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Abstract—Attributing to the rapid growth of AI, the inte-
gration of sensing and communication (ISAC) networks has
embraced AI in the upcoming new-style mobile communication
networks. A FedFog network architecture for ISAC networks is
proposed in this article, which consists of the terminal perception
layer, the edge base station processing layer, and the cloud
data layer. In the context of multiple base stations (BSs), the
handover between BSs and user equipment is worthy to be
studied. Referring to the concept of coordinated multiples BSs, we
design a handover procedures in the ISAC networks. Meanwhile,
a federated reinforcement learning scheme of user control is
designed. However, due to new unlicensed spectrum bands
such as millimeter wave band and Terahertz band, the hybrid
beamforming can reduce the expenses of hardware. A learning-
based interference management utilizing the hybrid beamforming
is designed. Meanwhile, we consider self-interference and mutual
interference cancellation with deep neural networks. Simulation
results show the performance of AI-driven ISAC networks in
terms of mobility and interference management, and further
prove that services are boosted for 6G networks.

I. INTRODUCTION

Nowadays, the hotspot coverage and its signals are scattered
in all corners to satisfy the work and entertainment needs on
a daily basis. There are now more than 9 billion terminals
covering the globe [1]. People’s living grows to be intimately
attached to sensing signals. The internet of things (IoT) is
also constantly striving to obtain ubiquitous connectivity, and
the use of radar echoes to support the IoT under ubiquitous
connectivity is also a trend in the prospective field. With
the advent of mobile communication networks, human beings
can enjoy a higher transmission rate and lower latency than
before. Broad IoT scenarios, high definition, fast transmis-
sion, and dense high-capacity network environments all place
high demands on the next-generation mobile communication
networks. The upcoming 6G mobile communication would
accommodate a various future IoT needs [2].

In the 6G era, the integration of sensing and communication
(ISAC) has been listed as the network paradigm in Interna-
tional Telecommunication Union and 3rd Generation Partner-
ship Project. ISAC networks aim to support the dual functions
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of radar and communication. To enhance the utilization of
the spectrum and reduce the capture of equipment, future
ISAC networks require more powerful computing capabilities
to process more complicated data. It is in sync with the
design target of 6G, integrating intelligence, communication,
and perception.

Since the concept of ISAC networks was proposed by
Roberton and Brown [3], ISAC networks have gradually been
developing. After Orthogonal Frequency Division Multiplex-
ing (OFDM)-supported ISAC networks were designed [4],
the ISAC networks served as a novel network paradigm. It
has evolved from functions coexistence, abilities assistance
to the final integration three stages [5]. The first stage is
functions coexistence, where the antennas and signal process
would achieve functions coexistence via shared resources.
The sensing subsystem and communication subsystem are
isolated. And in the stage of abilities assistance, sensing-aided
communication and communication-aided sensing would be
obtained to promote communication and sensing together. The
final integration stage is set at the full integration of physical
hardware, protocol, and AI-assistance integration. It can obtain
the native sensing and intelligent IoT in 6G era.

To obtain the full integration stage, especially for the AI-
assistance integration. edge intelligence and ISAC are inter-
dependent. On the one hand, a large amount of data would
be generated in distributed wireless transceivers. These data
requires AI algorithms to process properly and satisfy the
ultra-low-delay control needs [4]. On the other hand, edge
intelligence consists of sensing, communication, training, and
inference. The first two phases requires the assistance of ISAC.

The design of the AI-driven ISAC networks attracts ex-
tensive focuses [6]–[8]. Through edge intelligence, a trained
model can be deployed and its inference abilities can make
decisions. Edge intelligence can be divided into two types:
distributed learning and centralized learning [6]. As one of
distributed learning techniques, the federated learning is more
applicable to the local computing available. Liu et al. designed
vertical federated learning to obtain collaborative recognition
[7]. Meanwhile, task-oriented integrated sensing, communica-
tion, and computing networks are proposed in [8], which is a
trail of edge intelligence and ISAC networks. How to design
an AI-driven network architecture is considered and studied
further.

