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Abstract— In this letter, we propose a novel peak-to-average
power ratio (PAPR)-aware adaptive modulation scheme for
Orthogonal Frequency Division Multiplexing (OFDM). The aim
of the proposed PAPR-aware protocol is to maximize the energy
efficiency of the OFDM transmission, where the energy efficiency
is defined as the ratio of the OFDM throughput to the PA
consumption, and is thus strongly affected by PAPR. For this
purpose, we formulate the energy efficiency maximization prob-
lem with respect to power and adaptive modulation constraints
per subcarrier. Due to the joint optimization of power allocation,
adaptive modulation, and the non-convex terms introduced by
PAPR, the problem cannot be solved by using convex optimiza-
tion tools. Therefore, a solution based on online deep learning is
proposed. Numerical results showcase that the energy efficiency
of the proposed PAPR-aware protocol is greater up to 3-dB
compared to the conventional PAPR-unaware protocol, while the
PAPR is also reduced by 3-dB.

Index Terms— Orthogonal frequency-division multiplexing
(OFDM), peak-to-average ratio (PAPR), online learning, 6G.

I. INTRODUCTION

RECENT studies have highlighted the urgent need to
reduce the environmental impact of future networks

[1], [2]. To that end, sixth generation (6G) wireless networks
are expected to be 10-100 times more energy efficient than the
fifth generation (5G) networks [1]. In addition, 6G networks
are expected to offer increased capacity by utilizing higher
frequency bands, including Millimeter (MM) and Terahertz
(THz) waves. However, the increase in available spectrum may
limit the energy efficiency of 6G networks due to high path
loss and reduced power amplifier (PA) efficiency [1].

Orthogonal Frequency Division Multiplexing (OFDM), has
been identified as a key enabler of beyond 5G and 6G net-
works [1]. However, the energy efficiency of OFDM is limited
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by the high peak-to-average power ratio (PAPR), which is a
fundamental problem of OFDM and increases with the number
of data subcarriers [1], [3]. Therefore, the design of energy-
efficient medium access control (MAC) protocols that optimize
the physical layer (PHY-L) of the network, taking into account
hardware constraints, is imperative for 6G networks. To that
end, 6G networks will aim to build intelligence into the PHY-L
and MAC layers of networks and provide new functionalities
such as intelligent power control, by relying on native artificial
intelligence (AI) [2]. In fact, AI-based optimization is a viable
approach to solve practical resource allocation problems where
the impact of hardware cannot be ignored [1], [2].

PAPR reduction and adaptive modulation in OFDM trans-
mission has been studied extensively in the past, but there
is currently no work which combines both. In [4] and [5]
PAPR minimization was formulated as a convex optimization
problem, but none of the studies took into account the data rate
of the OFDM transmission. Similarly, in [6] and clip4 different
clipping methods have been proposed that can reduce PAPR,
but adaptive modulation was not considered. Furthermore,
in [8] and [9], adaptive modulation for OFDM was studied,
but the PAPR of the OFDM time-domain signal was not inves-
tigated. Moreover, deep learning-based adaptive modulation
OFDM protocols were designed in [10], [11], and [12], but
the PAPR of the OFDM transmission was not investigated.

In this work, a deep neural network (DNN)-based PAPR-
aware adaptive modulation and power allocation scheme is
proposed. The objective of this work is to maximize the energy
efficiency of OFDM transmission, which in our case is defined
as the ratio of throughput to average power consumption of the
PA. We note that the PA’s consumption depends on the PAPR,
while the PAPR depends on the power allocation and modu-
lation per subcarrier. The problem is intractable by standard
optimization tools, due to the adaptive modulation following a
categorical distribution and the non-convex terms introduced
by the PAPR. Thus, an online learning and an unsupervised
learning solution are given. Numerical simulations validate the
improved energy efficiency of the proposed protocol compared
to the typical PAPR-unaware adaptive modulation protocol.

II. SYSTEM MODEL

We consider a point-to-point communication link between
an access point (AP) and a user. There are K available data
transmission subcarriers. The set of usable constellations is
denoted as J , with cardinality |J |=J , and the order of each
constellation as M(j),∀j ∈ J . The AP employs OFDM to
communicate with the user and we assume that the AP has a
maximum power constraint, denoted as Pmax. The AP utilizes
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square M -QAM constellations, while B is the bandwidth of
the received signal at each subcarrier. The following analysis
can be generalized to any constellation type.

