
1
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Abstract—Over-the-air computing (AirComp) has recently at-
tracted considerable attention as an efficient method of data
fusion by integrating uncoded communication transmissions with
computation thanks to the signal superposition offered by the
multiple access channels. However, appropriate processing is
required to neutralize the wireless channel effect. As, internet-of-
things (IoT) applications through low-cost devices is the main tar-
get of AirComp, perfect availability of channel state information
(CSI) is not always practical, there is the need to investigate the
effect of imperfect CSI on AirComp. Specifically, we present novel
closed-form expressions for tight approximations that can be
used to design and evaluate AirComp systems. Furthermore, we
design a general optimization framework that takes into account
both magnitude and phase errors in the CSI. Finally, a pilot
retransmission policy is designed, that offers trade-off between
resources cost and the gain in the accuracy of the computations.
In order to validate its application, a utility function of the cost
of retransmission is introduced, namely, Retransmission Policy
Cost (RPC), which can incorporate the power or throughput cost
opposing to the expected gain of the selected policy. Simulations
show the deterioration caused by the imperfect CSI and highlight
the added value of the proposed policy under various system
conditions.

Index Terms—over-the-air computing, AirComp, imperfect
CSI, optimization framework, MSE minimization

I. INTRODUCTION

In 5G and beyond wireless networks, there is a paradigm
shift from human to machine type communications. The
former is characterized from a large amount of data re-
quested in bursts by individual users, while the latter from
a small amount of data, albeit continuously and from a huge
number of devices. As a result, today’s systems produce an
enormous amount of data at extremely high rates [2]. To
deal with the massive amount of distributed data, wireless
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data aggregation (WDA) through over-the-air computing (Air-
Comp) has recently emerged as an attractive technology [3]–
[6]. AirComp can achieve several goals in the network by
exploiting the superposition property of transmitted waveforms
over the multiple access channel (MAC), and appropriate pre-
and post-processing to produce a family of functions, called
nomographic such as arithmetic mean, geometric mean, etc.
The pioneering works [7], [8] and [9] provide a detailed
presentation on the computable nomographic functions over
MACs. This exploitation can lead to a significant reduction in
latency and computation load at the central processing node,
especially when the number of sensors becomes too large.

A. Literature Review

As shown in [10], the uncoded AirComp is optimal in the
presence of a Gaussian MAC with independent data sources.
This optimality is expressed in terms of the mean squared error
(MSE), which is a fundamental measure of the performance
for the discussed system. In [11] and [12], the authors present
a thorough analysis on the performance of analog computation
over wireless MACs. The integration of AirComp with popular
wireless technologies such as MIMO has received a lot of
attention from the research community [13]–[17]. In particular,
the authors in [13] investigated the joint hybrid beamforming
of a MIMO AirComp system in order to minimize the MSE
in a cost-effective way. In [14], the aim, was to minimize
the power consumption of the transmitting devises under the
constraint of minimum required MSE. In [15] an AirComp
system combined with MIMO was studied for the simultane-
ous calculation of different output target functions. In [16], the
authors design a zero-forcing beamforming transmit scheme,
they implement selection combining at the receiver side and
track an MSE outage metric. Finally, in [17], the authors
propose the study of an integrated sensing, communication,
and computation over-the-air system with MIMO and they
examine algorithms that allow the multiple functionalities of
this system to coexist. In addition, reconfigurable intelligent
surfaces (RIS) have also been examined as a way to facilitate
AirComp with higher performance gains [18], [19].

Recently, AirComp has been discussed as an attractive
technology to be implemented with federated learning in the
network edge [20]–[30]. The idea behind this is that the
gradients, which are produced in distributed machines using
local models, can be aggregated via AirComp on the base
station of the network, thus updating the global model in
an efficient way. A similar idea has been considered for
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AirComp as a means of training deep neural networks [31]. In
addition, AirComp has shown promise in a number of different
scenarios, such as in combination with aerial networks with
unmanned aerial vehicles (UAVs). More specifically, in [32],
the authors optimize the trajectory of the UAV to minimize the
time-average MSE, while in [33] they take into account CSI
imperfections when aggregating data into a UAV fusion center.
Another interesting technology that has been considered is
the use of wireless powered transfer (WPT). Since WDA is a
basic target for IoT sensor networks, WPT can assist on the
energy efficiency and functionality of these type of networks,
as studied in [34]. An interesting application was studied in
[35], where AirComp was proposed to compute the control
signal of a controller.

AirComp systems face a special set of challenges that need
to be resolved to ensure their uninterrupted and successful
operation. Precise time synchronization of the transmitting
devices is one of them, since each device must take into
account its message’s propagation delay. Moreover, carrier
frequency offset (CFO) issues, which are usually solved by
the use of high quality oscillators, need to be addressed with
different means, since AirComp devices are usually required
to be low-cost [20]. On top of that, the transmission over the
wireless channel is susceptible to path loss, fading, and noise.
To account for this, a power allocation strategy is required,
such as those presented in [3], [36], i.e., the optimal power
allocation for the transmitting devices in order to achieve
a minimum MSE under the assumption of common maxi-
mum power transmission. Finally, in [37] the same challenge
was addressed when a total maximum power transmission
constraint was imposed. The authors provided a closed-form
solution and important insights into the operation of such an
AirComp system.

B. Motivation and Contributions

Most of the aforementioned works focus on the perfect
channel state information (CSI) scenario, which is not eas-
ily guaranteed in practice, when IoT devices are utilized.
Imperfect CSI can highly deteriorate the AirComp system’s
performance, as channel information is crucial in obtaining
the correct message at the receiver. In the literature, there have
been some attempts to study the effect of imperfect CSI and its
performance [33], [38]. However, none of them look into the
general case of imperfect CSI both in magnitude and phase.
Also, none of the previous works has provided theoretical
analysis of the performance of the policies and utility functions
discussed to be used in more practical related applications of
over-the-air computing systems.

More specifically, the main contributions of this paper can
be summarized as follows:

• First, we provide a theoretical analysis based on order
statistics to gain more insights into how CSI imper-
fections affect the channel magnitude and phase. The
presented analysis is based on the proposed policy of
the perfect CSI case but the derived results can help
identify the conditions necessary for an AirComp system
to operate without suffering excessively from noisy CSI.

We also extract useful approximations that can be used
to partially estimate the performance of this policy under
imperfect CSI.

• Next, we study the problem of minimizing the MSE
through power allocation at the transmitter and gain factor
selection at the receiver. We then propose an algorithm
that uses alternating optimization for the minimization
problem, based on an approximation of the MSE at
a worst case scenario. This approach differs from that
in [38] mainly by the fact that it considers the phase
difference between the real and the estimated channel,
which is obviously the general case to be considered.
Also in contrast to [38] no assumption of accurate
phase estimation is made, which also leads to the study
of inaccuracies caused by phase differences. For better
comparison, performance analysis in terms of power
consumption for the two policies, is also provided.

• Finally, based on the theoretical analysis we propose a
retransmission round for the weaker estimated channels,
as an attempt to improve the system’s performance.
We then address the problem of finding the optimal
number of retransmissions with the aim to ensure the
efficient use of the system’s resources. For this purpose a
utility function that considers the trade-off between MSE
minimization and resource cost has been introduced and
studied. Also a closed-form has been derived that allows
to evaluate the mean value of the overhead, produed by
the utilization of the extra retransmission round, which
proves its usefulness since it takes into account practical
details of an over-the-air system.
To our knowledge, this is the first time that a utility func-
tion has been used to further improve the performance
of an over-the-air computing system besides solving an
optimization problem.

C. Structure

The rest of this paper is organized in the following way:
Section II describes the system model, the objective function to
be minimized, and the CSI estimation procedure. In Section III
we analyze the performance of the extra terms that arise from
the use of the proposed policy under perfect CSI knowledge,
due to the considered CSI imperfections. In Section IV we
investigate the optimization of MSE and in Section IV-B we
look at the use of the retransmission policy and its performance
enhancement on the system. In Section V we present the
simulation results along with extra comments and discussions.
Finally, in Section VI we draw some conclusions from our
work and note some future research opportunities that arise in
this field.