However, the AI-driven ISAC networks faced with many
technical challenges. Firstly, the pressure of communication
links would be increased, caused by the sink of AI model.
Edge intelligence would enable UE the ability of processing
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data and interact with the base stations (BSs) and cloud process
center. How to process the amount of data is of significance.
Secondly, the training cost of AI model is not suitable for
the ultra-low-delay requirement. Edge intelligence can make a
difference in the stage of inference [9]. In the training stage,
edge intelligence deal with ultra-low-delay task is intractable.
Thirdly, the privacy of data is difficult to protect when the AI
model sink into the terminals. How to obtain edge intelligence
in ISAC network is an essential issue, without damaging of
the user data privacy.

Currently, the studies on AI-driven ISAC network archi-
tecture are proceeding. Liu et al. proposed the network-level
ISAC, cloud radio access networks (C-RAN) [4], utilizing the
powerful cloud computing capacities to process the massive
data from the sensing layer. On the basis of C-RAN, Yan
et al. noted the cloud-edge collaborative architecture to serve
equipment in access networks [8]. The ISAC user equipment
(UE) deploys the central unit and distributed unit separately.
The remote radio heads (RRHs) are equipped with the function
of radio and some physical functions, which can process
data locally. The advancement of edge intelligence enables
sensing data to be mined further and federated learning to be
applied. Federated learning is a promising technique which can
process non-independent and identically distributed (non-idd)
data from mobile communication environment. Meanwhile,
the privacy and security can be guaranteed with with secure
multiparty computation and differential privacy. Utilizing fed-
erated learning, this distributed machine learning can deploy
AI model efficiently. It can further reduce transmission delay,
contributing to the expansion of all AI algorithms.

In the fast-speed-mobility scenario, such as automatic drive
and drone inspection, ISAC UE’s moving would cause fre-
quent handover access. Mobility management is worth study-
ing and designing [10]. However, studies on mobility man-
agement in ISAC networks are scarce. Traditional mobility
management barely fits with ISAC networks. Meanwhile,
mainstream theories considering access control does not in-
volve edge intelligence. Edge intelligence is commonly absent
in mainstream theories regarding access control. It leads to the
waste of computing resource. Practically, given the presence of
interference and noises, UE serves to distinguish radar echoes
from communication signals. Machine learning to mine data
features facilitates tackling the challenge.

Massive multiple-input multiple-output (MIMO) is a piv-
otal technology to current and future ISAC networks, and
henceforth it is necessary to design their corresponding beam-
forming for the gain of these antennas efficiently [11]. On
the one hand, the communication function prior to the design
of the narrow beamforming, achieves spatial multiplexing
conveniently. On the other hand, sensing calls for broader
beam width to capture more information from reflectors. Due
to the full-duplex mode, the interference exists inevitably.
Beside extensive mutual interference, the self-interference is
not ignored. The two types of interference generate challenges
in designing the beamforming of ISAC networks. Machine
learning can reduce the complexity of beamforming. The
online learning model can generate beamforming patterns and
codebooks. To some extent, the trained beamforming can

offset the power of mutual interference. Additionally, the non-
linear part of self-interference can be approximated by the
deep neural networks, which is accomplished in traditional
full-duplex wireless communications.

In this article, we first present an AI-driven ISAC network
architecture in line with the requirements in the 6G era. Under
the established network architecture, a sensing-aided handover
procedure is born to adjust the state-of-the-art ISAC networks.
User control utilizing federated reinforcement learning is
taken into consideration as well. Subsequently, we present the
hybrid beamforming together with its corresponding mutual
interference management method, followed by the deep neural
networks to cancel self-interference in ISAC networks.