A. OFDM Transmission

Let Cj , j∈J , be the j-th frequency-domain OFDM constel-
lation, with order M(j). Then, let ck,j ∈ Cj be a symbol
taken from the j-th constellation, that will be transmitted
in the k-th subcarrier. We assume that all ck,j are chosen
uniformly random from the j-th constellation Cj . We note that
the coordinates of any symbol ck,j are given as follows [3]

Re {ck,j} =
2ψ − 2D − 1

∆
, Im {ck,j} =

2ζ − 2D − 1
∆

, (1)

where D = 20.5 log2(M(j)/4), ψ, ζ ∈ [1, . . . , D] and ∆ is a
normalization factor, which is chosen such that E[|ck,j |2] = 1.
For a square M -QAM, ∆ is given below

∆ =

√
2
3

(M(j)− 1). (2)

Moreover, we define ak,j to be an index which equals one
if the k-th subcarrier is scheduled to the j-th constellation,
and zero otherwise. Therefore, the frequency-domain OFDM
symbol is given as follows

cs =
J∑

j=1

cj ⊙ aj , (3)

where aj = [a1,j , a2,j , . . . , aK,j ] and ⊙ denotes the Hadamard
product. We define cj = [c1,j , c2,j , . . . , cK,j ], cj ∈ CK , to be
the vector containing the symbols of the j-th constellation that
will be used to the k-th subcarrier, when ak,j equals one.

Moreover, it is assumed that the AP has the ability to
allocate different average power levels at each subcarrier. Orig-
inally, the average power of the OFDM symbol in (3) equals
one for all subcarriers, since the power of all constellations
is normalized. However, by allocating different average power
per subcarrier, the constellation of the k-th subcarrier ends
up with different average power than the constellation of the
k′-th subcarrier. Let us denote with p = [p1, p2, . . . , pK ] the
vector containing the power allocated at each subcarrier. This
implies that E[|ck,j |2] = p[k]. Then, the overall frequency-
domain OFDM symbol is given as

c = cs ⊙
√

p. (4)

In order to generate the time-domain OFDM signal, x ∈ CK ,
the frequency components are converted into time samples
by performing an inverse FFT (IFFT) on these K frequency-
domain symbols, which is given below

x[i] =
1√
K

K−1∑
k=1

c[k]e
j2πki

K , i ∈ {0, . . . ,K − 1}. (5)

Therefore, the received frequency-domain signal at the input
of the QAM demodulator, after the FFT, is given as [3]

Y [k] =
√

p[k]H[k]cs[k] + N [k], ∀k ∈ K, (6)

where H ∈ CK×1 is the flat fading channel coefficient
associated with the k-th subcarrier, and N ∈ CK is the FFT

of the time-domain noise signal at the k-th subcarrier. We note
that the power allocation per subcarrier is constant throughout
the whole coherence time of the channel, and is considered
known at the receiver. We also assume additive white Gaussian
noise (AWGN) with power spectral density equal to N0. Thus,
the average signal-to-noise ratio (SNR) at the k-th subcarrier
is given as

γk =
p[k] |H[k]|2

N0B
. (7)

Moreover, the average symbol error rate (SER) of a square
M -QAM with Gray bit mapping, as a function of the received
SNR, γk, is given as [3]

Pn
k,j = 1−

1−
2
(√

M(j)− 1
)

√
M(j)

Q

(√
3γk

M(j)− 1

)2

.

