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Abstract—As communication technologies and equipment
evolve, smart assets become smarter. The agricultural industry
is also evolving in line with the implementation of modern
communication protocols, intelligent sensors, and equipment.
This evolution is enabling large-scale agricultural production
processes to operate independently, thus, securing the food supply
chain for an ever-growing population. Data processing for such
a system with multiple heterogeneous sources requires proper
management for effective agricultural operations. Recognizing
the advantages of Machine Learning(ML) in performing large-
scale data processing, researchers are investigating the imple-
mentation of ML to design an effective intelligent agricultural
architecture. The aim of this paper is to provide a thorough anal-
ysis of the state-of-the-art in smart agriculture, open challenges,
and guidelines for the development of further enhanced smart
agriculture systems. Specifically, we describe how ML is used to
create intelligent agricultural systems supported by state-of-the-
art technology.

Impact Statement—The Internet of Things (IoT) in agricul-
ture has the potential to completely transform the industry
by enabling more streamlined and effective operations. Sensors
based on the Internet of Things (IoT), such as temperature
sensors, light sensors, pressure sensors, moisture sensors, and
others enable the automation and simplification of a wide range
of trustworthy user-oriented information, such as high-quality
data, documented vulnerabilities, and appropriate measurement
using artificial intelligence. The artificial intelligence of things
(AIoT) aims to improve data management and analytics while
increasing the efficiency of IoT operations. Furthermore, smart
agriculture operations necessitate a solid understanding of local
weather conditions, soil quality, crop monitoring, and preventive
measures. The paper highlights recent research (2019-2023) on
machine learning approaches (a subset of AI approaches)) and
their prospective applications in smart agriculture. The article
serves a number of purposes. It serves as a reference for AloT-
based research on agricultural health monitoring, crop yield
estimation, crop disease identification, pest and weed detection for
crops. Second, it provides insights into this field’s open research
areas and hurdles. Third, it seeks to stimulate new research ideas
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in smart agriculture.

Index Terms—Crop monitoring, crop yield determination, deep
learning, machine learning, pest and weed control, seed quality,
smart agriculture, smart irrigation, soil condition.

I. INTRODUCTION

The agricultural industry began with manual labor-based
farming practices in the late 18th century and evolved into
a machine-based industry in the present [1], [2]. In the first
generation of the agricultural era, tools such as pitchforks
and sickles were used for agricultural work, which eventually
became a low-capacity practice. In the second generation of
agriculture in the 20th century, fossil fuel-powered agricultural
machinery was introduced to speed up food production pro-
cesses. The development of the food supply chain was remark-
able given the innovations in transport systems at the time.
With the emergence of the third generation of the agricultural
industry, software, and communication technologies are being
introduced to increase production capacity through modern
machinery and to make the agricultural system intelligent. In
addition, the use of renewable energy sources such as solar,
hydro, and wind energy is considered to develop green energy-
based agricultural production systems. However, today’s smart
agricultural systems need to address food security for a large
number of people, as the world’s ever-growing population
will increase demand for food over the next few decades
[3]. Therefore, researchers are focusing on incorporating tech-
nologies such as big data [4], artificial intelligence (Al),
which can consist of machine learning (ML) approaches [5],
[6], [7], and blockchain to automate agricultural production
processes [8]. In addition, agricultural production is closely
related to communication technologies and especially wireless
communications [9].

NOMENCLATURE

AHA Artificial Hummingbird Algorithm
Al Artificial Intelligence

ALU-DL Automatic Label Update Deep Learning
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network

ARIMA Autoregressive integrated Moving Average
BA Bat Algorithm

Bayesglm Bayesian Generalized Linear Model
BiGRU Bidirectional Gated Recurrent Units
BiLSTM Bidirectional Long Short-Term Memory
BN BayesNet
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BP
BPNN
BRT
CART
CNN
ConvLSTM
CPS
DL
DNN
DT
DTL
ENSVM
EVI
ExG
FPGA
FRC
FT-NIR
GA
GaFPN
GBDT
GBM
GBRT
GEE
GLM
GMDH
GMM
GPR
GPU
GRU
GWO
HGS
HMM
10U
KNN
KRLS
LAI
LaRPN
LASSO