II. SYSTEM MODEL

We consider an AirComp system consisting of one receiver
that acts as a fusion center and multiple transmitting devices.
Let K be the number of transmitting devices in the AirComp
system, where each of them is independent. Assume that we
wish to calculate a function f : RK → R of all the transmitted
data, denoted as f(x1, x2, · · · , xK). If f is a nomographic
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Fig. 1: Nomographic representation of target functions and the
distortion created by the channel effect and noise.

function of the data, then there are suitable pre-processing
functions φk : R → R,∀k ∈ {1, · · · ,K} and a post-
processing function ψ : R → R such that the target function
f can be expressed as [7]–[9]

f(x1, x2, · · · , xK) = ψ

(
K∑

k=1

φk(xk)

)
. (1)

As shown in Fig. 1, function f can be precisely computed
over an ideal MAC, which is the basic idea behind AirComp.

In the context of this paper and without loss of gener-
ality, we assume that the receiver and all transmitters are
equipped with a single antenna. Then, let bk ∈ C be the
transmitting factor at the k-th device such that |bk| symbolizes
the transmitted power and ∠bk symbolizes the phase of the
transmitting signal. Similarly a ∈ C∗ symbolizes the receiver
gain factor. All transmitting devices are assumed to have a
common maximum power magnitude P , so that |bk| ≤

√
P

for all k ∈ {1, · · · ,K}.
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Fig. 2: Model of an AirComp system made up of K transmit-
ting devices and 1 fusion centre.

Next, we assume that the target function f is the arithmetic
mean of the input data. Hence, the pre- and post-processing
functions are linear on the data. We aim to calculate the com-

putation distortion between the ideal signal rideal =
∑K

k=1 xk
and the received signal given by

r = a

(
K∑

k=1

bkhkxk + n

)
. (2)

The distortion between the two signals y and y is given by
the mean squared error of the two signals as

MSE = E
[
|y − y|2

]
. (3)

Hence, (3) results into

MSE = E
[
|r − rideal|2

]
, (4)

and substituting r and rideal in (4) we obtain

MSE = E

∣∣∣∣∣a
(

K∑
k=1

bkhkxk + n

)
−

K∑
k=1

xk

∣∣∣∣∣
2
 . (5)

Furthermore, we assume that all signals and noise are
independent with to each other and all signals xk ∈ [−u, u]
have normalized variance, E[|xk|2] = 1,∀k. We also assume
that the noise n follows a complex Gaussian distribution with
E[n2] = σ2. Taking the expectation with respect to the signals
xk and noise n gives

MSE = E

∣∣∣∣∣
K∑

k=1

(abkhk − 1)xk + an

∣∣∣∣∣
2
 (6)

and equivalently from the above assumptions

MSE =

K∑
k=1

|abkhk − 1|2 + σ2|a|2. (7)

In order to study possible imperfections in the CSI, we
assume that the error in the channel estimation is modeled
as an additive random variable nk. Hence

nk ∼ CN(0, σ2) = N

(
0,
σ2

2

)
+ jN

(
0,
σ2

2

)
, (8)

are the noise samples in the k-th CSI estimation which are
uncorrelated and independent and

hk ∼ CN(0, σ2
h) = N

(
0,
σ2
h

2

)
+ jN

(
0,
σ2
h

2

)
, (9)

because of Rayleigh fading condition.
For the estimation of hk, pilot symbols of maximum

transmitting power
√
P , which are known a priori to both

transmitter and receiver, are utilized. Since AirComp systems
are mainly designed with IoT devices in mind, where low
complexity is desired, the least square (LS) channel estimation
is one of the most practical CSI methods to be used. Hence,
the baseband equivalent at the receiver is yk =

√
Phk + nk

and so the receiver assumes that yk =
√
Ph′k. Consequently,

the channel estimation is
√
Ph′k =

√
Phk + nk ⇔ h′k = hk +

nk√
P

= hk + ek, (10)

where ek ∼ CN(0, σ
2

P ) = N(0, σ2

2P ) + jN(0, σ2

2P ) is the
estimation error due to the presence of noise [39], [40]. As
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seen from the CSI estimation model, we assume that estima-
tion is made on both magnitude and phase of the channel.
Different CSI models that estimate only the magnitude or
statistical properties of the channel have not been considered
because they would only worsen the system’s performance due
to less available knowledge on the receiver. Another reason
for the chosen CSI estimation method is that because of the
vast number of transmitting devices on over-the-air computing
systems, insufficient CSI estimation will compromise all of
them and as a result, there will be greater MSE distortion.
Consequently, we can assume that the channel estimation h′k
is distributed as

h′k ∼ CN

(
0,
σ2 + Pσ2

h

P

)
= N

(
0,
σ2 + Pσ2

h

2P

)
+ jN

(
0,
σ2 + Pσ2

h

2P

)
. (11)

III. AIRCOMP WITH IMPERFECT CSI
Assuming the receiver is unaware of the CSI imperfections,

the algorithm obtained for an AirComp system with perfect
CSI in [3], [36] would lead to a combination of full power
and channel inversion methods. Applying this algorithm in
(7), would result in

MSE =

i∗∑
k=1

∣∣∣∣∣
(
a
√
P
h′k

H

|h′k|
hk − 1

)∣∣∣∣∣
2

︸ ︷︷ ︸
Full Power Terms

+σ2|a|2

+

K∑
k=i∗+1

∣∣∣∣(hkh′k − 1

)∣∣∣∣2︸ ︷︷ ︸
Inverse Channel Terms

, (12)

where i∗ is the critical number of transmitting devices that
utilize their full power as given in [3], whereas the rest of
the transmitting devices utilize the inverse channel method.
Moreover, the ascending channel ordering has been assumed,
without loss of generality, as |h′1| ≤ |h′2| ≤ · · · ≤ |h′K |. Since
the order has been taken with respect to the estimation of hk,
it is clear that the order of the actual channel gains could
be different, e.g., |h2| ≤ |h1| ≤ · · · ≤ |hK |. The number
of transmitting devices i∗est that use their full power can be
calculated based on the imperfect CSI as

i∗est = argmax
1≤i≤K

{gi(h′)}, (13)

where h′ is the vector containing the estimated CSI and

gi(h
′) =

√
P
∑i

k=1 |h′k|
σ2 + P

∑i
k=1 |h′k|2

. (14)

Due to the estimated magnitudes of the channel gain terms in
(14), i∗est ̸= i∗ in general, resulting in suboptimal performance.
On top of that, the main issue stemming from (14) is that the
incorrect values of gi will also affect a, which, in general, is
given as a = gi∗ .

Notice that, as thoroughly studied in [3], when the minimum
MSE is achieved by the corresponding gi(h′), it holds that

1√
P |hi∗est+1|

≤ gi∗est(h
′) ≤ 1√

P |hi∗est |
. (15)

This is important because it is a necessary condition that must
hold from a feasibility point of view, since a should be such
that at least the right hand side of (15) is satisfied for i∗est = i∗

to be the critical number.
In this context, it is of vital importance to study the channel

ordering, since the ones with the lowest gain are more prone
to estimation imperfections, leading both (13) and (14) to
miscalculations. The following lemma, combined with (17),
provide an answer to that.

Lemma 1: The expected value of the magnitude of the
ordered channel gains for the r-th ordered channel is given
by

E[|hr|] =
√
π

4
σh

(
K

r

)
r

r−1∑
k=0

(
r − 1

k

)
(−1)k

(K − r + 1 + k)
3
2

.

(16)

Proof: The proof is provided in Appendix A.
Moreover, the expected value of the magnitude of the error is
given by [41]

E[|ek|] =
∫ ∞

0

|ek|2

σ2
ek

exp

(
−|ek|2

2σ2
ek

)
d|ek|

= σek

√
π

2
=

√
σ2

2P

√
π

2
=

1
√
ρ

√
π

4
, (17)

where ρ is the transmit SNR.
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Fig. 3: Mean ordered channels compared to expected error
magnitude for K = 40, 50 transmitting devices (Transmit SNR
= 10dB).

In order to better illustrate the above results, Fig. 3 presents
the mean value of the order channel gains for different K.