II. NETWORK ARCHITECTURE

As shown in Fig. 1, we consider an AI-driven ISAC network
architecture equipped with multiple BSs. These BSs take
advantage of limited resources such as frequency, time, and
space. Although there has been extensive and in-depth research
on the ISAC networks, the current ISAC networks do not
integrate into strong supportive computing capacity. So it is
necessary to combine distributed edge computing and AI to
build an intelligent ISAC distributed network architecture for
6G. The AI-driven ISAC distributed network architecture has
three main layers: The terminal perception layer, the edge
base station processing layer, and the cloud data center layer.
The interaction pattern between the terminal perception layer
and edge base station processing layer is federated learning
architecture, while the edge base station processing layer and
the cloud data center layer are implemented through the edge
computing. The terminal perception layer involves a variety of
perception detection equipment that will produce a tremendous
amount of data, if each UE equips with a deep neural network.
Adopting the featured data instead of raw data can effectively
alleviate the pressure from communication link between the
BS and each UE. Federated learning trains iteratively, utilizing
the interact between the local learning model and the global
model. Subsequently, the fog BS then downloads the global
model parameters from the cloud-data center. And the final
training model updates with good performance.

Firstly, each UE will occupy individual data distribution
due to its environment information. The particular benefits
of different UEs pursues while substantial chunks of row
data are transmitted difficultly. The federated learning can aid
each UE in processing its row data locally. The featured data
is uploaded to BSs. Concurrently, employing the federated
learning, each UE can obtain the machine learning in the
terminal perception layer to establish massive parallel machine
learning.

Configured with computing resources, storage resources,
and a global neural network, the edge base station processing
layer processes the characteristic data of these sensing probe
devices. It also has a fronthaul link to interact with the
baseband unit (BBU) pool of the cloud data center layer.
The structure of the fog wireless access network establishes,
as shown in Fig. 1, specifically a BBU, a high power node,
wireless RRHs, and BSs. Among them, the wireless remote
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Fig. 1. The AI-driven ISAC network architecture.

radio unit connects to the BBU pool via the fronthaul link to
achieve centralized communication, caching and computing
functions. F-BSs have wireless signal processing capabilities,
edge caching, computing, and AI capabilities. The high-power
nodes connect to the BBU pool through a backhaul link
to implement the control layer function of the network. In
addition, through this architecture, AI algorithms are deployed
in the BBU pool (cloud data center layer), BS (edge base
station processing layer), and UE (terminal perception layer)
to increase the ability of network adaptation and service
awareness adaptation, and facilitate the dynamic collaboration
of multi-dimensional resources in the network. Particularly,
UEs lower overhead backhaul/fronthaul data transmission to
meet commercial and performance requirements.

III. MOBILITY MANAGEMENT IN AI-DRIVEN ISAC
NETWORKS

For the sensing function in ISAC networks, the handover is
not limited from one UE to another. The issue on handover is
not novel but necessary in traditional wireless networks. How-
ever, due to the integration of sensing functions, the handover
in ISAC networks is not different from before. On the one
hand, the time alignment of sensing results in synchronization.
The rapid shift of targets strengthens the difficulties of beam
tracking. On the other hand, the matrices like azimuth angles
(Angle-of-Arrival/Angle-of-Departure) and sensing precision
on ISAC networks are added.

The FedFog network architecture aids mobility management
to deal with these difficulties. Initially, the handover on FedFog
network architecture is trailed. Subsequently, we propose the

user control with federated reinforcement learning on the basis
of the designed network architecture.

A. Handover Procedure between Different BSs

Seamless mobility is one of decisive qualities in ISAC
networks. During the handover process, there should be no
package loss or radio link failure to ensure the UE’s quality of
service (QoS). Apparently, the sensing-aided procedure is not
explored in the current studies on ISAC networks. Therefore,
studying the handover between different BSs is necessary.
Because of each BS’s limited coverage of hot area, it may
need to switch to the associated BS when a UE moves in
different cells.

Fig. 2 shows the handover procedure and signaling flow
for the handover from a UE to a BS in the proposed AI-
driven ISAC networks. This is fundamentally based on the
coordinated multi-point in heterogeneous C-RANs. Besides,
the sensing function between different BSs is leveraged. Mean-
while, it can serve for the UE’s handover procedure. This
procedure proceeds as follows. Firstly, UEs exchange infor-
mation within each other using their native sensing capability.
Secondly, sensing measurements perform by request and setup
transmissions. Then a sensing session is started by a UE as
an initiator. Finally, UEs can exchange sensing feedback and
information.

