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Abstract— Automatic Modulation Classification (AMC) has
become an important component in communication systems
for both civil and defense applications. The shortcomings of
traditional approaches to AMC have led researchers to develop
complex machine learning (ML)-based approaches. In this work,
inspired by multi-modal approaches for general Computer Vision
tasks like Semantic Segmentation, we propose MM-Net, a mul-
timodal approach to AMC that uses domain-specific features in
the form of Higher Order Cumulants (HOCs) to improve classifi-
cation performance. Furthermore, we explore the usage of HOCs
in existing Deep Learning (DL)-based applications for AMC.
Simulation results show that for eight modulation classification,
MM-Net achieves high classification accuracy even at low SNRs,
demonstrating the robustness of the multimodal approach even
under challenging channel conditions, while existing methods are
improved by utilizing HOCs, especially at low SNR values.

Index Terms— Automatic modulation classification, machine
learning, deep learning, cumulants, convolutional neural net-
works, transfer learning.

I. INTRODUCTION

UTOMATIC Modulation Classification (AMC) refers to

the process of recognizing the modulation of a radio
signal and is inherently a multi-class classification problem.
It is the immidiately preceding step of signal demodulation [1],
and is considered to be a problem of considerable importance
for several communication systems. AMC can be an invaluable
tool for both civil and military applications. It can provide the
tools for highly efficient spectrum management, which is very
important for modern wireless communications systems such
as fifth generation (5G) infrastructure [2]. Software Defined
Radio (SDR) also interacts with a wide range of telecom
systems, so the use of AMC is essential. In addition, many
military applications use AMC for advanced tasks such as
signal detection, identification, processing and jamming [3].
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The traditional approach to solving the problem of AMC
has been to use signal processing methods that are either
likelihood-based [3], [4] or feature-based [5], [6], [7], in par-
ticular using Higher Order Cumulants (HOCs) as inputs.
Recently, researchers have adopted ML methods for AMC
due to significant drawbacks of both traditional methods such
as the very high computational cost of the likelihood-based
algorithms and the challenging feature engineering for feature-
based methods, as well as the limited accuracy of both. Today,
as in many classification problems, DL-based approaches with
complex architectures have established themselves as the state-
of-the-art, while HOCs are mostly used as input for simple
ML-based models that serve as baselines for researchers to
test the performance of their new and increasingly complex
DL-based methods [8], [9], [10].

While many different DL-based architectures have been uti-
lized, the general robustness of convolutional neural networks
(CNNs) in visual recognition tasks has led to their widespread
adoption for the task of AMC. In their work, Meng et al. [10]
use a time series of complex IQ samples fed into a novel
CNN for classification. In later works, researchers, valuing
the robustness of CNNs for image classification tasks, convert
IQ samples into constellation map images and achieve higher
accuracy for a wide range of signal-to-noise ratio (SNR) values
[11, [8], [9], [11], [12]. This approach to data representation
is by far the most popular in modern AMC methods.

Several techniques using CNN configurations have been
proposed, including VGG-based [8] and AlexNet-based [12]
models, which contain a series of narrowing convolutional
blocks followed by a fully connected classifier. However, the
state of the art in AMC is represented by novel architectures
that do not use large pre-trained backbones [1], [2], [11], [13].
The solutions that use pretrained models (AlexNet, GoogleNet
[9], MobileNetV2 [14]) as feature extractors generally lag
behind in performance compared to novel architectures for
AMC.

Furthermore, recent research trends in DL show that the
choice of the correct data representation can significantly
improve the robustness of a DL model. In this direc-
tion, several recent works have explored different ideas.
Zeng et al. [15] use the spectrogram of the data, while
Zhang et al. [14], Huang et al. [13], and Peng et al. [9]
all propose different ways of preprocessing the constellation
images. However, methods that only use visual representations
of the data to address AMC often suffer in performance at
lower SNR levels. Using multi-modal inputs is also seemingly
helpful for a wide variety of general Computer Vision tasks
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such as semantic segmentation, object detection, and even
facial recognition. In the case of AMC, HOCs display several
useful properties, such as robustness to Gaussian Noise, so we
theorize that their inclusion into networks with a CNN encoder
and classifier is a space and time-efficient method to increase
performance. To test this theory, we create MM-Net, a dual-
encoder, single-classifier network that uses both images and
HOCs. We observe that this network displayed increased
performance compared to the CNN encoder baseline. Based on
this observation, we further apply this approach to more effi-
cient AMC networks that use a CNN encoder and a classifier:
FiF-Net [1] and CCNN [13]. We demonstrate the effectiveness
of networks using the MM-Net method as compared to the
baseline networks while consuming the same network param-
eters. We also show the extensibility of the proposed approach
by substituting the base structure in state-of-the-art AMC
networks with the proposed architecture and showcase that
it is applicable to any AMC network with an encoder-decoder
architecture. Our contribution can be summarized as follows:

e To the best of our knowledge, we are the first to
investigate combining heterogeneous features in the form
of HOCs and constellation images as inputs of neural
networks and their effectiveness for AMC.