As it is evident from this figure and calculated from (16),
(17) the channels with the lowest gain can be comparable to
the magnitude of the estimation error. Therefore, the corre-
sponding channels’ estimation is highly affected, since it is
the result of the complex addition of the true channel value
and the error. Using (16) and (17), the number of the channels
that are mostly affected by the CSI imperfection can be found,
which is of great value when designing the AirComp system.
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However, when imperfect CSI is available there are more
issues to take into account. The most important of them is that
the order of the estimated channels is very likely to be different
from the correct one, which leads to an additional error in
the minimization of MSE. Ultimately, the most affected chan-
nels will also be more susceptible to greater phase differ-
ence during CSI.

In contrast to the perfect CSI case, (12) contains an extra
term that is made up from the use of the inverse channel tech-
nique. In order to understand the effect of this term, a theoret-
ical analysis to extract approximations of its lower and upper
bounds are presented. From the system model described in
Section II, it will be |ek|2 ∼ Exponential( P

σ2 ) and the ordered
statistics Uk = |h′k|2 are derived from the general probability
distribution function (PDF) |h′|2 ∼ Exponential( P

σ2+Pσ2
h
).

First, the following lemmas are presented to aid in finding
the aforementioned bounds.

Lemma 2: The expected value of the inverse of the ordered
estimated channel gains is given by

E
[
1

Ur

]
= λ

(
K

r

)
r

r−1∑
k=0

(
r − 1

k

)
(−1)k+1 ln (K − r + 1 + k),

(18)

where r > 1 and λ = P
σ2+Pσ2

h
is the parameter of the

exponential distribution that |h′|2 follows.
Proof: The proof is presented in Appendix B.

Lemma 3: The expected value of the inverse of the ordered
estimated channel gains is given by

E
[

1

U2
r

]
= λK

(
E
[

1

Ur−1,K−1

]
− E

[
1

Ur,K

])
, (19)

where r > 2 and the second index shows the number of total
samples in the ordered statistics.

Proof: The proof is presented in Appendix C.
Let expression

S =

K∑
k=i∗+1

∣∣∣∣(hkh′k − 1

)∣∣∣∣2 =

K∑
k=i∗+1

∣∣∣∣ ekh′k
∣∣∣∣2 (20)

be the term under discussion. We are interested in calculating
the expected value of S, because of the effect it will have in the
overall performance of the perfect CSI policy under imperfect
CSI. Whenever i∗ ≥ 2 from the law of total expectation we
have

E[S] =
K−1∑
m=2

E[S|i∗ = m]P{i∗ = m}, (21)

where P{·} denotes the probability.
Then, a direct upper bound for this sum can be computed

as shown in the following lemma.
Lemma 4: An upper bound can be computed for (21) as

follows

E[S] ≤
K−1∑
m=2

P{i∗ = m}
K∑

k=i∗+1

√
E[|ek|4]E

[
1

|h′k|4

]
, (22)

where it is well known that

E[|ek|4] =
2

λ|ek|2
=

2

ρ2
, (23)

where λ|ek|2 = P
σ2 and ρ is the transmit SNR.

Proof: The bound can easily be computed by taking the
Cauchy-Schwarz inequality in (21) multiple times.

From Lemma 2, Lemma 3 and (23) we can evaluate the
upper bound described by (22). Since the Cauchy-Schwarz
inequality was used multiple times to derive a closed-form
expressions, the bound will not be too tight. In order to get a
better view of the behavior of S we can examine a different
set of bounds. Due to the channel ordering, it is trivial to show
that S is upper bounded by S′ and lower bounded by S′′ that
are given as

S′ =

K∑
k=i∗+1

∣∣∣∣ ek
h′k−1

∣∣∣∣2 (24)

and

S′′ =
K−1∑

k=i∗+1

∣∣∣∣ ek
h′k+1

∣∣∣∣2 , (25)

respectively.
Theorem 1: In cases where the noise is sufficiently small,

the expected value of S′ and S′′ can be tightly approximated
by the following expressions

E[S′] =
σ2

P

K−1∑
m=2

P{i∗ = m}
K−1∑
r=i∗

E
[
1

Ur

]
(26)

and

E[S′′] =
σ2

P

K−2∑
m=1

P{i∗ = m}
K∑

r=i∗+2

E
[
1

Ur

]
(27)

Proof: Due to the correlation between ek and h′k, the
presented analysis relies on the assumption that |ek|2 ≈
E[|ek|2] = σ2

P , since |ek|2 ∼ Exponential( P
σ2 ). It is important

to note that this is based on the practical assumption that
the statistical mean of the noise is known to the receiver.
Therefore, our assumption is a consequence of the p.d.f. that
the error ek follows due to the presence of noise and it is
straightforward to get that E[|ek|2] = E[|nk|2]

P = σ2

P because of
(8). Also as assumed, for high values of transmit SNR, where
P ≫ σ2, the channel estimation becomes almost independent
of the error. Indeed if we carefully examine (16), (17) we can
see that for increasing transmit SNR, the mean value of the
error will decrease by a factor of 1/

√
ρ.

We start by taking into account the inequalities (24) and
(25). (24) holds for 1 ≤ i∗ ≤ K − 1 and (25) holds for
1 ≤ i∗ ≤ K − 2 and i∗ = K results in the use of the full
power technique. This means that

Uk =
1

λ

k∑
j=1

Zj

K − j + 1
, (28)

where Zj are random variables that follow the normalized
exponential PDF [42] and λ = P

σ2+Pσ2
h

. Observe that by the
definition in (28) and trivial inequalities

1

λ

k∑
j=1

Zj

K − k + 1
≥ Uk ≥ 1

λ

k∑
j=1

Zj

K
(29)
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holds. Also, it is known that the random variable Xk =
1∑k

j=1 Zj
follows the inverse Gamma distribution and has mean

value equal to 1
k−1 [43]. Obviously, this holds for k > 1 and

equivalently i∗ ≥ 2. Using the law of total expectations for
the left-hand side (LHS) of (26) we get

E[S′] =

K−1∑
m=2

E[S′|i∗ = m]P{i∗ = m}, (30)

where P{·} denotes the probability. From (30) and assuming
sufficiently small noise we can get

E[S′] ≈ σ2

P

K−1∑
m=2

P{i∗ = m}
K−1∑
r=i∗

E
[
1

Ur

]
. (31)

Following the same way for (25) we get

E[S′′] ≈ σ2

P

K−2∑
m=1

P{i∗ = m}
K∑

r=i∗+2

E
[
1

Ur

]
(32)

and the proof is completed.
Calculating sums with the expression E[ 1

Ur
] can be com-

putationally difficult in the general case. Therefore, we aim
to further simplify the aforementioned approximations of
E[S], leading to closed-form expressions being obtained that
approximate (26) and (27).

Corollary 1: Expressions (26) and (27) can be further
relaxed with the help of harmonic numbers as

E[S′]

K
≤ 1

1 + ρσ2
h

K−1∑
m=2

P{i∗ = m}(HK−2 −Hi∗−2) (33)

and

E[S′′]

K
≥ 1

1 + ρσ2
h

K−2∑
m=1

P{i∗ = m}
(
HK−1 −Hi∗ − K−i∗−1

K

)
,

(34)
where ρ denotes the transmit SNR and the harmonic numbers
are defined as Hk = ln k+ γ+ 1

2k +O
(

1
k2

)
, with γ denoting

the Euler-Mascheroni constant [44].
Proof: By the right-hand side (RHS) of (29) we can write

E[S′] ≤ σ2

P
λ

K−1∑
m=2

P{i∗ = m}
K−1∑
r=i∗

K

r − 1
(35)

which leads to (33). Also, By the LHS of (29)

E[S′′] ≥ σ2

P
λ

K−2∑
m=1

P{i∗ = m}
K∑

r=i∗+2

K − r + 1

r − 1
(36)

which equivalently leads to (34) and the proof is completed.