(8)

B. PAPR Estimation of the OFDM Signal

Next, we define the discrete-time PAPR of the OFDM
signal, as follows [13]

ω =
maxi |x [i]|2

1
lK

∑K−1
i=0 |x [i]|2

=
∥x∥2∞
1
K ∥x∥22

. (9)

The PAPR of the discrete time sequences typically determines
the complexity of the digital circuitry. However, in practice,
we are often more concerned with reducing the PAPR of the
continuous-time signals, since the cost and power dissipation
of the analog components often dominate. Thus, to better
approximate the PAPR of the continuous-time OFDM sig-
nal, the OFDM signal samples will be obtained by l-times
oversampling [13]. Thus, we define xl ∈ ClK , where l is
the oversampling factor, to be the corresponding oversampled
time-domain OFDM signal, which can be calculated by the
inverse FFT (IFFT) of c̃ as follows

xl[i] =
1√
K

lK−1∑
k=1

c̃[k]e
j2πki

lK , i ∈ {0, . . . , lK − 1}, (10)

where c̃ occurs from zero-padding (l − 1)K zeros to c,
as shown

c̃=
[
c [0] , . . . , c

[
K
2 −1

]
, 0, . . . , 0, c

[
K
2 −1

]
, . . . , c [K−1]

]
.

(11)

Then, the discrete time-domain PAPR will be given by

ω =
∥xl∥2∞
1

lK ∥xl∥22
. (12)

We note that l ≥ 4 is sufficient to approximate the continuous-
time PAPR via its discrete-time representation [13].

The total consumed power at the PA can be modeled as
follows [13], [14]

Pcons(η) =
1
η

(
K∑

k=1

p[k]

)ϵ

P 1−ϵ
max, (13)
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where ϵ ∈ [0, 0.64] [14], and η is the PA efficiency, which for
an ideal class B PA is given as

η =
π

4ω
. (14)

We note that the presented PAPR-aware adaptive modulation
is also valid for different PA consumption models. It is obvious
that to increase the PA’s energy efficiency, PAPR has to be as
low as possible. Nevertheless, it is noticed that PAPR, and so
the PA’s efficiency, are random variables, since they depend
on the transmitted symbols. Therefore, we denote the expected
PA energy efficiency as follows

η̄ = E
[
η−1

∣∣p,a] =
1
I

I∑
i=1

(
π

4ωi

)−1

, (15)

where ωi is the discrete PAPR of the i-th realization, the
expectation is taken with respect to all possible transmitted
symbols c, and I denotes the number of all possible symbol
combinations. We note that the average PA’s efficiency can
be calculated offline by a Monte Carlo approach, while the
average PA power consumption, Pcons(η̄), is given by (13) by
substituting η−1 with η̄, since

∑K
k=1 p[k] is constant for all

possible symbol combinations I .

III. ADAPTIVE MODULATION AND POWER OPTIMIZATION

A. Problem Formulation
In this section we aim to maximize the energy efficiency of

the OFDM transmission by proper adaptive modulation and
power allocation per subcarrier. The SER-based throughput of
the uncoded OFDM transmission is given as

R =
K∑

k=1

J∑
j=1

ak,j

(
1− Pn

k,j

)
log2M(j). (16)

We note that in the low SNR regime the BER approximates
0.5 for all constellation orders [3]. Thus, the BER-based
throughput appears bigger for greater constellation orders.
However, this is incorrect, since the SER metric approaches
zero more rapidly for greater constellation orders [3]. As such,
the BER-based throughput cannot capture the considered
trade-off between the transmission rate and error rate in the
low SNR regime, and the SER-based throughput is used
instead. Then, the energy efficiency maximization problem can
be formulated as follows

max
p̃,a

R

Pcons(η̄)

s.t. C1 :
K∑

k=1

p̃[k] ≤ 1

C2 :
J∑

j=1

αk,j = 1,∀k ∈ {1, ..,K}

C3 : αk,j ∈ {0, 1},∀k ∈ {1, ..,K},∀j ∈ J , (17)

where constraint C1 limits the overall transmission power of
the OFDM transmitter and constraint C2 imposes that each
subcarrier is scheduled with only one constellation., while
a constellation can be allocated to many subcarriers. For
convenience we have set that p̃ = p

Pmax
.

B. Problem Solution

A possible approach to find the optimal solution of (18)
is exhaustive search. However, this is not a viable option
even for the case of 16 subcarriers, since there are approx-
imately a total of 106 constellation-subcarrier associations for
M ∈ {4, 16, 64, 256, 1024}, while problem (18) is non-convex
with respect to power allocation due to PAPR and is not
tractable by standard convex optimization methods. Therefore,
motivated by the encouraging results of DNN in addressing
non-convex problems we propose an online learning-based and
an unsupervised learning-based solution.