LB
LDA
LR
LSTM
LSWI
MAE
mAP
MAPE
ME
ML
MLP
MNDWI
MODIS

MSE
NB
NDVI
NEAT
NFC
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Back Propagation

Back Propagation Neural Network
Boosted Regression Trees

Classification and Regression Tree
Convolutional Neural Network
Convolutional Long Short-Term Memory
Cyber-Physical System

Deep Learning

Deep Neural Network

Decision Tree

Deep Transfer Learning

Ensemble Support Vector Machine
Enhanced Vegetation Index

Excess Green

Field Programmable Gate Array

Fused Representation-based Classification
Fourier Transform Near-Infrared

Genetic Algorithm

Global activated Feature Pyramid Network
Gradient Boosting Decision Tree
Gradient Boosting Machine

Gradient Boosting Regression Tree
Google Earth Engine

Generalized Linear Model

Group Method of Data Handling
Gaussian Mixture Model

Gaussian Process Regression

Graphics Processing Unit

Gated Recurrent Units

Grey Wolf Optimization

Hunger Games Search

Hidden Markov Model

Intersection Over Union

K-Nearest Neighbor

Kernel-based Regularized Least Squares
Leaf Area Index

Local activated Region Proposal Network
Least Absolute Shrinkage and Selection Op-
erator

LogitBoost

Linear Discriminant Analysis

Logistic Regression

Long Short-Term Memory

Land Surface Water Index

Mean Absolute Error

Mean Average Precision

Mean Absolute Percentage Error

Mean Error

Machine Learning

Multilayer Perceptron

Modified Normalized Difference Water Index
Moderate Resolution Imaging Spectrora-
diometer

Mean Square Error

Naive Bayes

Normalized Difference Vegetation Index
Neuroevolution of Augmenting Topologies
Near Field Communication

NN Neural Network

NRMSE Normalized Root Mean Square Error

NSE Nash-Sutcliffe Efficiency

NSI Narrow Strip Irrigation

PA Pixel Accuracy

PLS-DA Partial Least Squares Discriminant Analysis

PLSR Partial Least Squares Regression

PNN Probabilistic Neural Network

PSO Particle Swarm Optimization

QANA Quantum-based Avian Navigation optimizer
Algorithm

QDA Quadratic Discriminant Analysis

R? Coefficient of Determination

ResBiLSTM Residual Network-Bi-directional-Long
Short-Term Memory

ResNet Residual Network

ResNet-50  Residential Energy Services Network-50

RF Random Forest

RFR Random Forest Regression

RGB Red-Green-Blue

RMSE Root Mean Square Error

RNN Recurrent Neural Network

ROCKET Random Convolutional Kernel Transform

RotFor Rotation Forest

RPART Recursive Partitioning and Regression Trees

RPIQ Ratio of Performance to Interquartile Range

RVFL Random Vector Functional Link

SARSA State-Action-Reward-State-Action

SGD Stochastic Gradient Descent

SMR Stepwise Multiple Regression

SO-ANFIS  Seasons  Optimization-based  Adaptive
Neuro-Fuzzy Inference System

SSA Salp Swarm Algorithm

SSO Social Spider Optimization
StoGB Stochastic Gradient Boosting
SVM Support Vector Machine
SVR Support Vector Regression
TDNN Time Delay Neural Network
UAV Unmanned Aerial Vehicle
uGv Unmanned Ground Vehicle

VGG-16 Visual Graphics Group-16
XGBoost Extreme Gradient Boosting

Fig. 1 depicts a potential architecture of a smart agricultural
system. Autonomous tractors, sprinklers, drones, and satellites
can be used for weed removal, harvesting, irrigation, pesticide
application, and image capture for monitoring crops and crop
field conditions. IoT sensors can also generate data related
to crop health, and environmental and soil conditions and
transfer this data to a data processing unit (or units) The
data processing unit(s) perform data analysis to identify any
issue(s) and make decisions accordingly. In the end, farmers
can be notified to take the necessary action(s) with regard to
farming practices.