As it can be observed from the derived approximations,
the increase of transmit SNR will reduce the effect of the
inverse channel terms. However, we can see that for values
of i∗ similar to the ones derived in the perfect CSI case
where i∗ is considerably less than K, the harmonic numbers
HK−2, HK−1 will dominate in (33) and (34), respectively.
Considering the asymptotic approach of the harmonic num-
bers, we can see that the behavior of both approximations
slowly diverge for increasing values of K. From the above, it

can be seen that in order to neutralize the uncertainty caused
by imperfect CSI, more transmitting devices should transmit
with maximum power, i.e., i∗ is larger.

Remark 1: There are a few useful observations that we can
use to evaluate the performance of the given approximations in
terms of our original assumption and how it will affect them.

• With the increase of transmit SNR, ρ, the effect of
the error on the estimation of the channels is reduced,
resulting in better approximations.

• With the increase of the number of transmitting devices
on the system, K, more channels will be affected by
errors in estimation, as showcased in Fig. 3, resulting
in less accurate approximations.

IV. OPTIMIZATION FRAMEWORK
As it was shown in the previous section, imperfections in

CSI can deteriorate the performance, even for small levels
of noise. Solutions that ignore the possible imperfections
that result in optimum controls for the perfect CSI case, by
assuming |h′k| = |hk|, ∀k ∈ {1, · · · ,K}, diverge remarkably
from the optimal strategy.

While the mathematical analysis in Section III produced
some interesting approximations that can be effectively uti-
lized in the design of an AirComp system, in order to improve
the overall performance, we propose a novel optimization
framework that takes into account all the extra error terms. To
this end, we make the practical assumption that the statistical
mean of the noise is known to the receiver. First of all, since
a ∈ C∗ we define ∠a = ap to denote its complex phase. By
setting ∆hk = ∠(hk, h′k), using the fact that h′k = hk + ek,
and (4), the optimization problem of minimizing the MSE is
expressed as

min
a,b

MSE =
∑K

k=1

[
(|a||bk||hk|)2 + 1

]
−2
∑K

k=1 (|a||bk||hk| cos (ap +∆hk)) + σ2|a|2,
s.t. C1 : |bk| ≤

√
Pk, ∀k.

(37)
Theorem 2: The optimal power distribution is given by

|bk| = min

(√
P ,

cos∆hk
a|hk|

)
. (38)

Proof: In order to use the phase factor for minimization
in (37) we will need to approximate the term cos(ap +
∆hk) and find its extrema. However, from trigonometry,
cos (ap +∆hk) = cos ap cos∆hk − sin ap sin∆hk and, as
such, any approach to approximate this quantity without
knowledge about the sign of the phase difference ∆hk cannot
be made because the sign of sin∆hk will be affected. Since
the sign of ∆hk is affected by the phase of the noise in the
CSI estimation, we cannot make any assumptions about it and
thus we cannot further use ap in minimization. Due to the
randomness of ∆hk, choosing a specific ap could worsen the
MSE. Therefore, with no prior knowledge of ∆hk, on average,
the best option is to set ap = 0. Hence, from now on we
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Fig. 4: Worst case approximation of phase difference ∆hk.

will consider a to be a real number and we rewrite the mean
squared error as

MSE =

K∑
k=1

[
(a|bk||hk|)2 + 1

]
− 2

K∑
k=1

(a|bk||hk| cos∆hk) + σ2a2.

(39)

In order to find the extrema for every variable |bk| we take
the first order partial derivative to be equal to zero, thus:
∂MSE
∂|bk| = 0 ⇔ |bk| = cos∆hk

a|hk| and since |bk| is the power
magnitude at device k, it must also be 0 ≤ |bk| ≤

√
P .

Consequently, the best power distribution will be given by
(38) and, thus, the proof is completed.

We can observe that the real MSE is at this point related to
the estimations h′k only through the terms cos∆hk. Assuming
the imperfections of CSI due to the noise have a constant
magnitude of |ek|, then from Fig. 4, the worst case scenario
for these terms arise when the phase of the imperfection is such
that h′k becomes tangent to the circle of constant radius |ek|.
This approximation will be quite accurate when the conditions
are such that the mean estimated error can be assumed less
than the mean of the estimated channels, i.e. E[|hk|] > E[|ek|],
and using it we obtain

cos∆hmax
k =

√
|h2k| − |e2k|
|hk|

=
|h′worst

k |
|hk|

. (40)

Hence, if we consider the worst case scenario, where the
maximum phase difference is achieved, we have the following
relations regarding the relation between the real channel con-
ditions, the estimation error and the channel estimation itself
[41]

|h′k|2 + |ek|2 = |hk|2, (41a)

cos∆hk = cos∆hmax
k =

|h′k|
|hk|

. (41b)

In order to approximate the estimation error, due to the
knowledge of its statistics alone, we will use the mean value
as the best unbiased estimator, thus

|ek|2 ≈ E[|ek|2] =
E[|n|2]
P

=
σ2

P
= c, (42)

for all k. This approach provides a tight approximation of
the sinusoidal term for the greater majority of the involved
channels, except for those that are greatly affected by the noise.
On top of that, this method accounts for the worst case so the

actual performance can possibly be better in a more favorable
setting.

Using the approximations (41a), (41b) and (42), combined
with the attainable values of |bk| given by Theorem 2, (39)
can now be expressed as

MSEi(a) =

i∑
k=1

∣∣∣∣ (a√P |h′k| − 1
) ∣∣∣∣2 + a2(σ2 + iP c)

+ c

K∑
k=i+1

1

|h′k|2 + c
,

(43)

where i ∈ {1, · · · ,K} symbolizes the possible values of the
critical number and the receiver gain, a, is the variable of
interest. Following this, the optimal scaling factor ai is given
in Lemma 5.

Lemma 5: The optimal a that minimizes (43) is given by

a = ai =

√
P
∑i

k=1 |h′k|
(σ2 + iP c) + P

∑i
k=1 |h′k|2

. (44)

Proof: Considering (43) as a quadratic polynomial in
terms of a and using a well known property for the global
extremum of this function, we get the global minimum for
every i, that is given by differentiating (43) in terms of ai to
finally get (44), and thus, the proof is completed.

At this point, it is observed that (44) will be a tight ap-
proximation for high SNR or good channel conditions. This is
so, because, due to our approximation the power magnitudes,
which will be |bk|opt = cos∆hk

a|hk| ≈ |h′
k|

a|hk|2 ≈ |h′
k|

a(|h′
k|2+c) by

(38), are points of the function f(x) = x
a(x2+c) which is an

increasing and then decreasing function in terms of x that
achieves its maximum at x =

√
c. Hence, for these to be in

descending order we need |h′1| ≥
√
c. Otherwise, we observe

that the receiver coefficient a that will be calculated can lead
some of the weaker estimated channels to use the inverse
channel method. Finally, (44) is quite similar to the optimum
value of a for the perfect CSI case, but will always be less
than gi. In other words, the uncertainty caused by the imperfect
CSI will force the system to use more transmitting power in
an attempt to counter these imperfections.

Corollary 2: At least one device must use its full power
during transmission.

Proof: The proof is given in Appendix D.
So, it suffices to solve K subproblems for i ∈ 1, ...,K and,

then, compare the minimum values MSEmin
i = MSEi(ai).

Theorem 2 dictates that in order to get a feasible solution for
ai, it must hold that

|h′i|
(|h′i|2 + c)

√
P

≥ ai >
|h′i+1|

(|h′i+1|2 + c)
√
P
. (45)

If (45) is not satisfied, the following lemma can be used to
search for feasible solutions.

Lemma 6: Let Ii be the interval(
|h′

i+1|
(|h′

i+1|2+c)
√
P
,

|h′
i|

(|h′
i|2+c)

√
P

]
. Then, if ai <

|h′
i+1|

(|h′
i+1|2+c)

√
P

there exists a ∈ Ii+1 such that a better MSE can be achieved
and if ai ≥ |h′

i|
(|h′

i|2+c)
√
P

there exists a ∈ Ii−1 such that a
better MSE can be achieved.
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Proof: The proof is given in Appendix E.
The feasibility condition along with Lemma 6 effectively

show that whenever ai is not feasible with regards to power
allocation, then there is another value of a that would achieve
better MSE. Since at least one user must use its full power
as proved in Corollary 2 and there are finite intervals of the
form Ii, a global minimum for MSE exists and its optimal
receiver factor a will be such that it equals a feasible value of
ai. Thus, we only need to check the values MSEi(ai) when
ai is feasible. This way we can calculate i∗ and then estimate
ai and bk for all k.