There are four steps for the federated learning. Firstly, each
UE updates its gradient. Subsequently, updated parameters is
globally aggregated in the BS server. And then, global training
updates in the BS server. Finally, the global model is down-
loaded and transformed to UEs. After obtaining channel state
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Fig. 2. The handover procedures in the AI-driven ISAC networks.

information (CSI) through sensing operations, the UE detects
the possible set of the next BS based on the CSI measured
by the sensing operation. The UE chooses its nearby BSs as
the destination BS. The association of the UE and the BS is
achievable through the four-way handshake. Fig. 2 presents
the handover procedure of a UE from one BS to another
BS in the AI-driven ISAC networks. It is mainly referred to
as the handover management in fog radio access networks,
whilst the initial framework does not consider sensing (SENS
in Fig. 2). Source BS transmits a handover request to the target
BS. Afterwards, the handover request acknowledges character

(ACK) is transmitted to source BS. After SENS operation,
the synchronization, uplink allocation, and the radio resource
control (RRC) signal are completed. And thereby, the resource
release is obtained by path switch and UE context release.

To illustrate the convenience raised by this sensing-aided
handover management, we have make simulation results in
Fig. 3. Similar to the mobility management in LTE and
IEEE 802.11 ax, the signaling overhead of handover can be
expressed in terms of transmission time and process time. Fig.
3 shows the signaling overhead of handover with the average
session arrival rate λ increasing. The reason why this tendency
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Fig. 3. The handover procedures in the AI-driven ISAC networks.

occurs is that more handovers occur as the average session
arrival rate λ increases. The signaling overhead is the product
of the probability of handover and the cost, including trans-
mission cost and processing cost. Thus, the signaling overhead
of handover is then increasing. As the average session arrival
rate λ increases, the overhead also increases. Compared with
communication-only scenario, communication-radar scenario
equipped with sensing session, the overhead can be saved to
some extent. Therefore, the handover procedure in AI-driven
ISAC networks can result in a significant reduction in signaling
overhead than in conventional Wi-Fi networks.

B. User Access Control in AI-driven ISAC networks

In the substantial deployment of ISAC networks, each UE
is supposed to be associated with a suitable BS, to maximize
the total throughput, namely access control. The decision of
access control is made by some matrices, such as the received
signal strength or capacity. Higher received signal strength
indicates better communication conditions, which can lead
to higher data rates and more stable connections. Besides,
capacity represents the ratio between the amount of data
actually transmitted in the wireless channel and the available
bandwidth. By optimizing access control policies, bandwidth
utilization can be improved, enabling the system to support
multiple UEs more efficiently. According to these matrices,
the UE would access the BS that occupies the highest RSS
or capacity. Subsequently, this scheme would cause frequent
handover and offloading equalization. In the future ISAC
networks, the matrices would range from the conventional
communication matrices to the radar echo matrices. The
user control scheme of federated reinforcement learning is
designed in such context. The binary index indicates the user
association in the time slot. If the UE is associated with
the BS, the binary index equals 1. Otherwise, the binary
index equals 0. Each UE is equipped with individual deep
neural networks. And the UE’s state space consists of the
user access factor and the channel state. The action space
includes the sk (t) ≜ {xk (t− 1) ;hk (t− 1) ;ωk (t− 1)} and

ai (t) ≜ {xk (t)}, respectively. The reward function is set as
the weighted sum of the communication matric and the sensing
matric. Through the deep reinforcement learning architecture,
a loss function can be obtained by the time difference of
each batch. After collecting each UE’s loss function, the
local feature model requires transmission. It is referred to
as the concept of federated learning and consists of two
stages, the selection of UE and global model aggregation. The
first stage is significant for its impact on the performance of
federated learning. The objective of federated learning is to
minimize the ergodic global loss function, and it can transform
into a minimization of the ergodic loss function. After the
appropriate UE is selected, the global model is aggregated,
utilizing common FedSGD and FedAvg. Finally, the global
feature parameters ωglobal,j (t) are updated by the local feature
parameters ωk (t).