A. Motivation and objective

As the agricultural industry continues to develop, so too will
the amount of information that needs to be processed. As a
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Fig. 1. Smart agriculture

result, processing a large amount of data using traditional ap-
proaches will be challenging and time-consuming. Approaches
based on ML algorithms have shown their potential to handle
large amounts of data and provide accurate information in a
short time [10]. Recently, researchers have shown massive
interest in incorporating ML algorithms to develop smart
agricultural applications, as can be seen from Fig. 2. The
”Scholarly Works” data are collected from well-known schol-
arly resources such as IEEE Xplore, Scopus, and the ACM
Digital Library under the keywords ”(Smart Agriculture OR
Smart Farming OR Precision Agriculture) AND (Machine
Learning OR Artificial Intelligence)”. From these studies, we
extract some useful information that is particularly applicable
to new researchers or those just entering this field of study
who plan to work on related topics. The aim of this paper
is to provide a thorough analysis of the state-of-the-art in
smart agriculture, open challenges, and guidelines for the
development of further enhanced smart agriculture systems.
Specifically, we describe how ML is used to create intelligent
agricultural systems supported by state-of-the-art technology.

B. Contributions of the paper

In this paper, ML-based intelligent agricultural systems are
investigated and some research problems are addressed. It can
be seen that a large number of academic papers related to this
research area have been published in the last 5-6 years. We
have classified these papers according to their type, number
of citations, number of references, year of publication, main
objective, enabling technologies, etc. The research articles
were classified on the basis of crop classification, soil monitor-
ing, intelligent irrigation systems, seed vigor and germination
determination, crop health monitoring, weed, disease, and pest

detection, and crop yield determination. ML will also be
used to maintain data privacy and secure the overall system
architecture against cyber-attacks.

Specifically, this paper provides a survey on the application
of machine learning algorithms in smart agriculture systems.
Its main contributions are highlighted below.

o Perform a systematic literature review to obtain knowl-
edge on the state of the art in smart agriculture systems,
the limitations of current research, and future work.

¢ Discuss enabling technologies for smart agricultural sys-
tems.

o A thorough discussion on recent research trends on ML-
based smart agricultural systems and their outcomes.

« Identify the issues and challenges regarding the ML-smart
agriculture systems.

o Guidelines for the development of improved smart agri-
culture systems.

C. Organization of the paper

The paper is organized as follows. Section II discusses
the technologies that contribute to designing smart agricul-
tural systems. Section III describes the data collection and
processing for ML implementation on these data. Section
IV describes the implementation of ML-based approaches
in classifying the health, germination capacity, and types of
crop seeds. Section V discusses the crop type classification
approach over the cultivation areas by means of ML-based
algorithms. Section VI highlights the use of ML-models for
monitoring crop health and predicting crop yield. Section VII
discusses the determination of soil conditions and water usage
for irrigation with ML. Section VIII discusses the identification
of crop diseases, weeds, and pests with ML algorithm-based
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Fig. 2. Research trend on ML-based smart agriculture.

approaches to ensure effective agricultural production. Section
IX focuses on issues in the deployment of ML-based smart
agricultural systems and related future research scope. In the
end, section X concludes the paper. The paper organization is

illustrated in Fig. 3.
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II. TECHNOLOGIES FOR SMART AGRICULTURAL SYSTEMS

This section provides a glimpse into the paradigms such
as communication technologies used in smart agriculture,
big data generated by smart sensors and cameras, and ML
algorithms with examples.

A. Communication technologies

Effective transmission and reception of data for smart
agriculture depend on wireless communication technologies,
which have characteristics such as low power consumption,
less delay, large connectivity, etc. [11]. From cellular networks
to short-range and long-range network technologies, they are
found to be relevant for agricultural purposes. However, there
is a trade-off between power consumption and range [12],
[13]. Communication protocols such as RFID and Near Field
Communication (NFC) consume less power but have a limited
range. ZigBee, BLE, and Wi-Fi offer low to medium-range
transmission, but Wi-Fi offers high data rates at the expense
of the high power consumption of the other two protocols. Cel-
lular networks (2G-5G and beyond) offer long-range and high
data rates at the cost of higher power consumption [14]. LoRa,
SigFox, and NB-IoT also offer high coverage with low power
consumption. However, these protocols offer a low data rate.
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Machine Learning