Theorem 3: The critical number for the imperfect CSI policy
is given by

i∗ = argmin
1≤i≤K

MSE(ai), (46)

Correspondingly, from Lemma 5, the optimum a will be given
as a∗ = ai∗ .

It is important to note that this approach differs from the
one followed in [38] in its mathematical derivation, but also
in the fact that our approximation covers the more general
case of phase misalignment as opposed to the phase alignment
considered in [38].

A. Power Consumption

In this subsection, we compare the power efficiency of the
imperfect CSI policy obtained by the optimization framework
and the perfect CSI policy that ignores channel imperfections.
Let the critical number of the perfect CSI policy be i∗1 and the
critical number of the imperfect CSI policy be i∗2. We define
the total power consumption P to be given by

Ptot,1 =

K∑
k=1

|bk|2 = Pi∗1 +
1

g2i∗1

K∑
k=i∗1+1

1

|h′k|2
(47)

for the perfect CSI policy and by

Ptot,2 =

K∑
k=1

|bk|2 = Pi∗2 +
1

a∗2

K∑
k=i∗2+1

|h′k|2

(|h′k|2 + c)2
(48)

for the imperfect CSI policy. To examine the power efficiency
of each policy, we introduce the following lemma.

Lemma 7: If gi < 1
|h′

i+1|
√
P

then ai <
|h′

i+1|
(|h′

i+1|2+c)
√
P

Proof: The proof is given in Appendix F.
With the help of Lemma 7, the following theorem is presented.

Theorem 4: The imperfect CSI policy always consumes
more power than the perfect CSI policy that ignores imper-
fections, i.e. Ptot,2 > Ptot,1.

Proof: Let the number of devices transmitting with full
power when the perfect CSI policy is used be i1 and the
number of devices transmitting with full power when the
imperfect CSI policy is used, i2. Similarly to Lemma 6 and
also accordingly with [3], whenever there exists i1 > i such
that MSEi1 < MSEi for the perfect CSI policy, there will
also exist i2 > i such that MSEi2 < MSEi for the imperfect
CSI policy. The minimum i for which gi <

1
|h′

i+1|
√
P

is not
satisfied will be the critical number i1 = i∗1 for which the
minimum MSE is achieved for the perfect CSI policy, which

means that necessarily i∗2 ≥ i∗1 will hold. By the definition
in (13), i∗1 is such that gi∗1 > gi∗2 and whenever i∗2 > i∗1, as
proven in [3], it will also hold that gi∗2 >

1
|h′

i∗2
|
√
P

. Also notice

that for feasibility reasons it will be a∗ <
|h′

i∗2
|

(|h′
i∗2

|2+c)
√
P

. From

these inequalities, we derive that

gi∗1
a∗

>
|h′i∗2 |

2 + c

|h′i∗2 |
2

>
|h′k|2 + c

|h′k|2
, ∀k ∈ {i∗2 + 1, · · · ,K}. (49)

If the equality i∗2 = i∗1 holds, then by the definitions in (14),
(44) it will be

gi∗2
a∗

= 1 +
i∗2Pc

σ2 + P
∑i∗2

k=1 |h′k|2
>

|h′i∗2+1|2 + c

|h′i∗2+1|2
(50)

which after simplifications holds because gi∗2 ≥ 1
|h′

i∗2+1
|
√
P

.

Thus, from (50) we are back in (49). Due to full power
transmission we get

Pi∗2 > Pi∗1 +
1

g2i∗1

i∗2∑
k=i∗1+1

1

|h′k|2
(51)

and by applying (49) for i∗2 + 1 ≤ k ≤ K and summing up
we get

1

a∗2

K∑
k=i∗2+1

|h′k|2

(|h′k|2 + c)2
>

1

g2i∗1

K∑
k=i∗2+1

1

|h′k|2
. (52)

Combining (51) and (52) completes the proof of Theorem 4.

B. Pilot Retransmission Policy

From the aforementioned theoretical analysis, it is clear
that, statistically, there will be a number of channels whose
estimations will be greatly affected by the noise-induced error
during the CSI procedure. In order to limit the effect of this in
the MSE of the system better estimations for the channels are
desired. As a result, we can consider the possibility of making
a second CSI estimation round, at least for some channels.
One option is for the transmitting devices with the weaker
channels to retransmit pilot symbols and then use the average
of the two estimations as the new correct estimated channel.
For this approach we propose the following heuristic algorithm
in order to find the number of channels that will need to re-
estimate their channels. In order to track the trade-off between
the extra resources required for the retransmissions and the
resulting MSE, we propose and define the following utility
function, called the Retransmission Policy Cost (RPC) as

ζ(k) = C(k)d
(
E[MSEk]

K

)f

, (53)

where C(k) symbolizes the cost in resources needed for k re-
transmissions, E[MSEk]

K denotes the MSE for k retransmissions
and our primary concern over the available resources is taken
to be the selected cost. Moreover, parameters {d, f} ∈ R2

are considered to be weights for the cost and the MSE,
respectively. Any combination of parameters can be used to
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give emphasis to either the cost in terms of resources for the
retransmissions or its maximum error tolerance. It is important
to highlight that the proposed RPC can be changed and its
weight parameters can be adjusted whenever CSI estimation
takes place to better capture the current state and needs of the
system. Without loss of generality, the time penalty required
for the retransmission can be included in the RPC metric,
but given that the decrease of E[MSE] is vital for the correct
interpretation of the superimposed signals, the added overhead
due to the added retransmissions is negligent for practical
systems.

In order to evaluate in terms of RPC the proposed policy,
we consider two special cases of interest.

Case 1) Power cost related RPC: In this case the primary
cost is considered to be the power resources available to
the transmitting devices. To obtain the first, necessary round
of channel estimates exactly K power resources are needed.
Assuming that each power resource is equal to 1, then, for
every retransmission, 1 additional power resource is needed
from the corresponding device. Thus, for k retransmissions,
Cpower(k) = (K + k)P and according to (53) the minimum
of RPC is studied. RPC is then expressed as

ζ(k) = [(K + k)P ]d
(
E[MSEk]

K

)f

. (54)

Case 2) Throughput cost related RPC: Another interesting
use of the RPC function would be to consider the lost
information per transmission, i.e., the added overhead to the
transmission, as the cost of the retransmissions. Then, we
can use the ergodic capacity to find the information lost
for every retransmission. In this context, since the channel
estimation is performed for each device individually, for
comparison we will assume each device to be transmitting its
data in a typical one-to-one communication link. Considering
this, for k retransmissions, we define the throughput cost as
Cthr(k) = E[Ctr,total] +

∑k
l=1 E[Ctr,l], where E[Ctr,total] =∑K

l=1 E[Ctr,l] symbolizes the total information lost for the
initial CSI estimation round, before any retransmissions take
place. In this scenario, RPC is expressed as

ζ(k) =

(
E[Ctr,total] +

k∑
l=1

E[Ctr,l]

)d(
E[MSEk]

K

)f

. (55)

For the calculation of the values of ζ, we will use the following
lemma in order to evaluate the throughput cost for every
ordered channel.

Lemma 8: The ergodic capacity of the ordered channel gains
is given by

E[Ctr,r] =
r

2 ln 2

(
K

r

) r−1∑
m=0

(
r − 1

m

)
eb

bρσ2
h

(−1)m+1Ei(−b),

(56)

where b = K−r+1+m
ρσ2

h
and Ei(x) = −

∫∞
−x

e−t

t dt denotes the
exponential integral function.

Proof: The proof is presented in Appendix G.

It is worth pointing out that since (56) calculates the mean
information loss, it essentially gives a measure of the extra
overhead that will be caused by a retransmission for every
channel. Therefore, the Throughput cost related RPC can be
used to take into account the additional overhead of the system.

By definition, RPC expresses a trade-off between a consid-
ered cost in resources and the improved MSE achieved by the
use of these resources. Then, according to (54) and (55), the
preferable number of retransmissions will be given by

k = argmin
0≤k≤K

{ζ(k)}, (57)

where k = 0 would result in no retransmission.