In addition to access control factors, power control factors
and bandwidth allocated factors are also incorporated into AI-
driven ISAC networks. As to discrete access control factors,
such common deep reinforcement learning as deep Q-networks
(DQN), Dueling DQN, and Double DQN, can be utilized
to optimize. Moreover, continuous power control factor and
bandwidth allocated factor would be obtained by deep deter-
ministic policy gradient, proximal policy optimization, asyn-
chronous advantage actor-critic, etc.

IV. LEARNING-BASED INTERFERENCE MANAGEMENT IN
AI-DRIVEN INTEGRATION OF SENSING AND

COMMUNICATIONS

At present, the unlicensed spectrum includes 1-7.125 GHz
and above-45 GHz frequency bands, which supports sensing.
With respect of above-45 GHz frequency bands, the hybrid
beamforming is utilized, unlike sub-6 GHz frequency band.
The practical challenges and limitations mainly derive from the
following two aspects. Due to the higher frequency, the signal
is more easily blocked and attenuated by objects during prop-
agation, resulting in shorter transmission distances. Addition-
ally, terahertz and mmWave bands have short wavelengths, and
effective communication requires properly designed antennas
and beamforming techniques. To address the first challenge,
it requires efficient handover and access control to maintain
reliable communications. The transmission distances under
these spectrum band are short, so the frequent handover
is inevitable. The mobility management has been discussed
in the last section. As for the design of beamforming te-
chinique, intelligent sensing and management of spectrum can
be achieved. AI can help optimize the allocation and utilization
of spectrum resources, predict and adapt to spectrum demands
under different applications and network settings, and improve
spectrum utilization efficiency and performance.

Beamforming in ISAC networks is a research focus on 6G
networked sensing [11] because the above-45 GHz frequency
band (e.g. millimeter Wave or Terahertz) requires a high
number of antennas [12]. It does not accommodate the massive
MIMO in the new-style wireless communication networks.
Hybrid beamforming enables the overhead of hardware to be
far alleviated [13]. The received signal after hybrid beamform-
ing is attainable by the Saleh-Valenzuela channel model.
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Spectral efficiency is realizable with the help of the Shan-
non formula. Meanwhile, the detecting precision of different
targets’ angle-of-departures can be measured by mean-square-
error (MSE). If the MSE is transformed into a constraint and
regards spectral efficiency as the utility function, the hybrid
beamforming in ISAC networks becomes a communication-
centric optimization problem. If the objective function is to
minimize the MSE, this problem is an issue of sensing-centric
optimization.

We consider a simulation scenario in which 40 single-
antenna UEs are uniformly distributed within the floor (0.1
m of minimum inter UE distance) and located at 1 m height.
3GPP TR38.901 InH with mixed office line of sight probabil-
ity. Internal wall losses are considered statistically. A 40×40
m2 indoor sensing scenario is considered. 4 BSs are randomly
deployed in the coverage of benchmarks, including (10, 10),
(10, 30), (30, 10), and (30, 30), individually. After scattering
each BS’s location, each BS’s UE is deployed its coverage
randomly. The radius of benchmarks is set as 10 m, and the
BS’s radius is set as 10 m.

TABLE I
DETAILED SIMULATION PARAMETERS.

Parameter Value
Carrier frequency 60 GHz

Bandwidth 80 MHz
BS TX power 1 W
Thermal noise -174 dBm/Hz

The number of BSs 4
The number of BS TXs 10 - 40

BS Density 0.025 m−2

UE Density 0.25 m−2

BS digital precoding Zero forcing
Pathloss 3GPP TR38.901 InH (Release 16)

UE association Based on RSRP
Multiple access scheme OFDMA

Owing to the full-duplex feature of ISAC signal, the
interference is generated from alternate BSs between the
communication system and the sensing system. Interference
covers self-interference and mutual interference. Affected by
its receiver, the transmitted signal generates self-interference
from the UE’s transmitter. Aside from self-interference, the
shared spectrum leads to the mutual interference between dif-
ferent communication signals and radar echoes. When the echo
signal of the radar system interferes with the communication
signal, it leads to a decrease in radar performance, such as
the accuracy of target detection and resolve distances. This
requires coordination and interference management strategies
between radar and communication systems, such as time-
division multiplexing, frequency planning, and signal process-
ing techniques.