Supervised Unsupervised Reinforcement
learning learning learning
K-means
5 Q-Learning,
clustering SARSA, HMM

ANFIS, BayesGLM, BN, BP, CART, DT,
FRC, GMDH, GMM, KNN, LDA, MLP, NB,
PLS-DA, PNN, QDA, Regression methods,

RVFL, SGD, SVM, TDNN

Deep Ensemble Transfer
learning learning learning
AdaBoost, Bagging, Boosting, DTL

Gradient Boosting (GB),
LogitBoost, Random Forest,
RotFor, Stacking, XGBoost

BiGRU, BiLSTM, CNN, ConvLSTM, DenseNet, DNN, DTL,
FasterRCNN, GaFPN, Inception, InceptionResNet,
LaRPN, LeNet, LSTM, MobileNet, ResBiLSTM, ResNet,
RetinaNet, ROCKET, TabNet, UMRCGM, U-Net, VGG,

Fig. 4. Taxonomy of Machine learning/Deep learning.

The cost of implementing these communication technologies
is also an important consideration for agricultural applications.
For example, LoRa and NB-IoT offer low power consumption,
but their implementation costs are high. Therefore, network
coverage, power consumption, data rates, and implementation
costs of communication technologies should be considered
before developing a smart agriculture architecture.

B. Big Data

Big data can be referred to as a large volume of different
types of data generated at a high rate [15]. In agriculture,
this data can be generated by sensors, unmanned aerial ve-
hicles (UAVs) or unmanned ground vehicles (UGVs) (with
cameras installed), and satellites. Information such as soil
moisture, electrical conductivity and pH of the soil, wind
speed, atmospheric temperature and humidity, precipitation,
etc. is usually obtained from smart sensors [16]. These sensors
not only perform measurements but also pre-process and
transmit the collected data to other devices for the extraction
of valuable and interpretable information [13]. UAVs (with
installed camera) are typically used to capture high-quality
images for health monitoring, disease, pest and weed identi-
fication, crop yield estimation, etc. Remote sensing refers to
the use of satellites to perform the above operations from a
distance. In addition, variables such as Leaf Area Index (LAI),
Land Surface Water Index (LSWI), Enhanced Vegetation Index
(EVI), Normalised Difference Vegetation Index (NDVI), and
Modified Normalised Difference Water Index (MNDWI) are
determined from satellite imagery. The processing of these
collected data is crucial, especially when data are collected
from multiple sources (e.g. multiple satellites, UAVs and smart
sensors, etc.) [17], [18], [19]. Therefore, it is a challenging task
to integrate these multiple sources of data and generate useful
information for agricultural applications.

Xception

C. Machine learning (ML)

Machine learning (ML) approaches predict outcomes from
a given set of data after developing a mapping model [20].
In smart agriculture applications, multiple large volumes of
data from IoT sensors, drones, and satellites are sent to the
ML processing unit(s) to interpret the required information.
ML can be divided into several categories, as shown in Fig.
4, which we discuss in the following.

1) Supervised learning: Supervised learning requires la-
beled datasets for training, as shown in Fig. 5. It determines
the relationship between the labeled data with the help of
simple mathematical functions, such as sigmoid, hyperbolic
tangent function, etc. A general use case of such learning-
based algorithms is classification/regression. Algorithms such
as Discriminant analysis, SVM, KNN, etc. fall under this
category.

2) Unsupervised learning: Fig. 6 represents the mechanism
of unsupervised learning. It uses unlabeled data to search for
their patterns. The training in this learning category aims at
minimizing a given cost function [21]. The clustering of data
is a use case of such learning-based algorithms. K-means
clustering falls under this category.
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3) Reinforcement learning: Reinforcement learning aims
at delivering optimum decisions on the basis of situations,
actions, and rewards for the actions taken [22], [23]. As shown
in Fig. 7, the agent analyses the state of the environment
and takes action, which is evaluated by its reward value. This
learning methodology aims to find the appropriate action so
that maximum reward value is obtained. Algorithms such as Q-
learning and State-Action-Reward-State-Action (SARSA) fall
under this learning category.