V. SIMULATION RESULTS

In this section, simulation results are presented to validate
the aforementioned analysis. The fading channels have been
modeled as Circular-Symmetric Complex Normal distributed
variables CSCN(0, 1) to simulate Rayleigh fading conditions.
Unless otherwise stated, the transmit SNR is set as ρ = 10dB.
We apply Monte Carlo analysis averaging over 104 channel
realizations (snapshots). Finally, we define the average MSE
per user as AMSE = E[MSE]/K and the average per user P
as P = E[P]/K.

In Fig. 5, the performance of the perfect CSI algorithm
and the proposed optimization technique for imperfect CSI
under imperfect channel estimation is presented. As it can be
observed, ignoring CSI imperfections not only achieves worse
AMSE values, but also fails to converge to a solution as the
number of transmitting devices in the system increases. In
contrast to this, the proposed technique both achieves better
performance and has a diminishing behavior for increasing
number of transmitting devices. Apart from that, it is signifi-
cant to notice that this behavior is mainly a result of the inverse
channel term achieved by the use of the algorithm that ignores
the imperfect CSI.

It is worth noting that the robustness that the proposed
policy exhibits for the increasing number of transmitting
devices can be quite important in practical applications of
over-the-air computing systems, depending on the use of
the resulting target function itself. For example, in federated
learning studies where the target function is itself a parameter
that updates a global training model, the diverging behavior
of the perfect CSI algorithm under imperfect CSI can be of
pivotal significance to the functionality of the model since it
could lead to more iterations taking place or divergence of the
parameters of the model.

In Fig. 6, the comparison between the mean value of the
inverse channel terms, the proposed bound (22), as well as
the derived approximation expressions, as given by (26), (27),
(34), and (18) combined with Lemma 2 is illustrated. Apart
from confirming the validity of the theoretical analysis of
this approach, it is important to observe that the growth rate
is indeed logarithmic. On top of that, an important remark
stems from the fact that the tight lower approximation seems
to provide an asymptotic approximation of the term under
investigation. Hence, studying the statistical probability of i∗
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Fig. 5: MSE performance and distinct terms vs the number of
transmitting devices in the AirComp system accounting or not
for imperfect CSI (Transmit SNR = 10dB).

and combining it with (32) and (18), especially when the noise
is sufficiently low, can provide useful insights for the design of
a system that is going to use the policy that does not account
for the CSI imperfections.
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Fig. 6: Inverse channel terms vs the number of transmitting
devices in the AirComp system for the various approximations
(Transmit SNR = 10dB).

In Fig. 7 we look at the AMSE performance of different
used policies for varying transmit SNR. Firstly, it is impor-
tant to notice that the full power policy not only achieves
large AMSE, but it fails to improve its performance for
increasing SNR in contrast to every other discussed policy.
This behavior is expected because in the full power policy
no channel cancellation is expected which is necessary to
correctly estimate the target function of interest. Also it is
important to note that the inverse channel policy cannot reach
the performance level of the perfect and imperfect CSI policies
under imperfect CSI. This is a result of two factors, the non-
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100

101

A
M
SE

SNR (dB)

 Inverse Channel Policy
 Full Power Policy
 Perfect CSI policy under Imperfect CSI
 Imperfect CSI policy under Imperfect CSI
 Perfect CSI policy under Perfect CSI

Fig. 7: AMSE vs transmit SNR for different policies and CSI
conditions for K = 50 transmitting devices.

vanishing inverse channel term described by (12), which would
be omitted in the case of perfect CSI, and the presence of
noise since the receiver factor in this policy increases its effect.
Concerning the proposed policy we can see that it outperforms
the perfect CSI policy under imperfect CSI, especially in
the low SNR region. This behavior is to be expected since
lower transmit SNR results in greater estimations errors and
thus, it is imperative to take this effect into consideration.
We would like to point out that the performance improvement
even for more practical scenarios like 10dB, is more than 20%,
which pinpoints the usefulness of the proposed policy. As it is
obvious, in the perfect CSI case the AMSE is smaller than in
the imperfect CSI case. In order to get a more favorable AMSE
under the latter, one could use the proposed RPC functions to
achieve further performance improvements.

As it can be seen in Fig. 8, the perfect CSI policy does
indeed require less power than the imperfect CSI policy re-
gardless of the transmit SNR, validating Theorem 4. However,
it is worth noting that for increasing K the latter shows the
same converging behavior as the former, which means that
the power per device is ultimately reduced in both cases.
These results, however, do not take into account the MSE
performance.

In Fig. 9 the retransmission policy, which was discussed
in Section IV-B, is presented in terms of average MSE. For
any retransmitting device we consider the new estimation of
the channel to be given by h′′k =

h′
k,1+h′

k,2

2 , where h′k,1 is the
initial estimation of k-th channel and h′k,2 is the re-estimation
made by the proposed retransmission. For comparison reasons,
the retransmissions have also been simulated for random
selections of channels instead of the weaker ones as proposed.
As expected both policies achieve better MSE values than the
no-retransmission policy due to the better channel estimations
for their corresponding re-estimated channels. We can see that
the proposed policy achieves a much better improvement rate
over the random channel selection policy. It is important to
point out that this improvement is greater mainly for the
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Fig. 8: P performance vs the number of transmitting devices
in the AirComp system accounting or not for imperfect CSI .

first few weaker channels, which confirms the idea that a
re-estimation of these channels can be used to decrease the
MSE of the system. We can also observe that though a bigger
number of retransmissions can achieve further performance
improvement, both policies tend to converge on the same MSE,
because a lot of channel re-estimations will now be common.

From Fig. 10, we also notice that for the available resources
at the transmitting devices, the preferable technique would
be to make use of them in order to estimate more channels
rather than better estimating a smaller number of channels.
In order to observe this we simulate two scenarios, a first
one where only 1 retransmission is made per channel and a
second one where 2 retransmissions are made per channel.
For the latter, the new estimation of the k-th channel is
h′′k =

h′
k,1+h′

k,2+h′
k,3

3 . Comparing the two resulting curves for
an even amount of resources (so that the 2 retransmissions
can be made per channel) we observe that the single round
retransmission achieves better performance in terms of AMSE.

In Fig. 11a the power related RPC metric is presented, i.e.,
Cpower(k) is examined by means of (54), with regards to the
number of retransmissions. By (57) we can see a minimum
exists and it is global. For the global minimum observed at k =
2 we can derive from Fig. 9 that an improvement of almost 7%
is already achievable for only two channel re-estimations. It is
important to point out that it appears that for the statistically
weaker channels all retransmission choices achieve a better
trade-off between power and MSE than the original proposed
scheme without any retransmissions. Notice that the number of
channels that achieve better trade-off coincide with the number
of channels that were statistically found to be more error-prone
as shown in Fig. 3. This also confirms the idea, on which the
retransmission policy was based.

For comparison, in Fig. 11b we consider the proposed RPC
with respect to power resources cost against a no retransmis-
sions system which has greater maximum transmission power
as a result of its conservation of power resources for no
additional pilot symbols. In this context every pilot symbol
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Fig. 9: MSE vs the number of retransmission with various
policies (Transmit SNR = 10 dB).
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Fig. 10: MSE vs the number of retransmission for 1 or 2
retransmission rounds for every channel (Transmit SNR = 10
dB).

is transmitted with maximum power,
√
P , as explained in

Section II. For the no retransmissions scheme for k additional
pilot symbols, the would-be consumed power is uniformly
distributed among all K transmitting devices, thus the new
maximum transmission power P ′

max becomes

P ′
max =

√
P + k

√
P

K
=

√
P

(
K + k

K

)
. (58)

In Fig. 11b, the black curves show the AMSE of the
two policies studied in Fig. 11a for increasing number of
retransmissions, while the red curve shows the AMSE of the
no retransmission system for increasing maximum transmis-
sion power as described by (58). Studying Fig. 11b, we can
observe that for a few retransmissions the MSE improvement
gain is greater than the gain for a similar system with no
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Fig. 11: The proposed policy, the random policy, and the original scheme without retransmission for d = f = 1 and Pk = 1, ∀k
when power consumption is considered as cost.

retransmissions and greater available power transmission at
each user. Therefore, we can conclude that the utilized re-
sources for some additional pilot symbols have greater impact
than the maximum transmit SNR of each user. This behavior
is expected, because as explained in Section III the main
difficulty that arises in an imperfect CSI scenario is due to the
fact that the worst channels’ estimation will be greatly affected
by the imperfections and thus, a more accurate estimation of
them should be preferable over some additional transmission
power. Although this may seem counter-intuitive, we would
like to point out that in over-the-air systems, unlike other
communication models, greater transmission power does not
guarantee better results since the objective is the calculation of
a target function and not the detection of the received symbols.
In fact, as we can see from Fig. 7, the maximum power policy
is the most energy-greedy, but clearly fails to achieve the MSE
levels of our proposed optimal policy.