1) Online Learning: Given the instant channel state infor-
mation (CSI) H , the DNN is trained in an online fashion
to estimate the optimal variables, i.e., the transmit power
allocation p̃ and the modulation per subcarrier a. It is clarified
that unlike to offline training approaches where multiple
samples are used for training and afterwards the testing stage
follows, online learning has no testing stage, since for each
new generated sample a new dedicated network is trained, and
thus, the generalization issue does not exist. However, online
learning cannot be used to first-seen data samples. The input of
the online DNN, F ∈ RK×1

+ , will be given as F = H ⊙H∗,
while the DNN’s loss function is defined as the objective
function of problem (18), and can be written as follows

Loss = − R

Pcons(η̄)
, (18)

where the minus sign was introduced for the DNN to maximize
the energy efficiency of the OFDM transission. Moreover,
we observe that the output of the DNN has both continuous
and discrete variables. We denote the output estimation vector
of the DNN as

o =
[
p̂,a1,a2, ..,aJ︸ ︷︷ ︸

J

]⊤
= m(F ,θ). (19)

where m : RK×1
+ → R(K+1)×1 × {0, 1}KJ×1 is the mapping

function of the DNN parametrized by its trainable parameters
θ, while p̂ = [p̃, ps], and ps ∈ [0, 1] is a slack variable
introduced so that constraint C1 is equivalently written as

C1 :
K∑

k=1

p̃[k] + ps = 1. (20)

Constraint C1 can now be handled by using the Softmax
function as one of the activation functions of the output layer,
as shown in Fig. 1. Therefore, p̂ is obtained as follows

p̂ = Softmax(z0) =
ez0∑
i e

z0[i]
, (21)

where z0 is the input from the previous layer.
However, the Softmax function provides a mapping to the

continuous set (0, 1), and thus it cannot be utilized to estimate
the values of a. In fact, aj ,∀j ∈ J follows a categorical
distribution, since for fixed j, ak,j = 1 for only one k ∈
{1, . . . ,K}. As such, the Gumbel-Softmax activation function
will be used. Therefore, aj is estimated as follows

aj = Gumbel-Softmax(zj , τ) =
e(log zj+gj)/τ∑

i e
(log zj [i]+gj [i])/τ

, (22)
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Fig. 1. DNN architecture.

where τ is the softmax temperature, gj are i.i.d samples drawn
from Gumbel(0,1) distribution, and zj is the input to the j-th
Gumbel-Softmax node from the previous layer. We note that
when τ →0, samples from the Gumbel-Softmax distribution
become one-hot and the continuous Gumbel-Softmax distribu-
tion becomes identical to a categorical distribution. The total
architecture of the proposed online DNN is given in Fig. 1.

2) Unsupervised Learning: The main difference between
the online learning and the unsupervised learning, it is that
in unsupervised learning, a batch of different channel realiza-
tions, with size Btch, is given as input to the DNN during
each epoch. The channel realizations are randomly drawn
from a training dataset. The loss function of the unsupervised
learning, per epoch, is the following

Loss = − 1
Btch

Btch∑
i=1

Ei, (23)

where E = R
Pcons(η̄) , and Ei is the energy efficiency of

the i-th batch sample. From (18) it is concluded that the
online learning provides a near-optimal solution with respect to
instant CSI, while from (23) it is entailed that the unsupervised
learning provides a solution with respect to the CSI distri-
bution, thus it can generalize its output to first-seen channel
realizations. The architecture of the unsupervised learning
scheme also follows that of Fig. 1.

3) Complexity Analysis: For the DNN architecture, without
loss of generality, we consider a single hidden layer with
L neurons. The forward-pass complexity, which is domi-
nated by the weight matrix multiplication cost, is given as
O(L + 2KL + KJL) and is equivalent to O(KJL). Given
that the backward-pass has the same computational cost with
the forward-pass, the overall back propagation algorithm for
training the DNN, in an online fashion, is of the order of
O(IEKJL), where IE is the number of training epochs.
As such, the back-propagation complexity of the unsuper-
vised learning is given as O(IEBtchKJL). Nonetheless, once
trained, the unsupervised learning scheme requires only one
forward-pass. In contrary, in online learning, a new DNN has
to be trained for any new channel realization.