4) Deep learning: Deep learning (DL) is the extension
of ML due to its feature learning ability before developing
the interpreting model [24]. Such learning architecture uses
multiple layers, as shown in Fig. 8, to extract features of
the provided data and perform functions similar to the above-
mentioned learning methodologies. Algorithms such as CNN,
VGG, ResNet, etc. fall under this learning category.

5) Ensemble Learning: Ensemble learning utilizes more
than one ML algorithm to minimize the prediction error
when a single ML algorithm is used. Fig. 9 demonstrates
the ensemble learning mechanism. The individual learner is
referred to as a base/weak learner, which produces weak
results. Later, a combination approach is implemented to
combine the outcomes of the weak learners and create a strong
learning model. Boosting, bagging, and stacking are the most
common approaches for creating a strong learner from weak
learners [25].
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6) Transfer learning: Transfer learning takes the learning
outcome(s) of one ML model (used in one application) and
re-uses it/them for another similar application (Fig. 10) [26]. In
particular, transfer learning allows for improving the learning
of an ML algorithm by utilizing its own data in a given new
domain and learning experience from a previous domain [27].
Such learning methodology is useful in a scenario where ML
(supervised/unsupervised) training may suffer from training
data shortage.

III. DATA COLLECTION AND PROCESSING IN SMART
AGRICULTURE

For ML algorithm-based intelligent agricultural applica-
tions, data sources, and accumulation are of great impor-
tance. These data can be manually generated, collected from
farmers, open access sources, journals/surveys, or collected
from sensors, drones, or satellites. A number of features are
extracted from these data to aid training and ultimately provide
a satisfactory output. This section discusses data collection
and processing for several smart agriculture research projects
and applications. Fig. 11 demonstrates the flow chart of ML
applications on the collected and processed data in the field
of smart agriculture.

Samples such as soil, seeds, leaves, etc. can be collected
from the study area of the field or from research laboratories.
Traditional measurements and laboratory experiments are car-
ried out to produce data sets for later use. Laboratory testing of
seeds provides information on their health, composition, mois-
ture content, and germination capacity. Biochemical methods
or image-based methods (e.g. hyperspectral and multispectral,
X-ray, CT scan, etc.) or both can be used to determine
soil nutrient content, plant health, and crop yield. Farmers’
declarations, surveys, and administrative databases are also
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Fig. 11. Flow graph for ML applications in smart agriculture domain.

sources of agricultural data. For example, farmer validation
is considered to develop crop type classification datasets [28].
Statistical data on climatic conditions, soil moisture, irrigation
water source, and timing, and annual crop yield are available
from several open-source databases, research articles, and
surveys. [29], [30], [31], [32], [33], [34], [35], [36], [37]. Even
images of pests and weeds are also available in these sources,
which are utilized in training ML for respective applications
[38], [39], [40], [41].

Smart IoT sensors are useful for collecting atmospheric
temperature, humidity, sunlight intensity, soil temperature, and
moisture content at a specific point in time. These sensors
can be used in the agricultural sector for soil monitoring,
irrigation status, crop health monitoring, disease identification,
and pest control. The use of cameras with such sensors is also
seen in the above applications. In [42], an intelligent energy-
efficient crop monitoring system for greenhouse crops is being
developed using light and camera sensors (which sense the
light intensity and generate crop images), spectroradiometers,
and intelligent control devices. For pest control applications,
smart traps will be built in the study area of interest to capture
images of the trapped pests and generate data sets [43], [44].

Sensors and cameras will also be installed on remotely
operated vehicles, particularly aerial vehicles (UAVs/drones),
to acquire thermal, hyperspectral/multispectral images and
various vegetation indices. Identification of anomalous objects
and dry parts of cultivated land is also a potential application of
UAV-based monitoring systems [45], [46], [47]. The laboratory
experimental data and the UAV sensor-based data can be
combined for agricultural analysis using ML. For example,
the mapping of seed composition data derived from laboratory
experiments and various spectral features obtained from UAV
image data will be studied to train the ML algorithm(s) [48]. A
similar study can be done for crop yield estimation by combin-
ing nutrient content derived from laboratory experiments with
data from hyperspectral imaging sensor(s) mounted on UAVs
[49]. The accuracy analysis between ground truth data and
UAV-based data helps to realize the scope of remote sensing-
based data collection methods in smart agricultural fields [33],

(Observation, diagnostics,
decisions, action)

Crop monitoring

Fig. 12. ML applications in smart agriculture domain.