In Fig. 12 we present the throughput RPC for an increasing
number of retransmissions as well as the corresponding mean
throughput loss. Similarly to Fig. 11a, with the power RPC, in
Fig. 12, with the throughput RPC expressed in (55), we can see
that by (57) a minimum exists, it is global and it appears that
for the statistically weaker channels all retransmission choices
achieve a better trade-off between throughput and MSE than
the original proposed scheme without any retransmissions.
Thus, it is possible to choose the number of retransmissions in
such a way, so that both previously discussed RPC functions
will achieve better trade-offs. It is important to notice that in
the throughput related RPC due to the ordered channels, every
calculated term has already a different weight and, hence,
every term has a different contribution in E[Ctr,total]. This is
evident by examining the gap in mean throughput loss between
consecutive points. As expected, the lower the channel gain is,
the smaller the corresponding mean throughput loss is, which
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Fig. 12: Retransmission Policy Cost vs the Number of Re-
transmissions for the proposed policy and the original scheme
without retransmission for d = f = 1 and Pk = 1, ∀k when
the throughput loss is considered as cost.

justifies the proposed policy and also explains the behavior of
the RPC curve.

Regarding the RPC utility function cases, it is worth em-
phasizing on the fact that depending on the application of the
over-the-air computing system, an AMSE threshold could be
necessary to ensure functionality. In this case, further AMSE
decrease can be obligatory. Also the fact that the overhead
caused by every retransmission, which is expressed as the
loss of transmitted information for every retransmission, can
be explicitly calculated by Lemma 8 allows various RPC
functions to be used while considering fundamental operating
parameters of the system. Thus, RPC could offer a systematic
way to handle the system’s performance while simultaneously
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making considerate usage of its resources to comply with
operational constraints of the system’s application of interest.

VI. CONCLUSIONS AND FUTURE EXTENSIONS

In this paper, an AirComp system under imperfect CSI as-
sumptions was considered. The detrimental effect of imperfect
CSI was presented for the MSE, and insightful approximations
are derived to aid in the design of such systems. Moreover, a
comprehensive analysis on how channel estimation errors af-
fect the AirComp system was presented and a novel optimiza-
tion framework to minimize MSE under those conditions was
proposed. In order to counter the effect of the imperfections, an
adaptive policy based on pilot retransmission was presented,
where the proposed policy shows the potential to greatly
improve the performance. Moreover, a new utility function
was presented alongside the retransmission policy to showcase
the efficiency of the approach. Extensive simulation results
were presented to validate the effectiveness of the proposed
analysis, showcasing that it can offer great insights into the
design of AirComp systems. We note that the findings of this
paper delve deeper into the design of more practical AirComp
systems and they can form the basis for possible extensions
in multiple-input multiple-output (MIMO) cases and federated
learning.

APPENDIX A
PROOF OF LEMMA 1

We start the proof by presenting an analysis based on order
statistics, in order to relate the mean estimation error with the
mean of the magnitude of the ordered channels. We denote the
correct channel gain ordering in the following way |hcor1 | ≤
|hcor2 | ≤ · · · ≤ |hcorK |. From the order statistics we can find that
every ordered sample Ur = |hcorr | from a total of K samples
has the following PDF

fUr (ur) =
K!

(K − r)!(r − 1)!

2ur
σ2
h

× exp

[
−u

2
r

σ2
h

(K − r + 1)

] [
1− exp

(
−u

2
r

σ2
h

)]r−1

.

(59)

Hence, the expected value E[Ur] can be calculated by

E[Ur] =

(
K

r

)
r

∫ ∞

0

2u2r
σ2
h

exp

[
−u

2
r

σ2
h

(K − r + 1)

]
×
[
1− exp

(
−u

2
r

σ2
h

)]r−1

dur. (60)

Setting t = ur

σh
we obtain

E[Ur] = 2σh

(
K

r

)
r

∫ ∞

0

t2 exp
[
−t2(K − r + 1)

]
×
[
1− exp (−t2)

]r−1
dt

= 2σh

(
K

r

)
r

∫ ∞

0

t2e−Kt2 [et
2

− 1]r−1dt. (61)

Using binomial expansion and that
∫∞
0

exp (−mt2) =√
π
4m and after some algebraic manipulations, after the in-

tegration, we get

∫ ∞

0

t2e−Kt2(et
2

− 1)ndt =

=
1

2

√
π

4

n∑
k=0

(
n

k

)
(−1)k

1

(K − n+ k)
3
2

. (62)

Then, we can easily get (16) from (61) and (62), and, thus,
the proof is concluded.

APPENDIX B
PROOF OF LEMMA 2

Using ordered statistics for Ur we know that the PDF is
given by

fUr (ur) =

(
K

r

)
rλe−λur(K−r+1)(1− e−λur )r−1dur. (63)

For r = 1 it is straightforward that

E
[
1

U1

]
= λK

∫ ∞

0

e−tK

t
dt = +∞, (64)

since the function g(t) = e−tK

t is continuous in I = (0,+∞),
g(t) > 0,∀t ∈ I and limt→∞ g(t) = 0, limt→0+ = +∞.
Setting t = λur the expected value will be equal to

E
[
1

Ur

]
= λ

(
K

r

)
r

∫ ∞

0

1

t
e−tK(et − 1)r−1dt. (65)

For convenience let Ir =
∫∞
0

1
t e

−tK(et − 1)r−1dt and also
m = r − 1. Applying integration by parts and binomial
expansion

Ir = ln (t)e−tK(et − 1)m
∣∣∣∣∞
0

−
∫ ∞

0

ln (t)
[
e−tK(et − 1)m

]′
dt

=

m∑
k=0

(
m

k

)
(−1)k

[
(K −m+ k)

∫ ∞

0

ln (t)e−t(K−m+k)dt

]
=

m∑
k=0

(
m

k

)
(−1)k

(∫ ∞

0

ln

(
z

K −m+ k

)
e−zdz

)
. (66)

Notice that the first term on the integration by parts is equal
to 0 because for t→ +∞ we can prove that

lim
t→+∞

[
ln (t)e−tK(et − 1)m

]
= lim

t→+∞
ln (t)P(e−t)

= lim
t→+∞

ln t
1

P(e−t)

= lim
t→+∞

1
t

− e−tP ′(e−t)
P2(e−t)

= lim
u→0+

P2(u)

u ln (u)P′(u)
= lim

u→0+

P(u)

ln (u)
lim

u→0+

P(u)

uP′(u)

= 0× 1

K −m
= 0
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and similarly for t→ 0+ we can prove that

lim
t→0+

[
ln (t)e−tK(et − 1)m

]
= lim

t→0+

[
ln (t)(et − 1)m

]
= lim

t→0+

ln t
1

(et−1)m

= lim
t→0+

1
t

−met(et−1)m−1

(et−1)2m

= − lim
u→1

(u− 1)m+1

mu lnu
= − lim

u→1

1

mu
lim
u→1

(u− 1)m+1

lnu

= − 1

m
lim
u→1

(m+ 1)u(u− 1)m = 0

where by P we symbolized the polynomial described as
P(x) =

∑m
k=0

(
m
k

)
(−1)kxK−m+k with deg(P(x)) = K and

min {deg(P(x)) = K} = K − m. Breaking the logarithmic
term in (66) would result in two integrals that can both
be easily calculated by considering the well-known fact that
γ = −

∫∞
0

ln (z)e−zdz. Hence, (66) will result in

Ir =

m∑
k=0

(
m

k

)
(−1)k (−γ − ln (K −m+ k))

=

m∑
k=0

(
m

k

)
(−1)k+1 ln (K −m+ k) (67)

with (67) holding by the binomial expansion theorem, since
m∑

k=0

(
m

k

)
(−1)k(−γ) = (−γ)

m∑
k=0

(
m

k

)
1m−k(−1)k = 0.