« In this spirit, we propose MM-Net, a simple dual-encoder
single-decoder paradigm for AMC that utilises both
enhanced constellation images and HOCs. Experimental
results validate that the proposed approach successfully
guides the network to learn with complementary features
and improves the classification performance for a wide
range of SNR values.

o The proposed MM-Net paradigm can be implemented in
any existing state-of-the-art AMC network that is based
on an encoder-decoder architecture without increasing
the model size in any significant capacity, and extensive
experimental results showcase increased performance of
those networks.

Code and models are available at https:/github.com/

CedArctic/AutoModClass. Data generation tool is available at
https://github.com/kostino/AMCDataGen.

II. METHODOLOGY

We propose a multi-modal approach by designing MM-
Net: a dual-encoder paradigm that utilizes both hand-crafted
expert features (in the form of HOCs) and constellation
images. MM-Net consists of two branches; one that utilizes
a Convolutional Neural Network (CNN) to extract features
from the constellation diagrams, and one that uses the HOCs
as input, aiming to achieve high accuracy in a wide range of
SNR levels for the task of 8-class Modulation Classification.
The complete architecture is shown in Fig. 1.

First, as done in previously discussed work, we window N
incoming samples y € C"V and represent them in an IQ dia-
gram y;, = IQ(y) € RT*W adiagram of height H and width
W. Afterward, for each IQ diagram, we construct an enhanced
3-channel RGB image yenn = Fonn(y) € R3>¥HXW yging
the exponential decay method proposed by Peng et al. [9].
With this transformation, we create a pixel representation that
is more information-rich for the Deep Network to exploit.

Furthermore, we propose a statistical method for creating the
images by dynamically calculating the capture window size in
the IQ space instead of choosing a static size as in previous
work [9]. Our method aims at capturing the maximum amount
of information whilst utilizing as much of the image resolution
as possible: Given a padding ratio p, and m = max(y) a
padding offset 0o = % is added resulting in IQ space
windows with size of (2(m + 0)) x (2(m + 0)).

Inspired by previous approaches [5], [6], we calculate the
HOCs C20 - C63 and use their real and imaginary parts as
input Yeum € R2*? for the cumulant encoder. The HOCs are
calculated through the higher-order moments as follows:

Mpq = ElyP~(y")"] )
Cpq :cum(y(n),,y(n),y*(n),,y*(n)) (2)
(p—q) times q times

For instance:

C(42 = Cum(:U(”)v y(’n‘)a y* (n)7 y* (TL))
= Myp — | Mo|* —2- M3, 3)

The enhanced images y.,; are fed into the convolu-
tional feature extractor to extract the feature vector feon, =
Yeonv(Yenn ), while the cumulants Y, are fed into a fully
connected encoder to produce the feature vector fou, =
Y¢e(Yeum). Both sets of features are then utilized by
our MLP Classifier to produce a prediction score z =
MLP(fcum;fenh)-

A. Cumulant Feature Extractor

As shown in Fig 1, the first branch of MM-Net implements a
simple MLP encoder that maps the input to a latent space of a
higher dimension for feature enrichment. The encoder consists
of two hidden layers of 32 neurons and batch normalization
layers: the 1 x 18 input vector produced by the 9 complex
HOC:s is mapped to a 1 x 32 output.

B. Convolutional Feature Extractor

The second branch, displayed in Fig 1, feeds the 224 x
224 x 3 enhanced constellation image to a convolutional feature
extractor module. The module consists of a CNN backbone
whose output feature maps are fed into two parallel processing
flows which contain a Global Pooling layer (Global Average
Pooling and Global Max Pooling respectively), followed by
a batch normalization layer. This approach is inspired by
the Convolutional Block Attention Module (CBAM) [16],
as Average Pooling effectively captures and models spatial
information, while Max Pooling gathers another important
clue about distinctive object features and channel-wise char-
acteristics. The outputs are then concatenated as the output
of the convolutional feature extractor. The backbone used for
our Convolutional feature extractor is a ResNet152V2 pre-
trained on the ImageNet dataset. We elect to use a pre-trained
CNN due to its simplicity of use as a plug-and-play module.
Our focus is on showcasing the efficacy of utilizing the
HOCs in conjunction with the RGB image compared to a
baseline, Image-only based approach and not to design an
overly specialized AMC architecture.
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Fig. 1. High-level overview of MM-Net.

