use the multiple DRL net-
works, shown in Fig. 3, to solve this problem. Since the sub-
channel is discrete and TTI is continuous, N deep Q-learning 

networks (DQN) are deployed for subchannel allocation and 
L DDPG networks are used for TTI optimization, respectively. 
Specifically, the environment variables, including queue states, 
i.e., the number of packets in the buffers, and CSI of wireless 
channel, are packaged and then informed to all action-selec-
tion modules. Then, the action-selection modules select the 
specified actions based on the environment variables, where 
the probabilistic greedy policy and the random noise policy 
are used for DQN and DDPG, respectively, to avoid falling 
into sub-optimal solutions. Next, all of selected actions are 
aggregated to reward modules, which take charge of calculat-
ing reward value. After that, the environment variables, action, 
and reward are grouped as a piece of experience data to store 
in memory. Finally, a fraction of experience data is chosen 
to periodically train and update DNN in DQN and the critic 
network in DDPG.

Figure 4 shows the performance of multi-DRL networks in 
solving joint queuing delay and transmission delay minimiza-
tion problems. Specifically, Fig. 4a depicts the loss with respect 
to training iterations using different network parameters. For 
comparison, we also simulate the performance of using sin-
gle-DQN to solve this problem. To simplify the writing, we 
use DDPG-DQN referring to the above multi-DRL networks. It 
can be seen from Fig. 4a that setting a small learning rate and 
a rational drop probability can make DNN fit well, where the 
random dropout is adopted to avoid DNN overfitting. More-
over, Fig. 4b shows the end-to-end (E2E) delay performance 
of DDPG-DQN, single-DQN, and the baseline schemes in 
5G NR, where the drop probability is set to 0.5, the learning 
rate is set to 0.001, the SNR is set to 10 dB, the bandwidth 
is set to 10 MHz, and block error rate is set to 10–5. For the 
different lengths of TTIs in 5G NR, shorter TTI can achieve a 
lower E2E delay when the average number of packets in the 
buffer is small. As the average number of buffering packets 
increases, the E2E delay corresponding to short TTI generally 
increases and then exceeds that corresponding to long TTI. 
Since the adaptive TTI is designed, DDPG-DQN can always 
achieve lowest E2E delay among these schemes. It can be also 
observed that the delay performance of single-DQN is poor, 
since the large step size associated with the large action space 
results in the performance degraded.

Figure 3. The optimal resource allocation approach driven by multi-DRL networks.
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(a) The loss with respect to training iterations using different network
parameters, including drop probability and learning rate.
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Fig. 4. The performance of multi-DRL networks in solving joint queuing delay and transmission delay minimization problems.
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Open Issues Towards Future URLLC
We anatomize the constitution of the E2E delay for URLLC and 
elaborate on two special cases above to lower E2E delay by 
using model-ML integrated intelligence. There remain typically 
critical issues and challenges expected to be studied, which are 
presented as follows:

Challenge 1: Massive raw data cleaning as well as ML mod-
eling for URLLC. Developing ML models requires a high-quali-
ty dataset. However, although there is a wealth of raw data 
available in vehicular networks, there are few valuable datasets 
regarding URLLC. Therefore, sifting through the massive raw 
data in vehicular networks is a critical issue. In addition, opti-
mizing resource allocation for URLLC poses some complicated 
problems that can potentially be resolved by using heuristic ML 
algorithms. However, constructing robust neural network struc-
tures suitable for these problems while ensuring fast conver-
gence rates to fulfill URLLC requirements in vehicular networks 
has not been fully understood.

Challenge 2: Metrics integrating delay and AoI. Delay per-
formance has been extensively evaluated and enhanced in 
existing literatures. Recently, the concept of age of information 
(AoI) has been flourishing in the area of real-time status update 
services, which are one of typical services in URLLC. AoI focus-
es on the information freshness, which is impacted by not only 
delay but also source sampling rate. It has been demonstrated 
that even if the delay is small, AoI might remain large [14]. The 
small AoI can be achieved by fine tuning the sampling rate. 
However, the mathematical expression for doing so in the con-
text of sophisticated vehicular networks is much more complex. 
Exploring how to facilitate URLLC with both delay and AoI met-
rics via ML is an avenue for future research.

Challenge 3: Security assurance for URLLC. Most existing 
secure transmission solutions need to introduce the data over-
head as well as time budget, which are unfriendly for low-laten-
cy transmissions. How to achieve the low-latency transmission 
meanwhile assuring data’s security in vehicular networks is an 
interesting issue. There is a novel technique exploiting the out-
of-date characteristics of data to achieve secure transmissions 
[15]. Yet not all data in URLLC has a fast out-of-date rate. Ensur-
ing secure transmissions for these data services in URLLC by 
fully exploiting the services’ features in vehicular networks can 
be further researched.

Conclusions
In this article, we introduced how model-ML integrated intelli-
gence empowers URLLC from the delay perspective. We began 
with anatomizing the constitution of the end-to-end delay 
for URLLC, and then presented an intelligent multi-tier-driv-
en computing framework for reducing vehicular users’ access 
delay. Furthermore, we introduced the tradeoff between queu-
ing delay and transmission delay and proposed an efficient 
resource allocation approach driven by multi-DRL networks, 
which can achieve the optimal balance between queuing delay 
and transmission delay and significantly reduce E2E delay for 
URLLC over vehicular networks. Finally, we shared the open 
issues towards future URLLC, such as massive raw data cleaning 
as well as ML modeling for URLLC, metrics integrating delay 
and AoI, and security assurance for URLLC.
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