[50].

Satellite image-based approaches are being investigated by
researchers for many agricultural applications, ranging from
crop type classification to pest detection. Similar to UAV-
based imagery methods, various vegetation indices, and other
spectral information extraction are the motives for acquiring
such satellite images. This information is also verified by
human declarations or combined with in-field observations
from UAVs, open source data, research articles, and surveys,
[51], [28], [52], [53], [54], [55], [56], [30], [31]. Even multiple
satellite data sets can be combined to generate usable images
and extract the required information.

After combining this heterogeneous data from the multiple
sources mentioned above, useful trainable datasets are pre-
pared. The prepared datasets can also be divided into training,
validation and test datasets. Using this training data, dedicated
ML is trained. The effectiveness of the ML training is deter-
mined after validation and testing with the remaining datasets.
In addition, new data sets can be provided to the trained ML-
based architectures to determine the prediction accuracy. The
application of ML-based approaches in intelligent agricultural
applications (shown in Fig. 12) is discussed in later sections.

IV. CROP SEEDS CLASSIFICATION

In this section, we discuss the classification of crop seeds
on the basis of their vigor and varieties by applying ML
algorithms for the sake of quality crop production. Table
I provides a summary of ML-/DL-based seed classification
methods.

In [57], the quality of peanut seed is attempted to be
evaluated by assessing its characteristics, such as physical
properties, pigments, and light reflectance. Quadratic Discrim-
inant Analysis (QDA) is to classify the vigor of the seed
lots. The protein level and oil composition in soybean and
corn seeds are determined in [48] by analyzing hyperspectral
and LiDAR data obtained from sensors incorporated in UAV.
Gradient Boosting Machine (GBM) and Deep Neural Network
(DNN) are used as data analyzers for seed quality assessment.
Fourier Transform Near-Infrared (FT-NIR) spectroscopy and
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TABLE 1

Reference | Year | Research goal Data for ML ML tools Research outcomes/Benefits

[57] 2022 | Peanut seed quality eval- | Multispectral images | QDA 98% prediction accuracy is obtained
uation in terms of seed by QDA with respect to laboratory
vigor experiment data.

[48] 2022 | Soybean and corn seed | UAV-hyperspectral GBM and DNN Better performance in terms of RZ,
nutrition value determi- | images and RMSE and relative RMSE is ob-
nation in terms of pro- | LiDAR data tained compared to DRF, XRT, and
tein level and oil compo- | (Lab  experiments GLM.
sition for validation of

proposed method)

[58] 2020 | Germination prediction | FT-NIR LDA, PLS-DA, RF, Naive | LDA, PLS-DA, and RF showed
and vigor determination | spectroscopy and | Bayes (NB), and SVM with | higher germination and vigor deter-
of forage grass X-ray images radial basis (SVM-r) kernel mination accuracy compared to other

ML models.

[59] 2021 | Soybean seed classifi- | Autoflorescence- ANN, SVM, and LDA Compared to traditional laboratory
cation on the basis of | spectral images tests, 99% seed quality classification
germination, stress toler- accuracy is obtained by these ML
ance, etc. models.

[60] 2021 | Crambe seed quality de- | X-ray images CNN-based deep learning | 91 %, 95 %, and 82 % accuracy
termination based on in- (DL) are achieved in terms of physical in-
ternal tissue integrity, tegrity, germination, and vigor clas-
vigor, and germination sification respectively.

[61] 2020 | Determination of viabil- | X-ray CT scanned | PLS-DA, SVM, and KNN PLS-DA provides better accuracy
ity and non-viability of | images (88.7%) compared to other ML mod-
pepper seeds els.