C. Classifier

The network is completed by feeding the concatenated
output of the two branches into a dense classifier block
with the following structure: 32-neuron dense layer — batch
normalization (BN) layer— Rectified Linear Unit (ReLU) —
16-neuron dense layer — BN layer— ReLU — 8-neuron dense
layer — softmax layer. The BN layers are used to prevent
overfitting, and improve generalization performance.

D. Extension to Existing AMC Networks

MM-Net’s approach for utilizing cumulants can be applied
to any conventional encoder-decoder networks for AMC with a
convolutional feature extractor £ and a dense classifier C, such
as [1] and [13]. We increase the input size of their classifier
by 32 and concatenate the output of their feature encoder with
the output of our cumulant encoder. Like in our network, the
images « are fed into the convolutional feature extractor £ to
extract the feature vector feon, = £(x), while the cumulants
ZTeum are fed into a fully connected encoder to produce the
feature vector feum = Yye(Zcum). Both sets of features are
then utilized by the dense Classifier to produce a prediction
score 2 = C(feums fenn ). In the following section, we compare
the MM-Net approach of using cumulants to the baseline
image-only based methods using our network, FiF-Net [1] and
CCNN [13] to confirm the efficiency and effectiveness of the
MM-Net method.

III. RESULTS
A. Experimental Setup

For the purposes of this work, a synthetic dataset was
generated using our data generation tool. The dataset contains
samples for 8 different representative modulations: QPSK,
8-PSK, 16-QAM, 64-QAM, 16-APSK, 64-APSK, 4PAM,
16PAM, and 4 different SNR values: 0, 5, 10, 15 dB. We use
15,000 samples for each Modulation for each SNR value
for training, and 1,000 for testing, resulting in a training
dataset containing 480,000 samples, and a testing dataset of
32,000 samples. We choose this SNR range as we consider
the problem of AMC to be trivial for very high SNR values
(above 20 dB), while simultaneously being less useful for SNR
values less than O dB where accurate demodulation will be
challenging.

MM-Net is implemented in Tensorflow and trained on an
NVIDIA GeForce RTX 2080 GPU. The input size of the

TABLE I
COMPARISON OF EXISTING METHODS
[ Model [ Param. Count (M) || Accuracy |

FiFNet 0.161 97.43%

FiFNet + HOCs 0.165(+2.4%) 98.56%
CCNN 0.877 98.27%

CCNN + HOCs 0.894(+1.9%) 99.20%
MM-Net 20.265 98.40%

MM-Net + HOCs 20.267 99.23%

enhanced RGB images is 224 x 224. The selected ResNet-
152V2 backbone is initialized with ImageNet-pretrained
weights and kept frozen during training. For training, an SGD
optimizer is used with a 103 linearly decaying learning rate,
momentum equal to 0.9, and a mini-batch size of 100.

B. Results

In this section, we demonstrate the results from our exper-
iments. First, we train all methods using our synthetic dataset
and the baseline approach. Then, we extend all networks
with the MM-Net approach and jointly train all parts (fea-
ture extractor, cumulant encoder, classifier) on our dataset.
We observe that all methods (ours, FifNet, CCNN) showcase
increased performance while using both HOCs and constel-
lation images compared to their baseline approach of images
only(Table I). The proposed approach consistently recorded
performance improvement in terms of accuracy as compared
with the baseline networks.

C. Complexity Analysis

For all methods, we observe that our approach does not
incur a significant complexity cost, as it adds less than 20K
parameters for all networks that we experimented with. This
is expected as the only two changes are adding the cumulant
encoder (<1K params) and increasing the input size of the
network classifier by 32 to incorporate the features produced
by the cumulant encoder. This is showcased clearly in Table I
where we present the size of all networks (in millions of
parameters) before and after applying our method.

D. Robustness Analysis

In this section, we report the classification accuracy of
MM-Net for each of the eight different modulations under
different channel conditions. As can be understood from
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Fig. 2.
(c) Classification performance of different methods.

Figure 2, MM-Net achieves accuracy values of over 90%
for all modulation types for SNR values over 5dB. We also
observe that the difference in classification accuracy between
higher order modulations such as 64-QAM, and 64-APSK
with their lower order counterparts (e.g. 16-QAM, 16-APSK)
is not as extreme as that reported in other works [1], which
further showcases the efficacy of our approach in more chal-
lenging conditions. For qualitative analysis, we also report the
incorrect predictions in the confusion matrix for MM-Net in
Figure 2.

We compare all methods across SNR values and display
the results in Figure 2. We see that adding HOCs increases
the accuracy of all methods and can specifically observe the
robustness of the multi-modal approach proposed under harsh
channel conditions, as the accuracy of FiF-Net is increased
by 4.1% and CCNN by 2.8% for SNR = 0 dB. MM-Net
outperforms other methods at a wide range of SNR values,
as seen in Figure 2.