(68)
Substituting (67) back in (64) we can get (18) and the proof
is completed.

APPENDIX C
PROOF OF LEMMA 3

From (63) and setting t = λur we get

E
[

1

U2
r

]
= λ2

(
K

r

)
r

∫ ∞
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1

t2
e−tK(et − 1)r−1dt. (69)

For convenience let Jr =
∫∞
0

1
t2 e

−tK(et − 1)r−1dt and also
m = r − 1. Applying integration by parts and binomial
expansion

Jr = −1
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r
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]
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1

λ
(
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m

)
m
E
[

1

Um,K−1

]
,

(70)

where the second index in the mean shows the number of
samples in the ordered statistics. Notice that the first term on
the integration by parts is equal to 0 because for t→ +∞ we
can prove that

lim
t→+∞

e−tK(et − 1)m

t
= lim

t→+∞

e−t(K−m)(1− e−t)m

t
= 0

and similarly for t→ 0+ we can prove that

lim
t→0+

e−tK(et − 1)m

t
= lim

t→0+

(et − 1)m

t
= 0

by L’Hospital’s Rule. Substituting (70) in (69) we get

E
[

1

U2
r

]
= λK

(
E
[

1

Ur−1,K−1

]
− E

[
1

Ur,K

])
. (71)

APPENDIX D
PROOF OF COROLLARY 2

We begin with a proof by contradiction, assuming that a full
inverse channel method is utilized. Then, by (14) the overall
MSE of the system will be

MSE0(a0) = σ2a20 + c

K∑
k=1

1

|h′k|2 + c
, (72)

where a0 >
|h′

1|√
P (|h′

1|2+c)
for feasibility reasons. Then, taking

a1 =
|h′

1|√
P (|h′

1|2+c)
observe that

MSE1(a1) =

∣∣∣∣ (a1√P |h′1| − 1
) ∣∣∣∣2 + a21(σ

2 + Pc)

+ c

K∑
k=2

1

|h′k|2 + c
= a21σ

2 + c

K∑
k=1

1

|h′k|2 + c

= MSE0(a1) (73)

and since a0 > a1 we see that MSE1(a1) < MSE0(a0) which
means that we get that the performance of the system is better
than the full inverse channel method, and, thus the proof is
completed.

APPENDIX E
PROOF OF LEMMA 6

For the first case notice that when a = a′ =
|h′

i+1|
(|h′

i+1|2+c)
√
P

it is trivial to show that

MSEi+1(a
′) =

i+1∑
k=1

(
a′
√
P |h′k| − 1

)2
+ a′

2
[σ2 + (i+ 1)Pc]

+ c

K∑
k=i+2

1

|h′k|2 + c

= MSEi(a
′) +

( |h′i+1|2
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− 1

)2

+ c
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(|h′i+1|2 + c)2
− c

(
1

|h′i+1|2 + c

)
= MSEi(a

′). (74)

Since ai <
|h′

i+1|
(|h′

i+1|2+c)
√
P

and MSEi(a) is an increasing

function in the interval [ai,∞), we conclude that for a ∈ Ii
due to (74) it will be MSEi(a) > MSEi(a

′) = MSEi+1(a
′).

For the second case observe that since ai ≥ |h′
i|

(|h′
i|2+c)

√
P

and
MSEi(a) is a decreasing function in the interval [0, ai] there
exists a′ ∈

(
|h′

i|
(|h′

i|2+c)
√
P
, ai

]
⊂ Ii−1 such that MSEi(a) >
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MSEi(a
′) because for feasibility reasons when the critical

number is i by (38) it must be a ≤ |h′
i|

(|h′
i|2+c)

√
P

. Then, we
get

MSEi(a
′) =

i∑
k=1

(
a′
√
P |h′k| − 1

)2
+ a′2(σ2 + iP c)

+ c

K∑
k=i+1

1

|h′k|2 + c

>

i−1∑
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∣∣∣∣ (a′√P |h′k| − 1
) ∣∣∣∣2 + a′2(σ2 + (i− 1)Pc)

+ c

K∑
k=i

1

|h′k|2 + c

= MSEi−1(a
′). (75)

Thus, by (75) it will be MSEi(a) > MSEi−1(a
′) and the

proof is complete.

APPENDIX F
PROOF OF LEMMA 7

By the definitions of ai, gi in (14), (44) we can work out
that

gi =
ai
√
P
∑i

k=1 |h′k|√
P
∑i

k=1 |h′k| − aiiP c
. (76)

Then, if gi < 1
|h′

i+1|
√
P

by (76) we can prove that

ai <

√
P
∑i

k=1 |h′k|
P |h′i+1|

∑i
k=1 |h′k|+ iP c

. (77)

Finally, observe that
√
P
∑i

k=1 |h′k|
P |h′i+1|

∑i
k=1 |h′k|+ iP c

<
|h′i+1|

(|h′i+1|2 + c)
√
P
, (78)

because (78) after cross-multiplication and simplifying is
equivalent to

∑i
k=1 |h′k| < i|h′i+1| =

∑i
k=1 |h′i+1| which

holds due to the estimated channels’ ordering.

APPENDIX G
PROOF OF LEMMA 8

The capacity per symbol transmission of every channel is
known to be given by

Ctr,i =
1

2
log2

(
1 + ρ|hi|2

)
(79)

Using order statistics we can find that every ordered sample
Ur = |hcorr | from a total of K samples has the PDF described
by (59). Hence, the expected value E[Ur] can be calculated
by

E[Ctr,r] =
1

2

(
K

r

)
r

∫ ∞

0

2ur
σ2
h

exp

[
−u

2
r

σ2
h

(K − r + 1)

]
×
[
1− exp

(
−u

2
r

σ2
h

)]r−1

log2
(
1 + ρu2r

)
dur. (80)

Setting t = u2
r

σ2
h

we obtain

E[Ur] =
1

2

(
K

r

)
r

∫ ∞

0

exp [−t(K − r + 1)]

× [1− exp (−t)]r−1
log2

(
1 + tρσ2

h

)
dt

=
1

2

(
K

r

)
r

∫ ∞

0

e−Kt(et − 1)r−1 log2
(
1 + tρσ2

h

)
dt.

(81)

Using binomial expansion (81) can be rewritten as

E[Ur] =
1

2

(
K

r

)
r

r−1∑
m=0

[(
r − 1

m

)
(−1)mIr,m

]
, (82)

where by Ir,m we denote the following integral

Ir,m =

∫ ∞

0

e−Ktet(r−1−m) log2
(
1 + tρσ2

h

)
dt. (83)

The last one can be rigorously calculated in a few steps.
Substituting y = 1 + tρσ2

h and setting for convenience
b = K−r+1+m

ρσ2
h

, (83) is equivalent with

Ir,m =
1

ρσ2
h

∫ ∞

1

e−b(y−1) log2 (y)dy. (84)

Then, changing to the natural logarithm and setting z = by
from (84) we have

Ir,m =
1

K − r + 1 +m

1

ln 2
eb

×
[∫ ∞

b

e−z ln (z)dz +

∫ ∞

b

e−z ln

(
1

b

)
dz

]
. (85)

Finally, by part integration of the first integral in (85) we obtain
the following

Ir,m =
1

K − r + 1 +m
· 1

ln 2
eb

×
{[

−e−z ln (z)
]∞
b

− ln

(
1

b

)[
e−z
]∞
b

+

∫ ∞

b

e−z

z
dz

}
=

1

K − r + 1 +m
· 1

ln 2
eb
∫ ∞

b

e−z

z
dz. (86)

Combining relations (80), (81), (83) and (86) we can
conclude (56).
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