The detailed parameters used in the simulation can be found
in Table 1.

The deep learning technique deserves trying, especially in
more intricate interference settings [14]. Due to its universal
approximation principle, the deep learning can optimize the
beamforming dynamically with no interference. Whether self-
interference or mutual interference, the deep learning is appli-
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cable for inference. Meanwhile, the deep learning technique
is suitable for the FedFog network architecture.

Linear distortion in self-jamming signals is available by
linear elimination, but there is no suitable elimination method
for nonlinear distortion parts, whereas deep neural networks
are capable of approximating complex self-interference mod-
els, especially for nonlinear ones. The target of deep neural
networks is to predict the non-linear part ŷnl , based on
the data set (x, ynl). As shown in Fig. 4, self-interference
cancellation is presented. It is obvious that digital linear
cancellation can obtain approximately 40 dB cancellation.
Furthermore, the deep learning non-linear cancellation can
obtain 8 dB cancellation, which is next to the received noise.
To verify the effectiveness of deep learning method, we added
the polynoimal method. It can be seen these two method obtain
the nearly unanimous cancellation performance.

Furthermore, the existing work on deep learning, chiefly
dependent on the elaborate training set, are not flexible and
convenient. Supervised learning requires a large amount of
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labeled data for training. This labeled data requires manual
labeling, expert knowledge and time commitment. For some
domains or tasks, acquiring large-scale labeled data can be
difficult and expensive.

The unsupervised learning method gradually earns recogni-
tion and attention from the academics [15]. Fig. 5 compares
different beamforming methods on their spectral efficiency,
and the spectral efficiency reveals the performance of inter-
ference management. Besides, we also listed the supervised
learning method and the the weighted minimum-mean-square-
error (WMMSE) method. The WMMSE method is a conven-
tional one to locate the optimal solution for beamforming. The
supervised learning method derives from the training set raised
by the WMMSE method. The unsupervised learning method
and supervised learning method are in the same conditions.
The optimizer is set as Adam and the learning rate is set as
1× 10−3. Both of the methods utilize three-layer deep neural
networks. Concerning the parameters, the initial weights are
generated by the uniform distribution, and initial bias values
are set as 0.1. The first layer is 20. The second layer is 30.
The third layer is 20. Noticeably, the unsupervised learning
method performs better spectra efficiency than the supervised
learning one. In conclusion, the unsupervised learning method
is more flexible in the interference management in the ISAC
networks.

V. CONCLUSION AND FUTURE WORK

This article elaborates AI-driven ISAC networks in the
upcoming 6G era. The FedFog network architecture leverages
the CSI to aid sensing and communication. In the context
of CoMP in upcoming 6G networks, this article proposes
an innovative handover procedure by utilizing the sensing
session. On the basis of the hybrid beamforming, we design a
learning-based method to manage self-interference and mutual
interference in the AI-driven ISAC networks.

What we have discussed in this article is the part of the
theoretical foundation for AI-driven ISAC networks. There re-
main considerable challenges and open issues to be overcome
in the further work. 1) The collection and process of multi-
modal data in ISAC networks. Faced with fruitful data from
different conditions, such as frequency band, waveform, and
coding, the collected data is complicated. Accordingly, data
modalities vary with the influence of different spatio-temporal
situations and UE types. 2) The choice of supervised learning
method or unsupervised learning method. The featured data
sets require enough time and scales to construct. The scales
of provided data vary from scenario to scenario. supervised
learning method and unsupervised learning method have their
strengths and drawbacks. 3) The incorporation of mobile
edge computing into the proposed network architecture. The
tendency for communication-sensing-computing incorporation
in future wireless networks is emerging robustly. The AI-
driven ISAC networks are prospective to exploit the joint effort
of native functions and mobile edge computing.
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