IV. CONCLUSION

In this letter, we have proposed utilizing both HOCs and
constellation images in tandem for DL-based AMC methods.
Our proposed network, MM-Net utilizes both a deep CNN
to efficiently learn deep visual features from constellation
images and a higher-order cumulant encoder to learn a use-
ful representation of complex statistical features. Based on
classification performance on eight modulation classification,
MM-Net achieves classification accuracy of over 97% at
0dB SNR. This showcases the robustness of the multi-modal
approach when facing challenging channel impairments and
a total classification accuracy of 99.23%, showing its overall
efficacy. We also apply our method on two existing AMC net-
works, FiF-Net, and CCNN and observe an accuracy increase
of 1.13% and 0.93%, respectively. We especially observe a big
accuracy increase of 4.1% for FiF-Net and 2.8% for CCNN
in SNR = 0dB when using HOCs, further showcasing the
robustness of our approach. Our approach for incorporating
HOCs in DL-based methods is also computationally efficient
as it only adds a small number of parameters to the models.

10

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

12 14 0 2 4 6 8 10 12 14
SNR(dB)

()

(a) Confusion matrix for model predictions at SNR=5dB. (b) Classification performance of MM-Net for different SNR Values for different classes.

REFERENCES

V.-S. Doan, T. Huynh-The, C.-H. Hua, Q.-V. Pham, and D.-S. Kim,
“Learning constellation map with deep CNN for accurate modulation
recognition,” in Proc. IEEE Global Commun. Conf., Dec. 2020, pp. 1-6.
T. Huynh-The, C.-H. Hua, Q.-V. Pham, and D.-S. Kim, “MCNet: An effi-
cient CNN architecture for robust automatic modulation classification,”
IEEE Commun. Lett., vol. 24, no. 4, pp. 811-815, Apr. 2020.

O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “A survey of automatic
modulation classification techniques: Classical approaches and new
trends,” IET Commun., vol. 1, no. 2, pp. 137-156, Apr. 2007.

B. G. Mobasseri, “Digital modulation classification using constellation
shape,” Signal Process., vol. 80, no. 2, pp. 251-277, Feb. 2000.

M. W. Aslam, Z. Zhu, and A. K. Nandi, “Automatic modulation clas-
sification using combination of genetic programming and KNN,” /EEE
Trans. Wireless Commun., vol. 11, no. 8, pp. 2742-2750, Aug. 2012.
M. R. Mirarab and M. A. Sobhani, “Robust modulation classification
for PSK /QAM/ASK using higher-order cumulants,” in Proc. 6th Int.
Conf. Inf., Commun. Signal Process., 2007, pp. 1-4.

A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation
recognition of communication signals,” IEEE Trans. Commun., vol. 46,
no. 4, pp. 431436, Apr. 1998.

T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-Air deep learning
based radio signal classification,” IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 1, pp. 168-179, Feb. 2018.

S. Peng et al., “Modulation classification based on signal constellation
diagrams and deep learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 3, pp. 718-727, Mar. 2019.

F. Meng, P. Chen, L. Wu, and X. Wang, “Automatic modulation
classification: A deep learning enabled approach,” IEEE Trans. Veh.
Technol., vol. 67, no. 11, pp. 10760-10772, Nov. 2018.

T. Huynh-The, C.-H. Hua, V.-S. Doan, Q.-V. Pham, T.-V. Nguyen,
and D.-S. Kim, “Deep learning for constellation-based modulation
classification under multipath fading channels,” in Proc. Int. Conf. Inf.
Commun. Technol. Converg. (ICTC), Oct. 2020, pp. 300-304.

S. Peng, H. Jiang, H. Wang, H. Alwageed, and Y.-D. Yao, “Modulation
classification using convolutional neural network based deep learning
model,” in Proc. 26th Wireless Opt. Commun. Conf. (WOCC), Apr. 2017,
pp. 1-5.

S. Huang et al., “Automatic modulation classification using com-
pressive convolutional neural network,” [EEE Access, vol. 7,
pp. 79636-79643, 2019.

W. Zhang et al., “Identifying modulation formats through 2D Stokes
planes with deep neural networks,” Opt. Exp., vol. 26, no. 18, p. 23507,
Sep. 2018.

Y. Zeng, M. Zhang, F. Han, Y. Gong, and J. Zhang, “Spectrum analysis
and convolutional neural network for automatic modulation recognition,”
IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 929-932, Jun. 2019.
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional
block attention module,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3-19.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on March 10,2024 at 17:32:01 UTC from IEEE Xplore. Restrictions apply.