IV. NUMERICAL RESULTS

In this section, we validate the performance of the proposed
PAPR-aware scheme. Unless otherwise stated, we consider
Rayleigh fading, a path loss of −70 dB, Pmax = 10 W,
N0 = −174 dBm/Hz, l = 4, M∈{4, 16, 64, 256, 1024}, and

Fig. 2. Energy efficiency performance.

B = 1 MHz. The benchmark is a PAPR-unaware scheme,
similar to [8], which maximizes the throughput of the network,
without considering the relation between the PAPR and the
energy consumption of the PA. Furthermore, it was numer-
ically observed that Pcons(η̄) does not significantly change
when considering more than I = 500 symbol combinations.
Thus, I = 500 was used to reduce the computational burden.

In Fig. 2(a), the energy efficiency against the average
received SNR per subcarrier is plotted. We observe that
for small SNR values the proposed PAPR-aware scheme
is about 1-2.5 dB more energy efficient than the PAPR-
unaware scheme. This small improvement is attributed to the
PAPR-aware scheme considering the effect of PAPR to the
energy efficiency. Nonetheless, we observe that as the average
received SNR increases, the energy efficiency improves as
well. This is due to the fact that in the low SNR regime the
energy efficiency metric of (18) is limited by the achievable
throughput of OFDM. However, for bigger SNR values, energy
consumption is the limiting factor of energy efficiency, thus the
proposed scheme greatly outperforms the benchmark by more
than 3 dB. In Fig. 2(b), for 4-128 subcarriers, we observe that
for smaller SNR the proposed scheme slightly outperforms
the PAPR-unaware scheme, while for higher SNR values the
improvement is significantly greater.

In Fig. 3, the power of the time-domain OFDM symbol,
as given by (10), is plotted. The PAPR of each OFDM
symbol is provided. From Fig. 3(a) and Fig. 3(b) it can be
verified that the PAPR-aware scheme has lower PAPR than
the PAPR-unaware scheme. Specifically, in the case of 5 dB
average received SNR per subcarrier, the PAPR-aware scheme
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Fig. 3. Average power of the time-domain symbol.

Fig. 4. Convergence of the proposed schemes.

achieves 0.25 dB lower average PAPR compared to the PAPR-
unaware scheme. This is due to fact that in the low SNR
regime the energy efficiency is limited by throughput, thus,
both schemes ignore the effect of the PAPR. In the case of
35 dB average received SNR per subcarrier, the PAPR-aware
scheme has almost 3 dB lower PAPR compared to the PAPR-
unaware scheme. For higher SNRs, the energy efficiency
is mainly limited by the PAPR. As such, the PAPR-aware
scheme attains a lower PAPR than the PAPR-unaware scheme,
and achieves greater energy efficiency, as it was verified in
Fig. 2(a).

In Fig. 4, the convergence of the proposed methods is
shown. The training dataset of the unsupervised learning
scheme consists of 20000 channel realizations, with batch
size of 32, while testing has been averaged to 5000 different

channel realizations. The hidden layers consist of three pairs
of linear layers, both followed by the Hyperbolic tangent
activation function. The hidden layers of the online learning
scheme and the unsupervised learning scheme consist of
100 nodes and 150 nodes in respect. The Adam optimizer
was used, with learning rate equal to 0.05 for the online
learning and 0.1 for the unsupervised learning. We observe that
both schemes roughly converge within 100 iterations to their
local optimum. The unsupervised learning scheme is shown
to be suboptimal, since the online learning scheme extracts its
solution based on instant CSI, while the unsupervised learning
scheme provides a solution according to the CSI distribution.

V. CONCLUSION

A PAPR-aware protocol was proposed, which aims to
maximize the energy efficiency of the OFDM transmission.
The energy efficiency maximization problem subject to power
and adaptive modulation constraints was formulated and a
deep learning-based solution was designed. Numerical results
showcase the increased energy efficiency of the proposed
scheme, which improves the energy efficiency of the OFDM
transmission by 3 dB. Thus, the proposed protocol can aid to
satisfy the energy efficiency goals of beyond 5G networks.
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