[62] 2020 | Determination of viabil- | X-ray images LDA, QDA, KNN and Deep | LDA provides 83.6% accuracy com-
ity and non-viability of Transfer Learning (DTL) pared to traditional ML models,
watermelon seeds ResNet-50 provides 87.3% accuracy

compared to other DL models.

[63] 2022 | Identification and clas- | Photonic sensor- | Convolutional Neural Net- | 98.31% accuracy is obtained with
sification of crop seeds | captured images work (CNN) and VGG16, | CNN and InceptionV3.
quality VGG19, InceptionV3, and

ResNet50

[64] 2020 | Vigor, germination | X-ray images LDA Compared to traditional laboratory
speed, and capacity of tests, 89.72%, 83.72%, and 94.36%
oilseed plant seed accuracy in determining vigor, ger-

mination speed, and viability, respec-
tively are achieved.

[65] 2020 | Germination monitoring | Data and images | Deep learning (DL), Gaussian | Proposed system is reported to be
system experimented on | generated by the | Mixture Model (GMM) and | effective compared to the traditional
tomato, pepper, Bras- | proposed system Stochastic Gradient Descent | method.
sica, barley and maize (SGD)
seeds

[66] 2020 | Asian rice seed variety | Images of sample | Logistic regression (LR), | SVM and InceptionResNetV2 have
determination seeds linear discrimination | displayed higher accuracy compared

analysis (LDA), KNN, | to other ML and DL models respec-
SVM, VGGl16, VGGI9, | tively.

Xception, InceptionV3, and

InceptionResNetV2

[67] 2021 | Maize seed variety de- | Images of sample | Multilayer Perceptron (MLP), | SVM provides the highest overall
termination seeds Decision Tree (DT), LDA, | classification accuracy (96.46%).

NB, SVM, KNN, and Ad-
aBoost

[68] 2021 | Pumpkin seed variety | Images of sample | LR, MLP, SVM and RF, and | SVM provides the highest classifica-
determination seeds KNN tion accuracy (88.64%).

[69] 2022 | Wheat seed variety de- | Physical features | KNN, Classification and Re- | Ensemble ML provides highest ac-
termination from collected seed | gression Tree (CART), NB | curacy (95%) compared to other ML

dataset and ensemble machine learn- | models.
ing

[70] 2020 | Corn seed variety deter- | Images of sample | RF, BayesNet (BN), Logit- | MLP provides the highest accuracy
mination seeds Boost (LB), and MLP (98.93%) compared to other ML

models.

X-ray imaging techniques are studied in [58] for acquiring data
to be processed by ML algorithms. Among the compared ML
algorithms, LDA, Partial Least Squares Discriminant Analysis
(PLS-DA), and Random Forest (RF) are reported to display
high classification accuracy in classifying seeds of forage
grass. In [59], autofluorescence-spectral imaging techniques

and ML algorithms (Artificial Neural Network (ANN), SVM,
or LDA) are combined to determine the quality of soybean
seeds. Convolutional Neural Network (CNN)-based DL model
is also used for seed classification in [60] by utilizing features
obtained from X-ray images. In [61], [62], viability and non-
viability of pepper seeds and watermelon seeds are considered
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as a classification problem, which is attempted to solve by
means of ML algorithms by analyzing data from X-ray CT
scan images. In [63], a laser backscattering, Deep Transfer
Learning (DTL)-oriented photonic sensor is proposed to iden-
tify and classify the quality of crop seeds. InceptionV3 is
shown to provide higher accurate results in classifying seed
quality than other DTL methods, such as VGG16, VGG19, and
ResNet50. Along with the seedling vigor, germination speed
and capacity of the seed of an oilseed plant are studied in [64]
with the help of X-ray images and LDA. In [65], a germination
monitoring system of crop seeds, named “SeedGerm”, is
developed by using a cost-effective hardware system, open-
source software, and ML-algorithm-based approaches. The
monitoring capability of the system is applied to tomato,
pepper, barley, and maize seeds. Correlation score greater than
0.98 is observed between the ”SeedGerm” monitoring system
and manual observation.

Apart from seed vigor and germination capability of seeds,
ML algorithms are also used for seed variety classification.
In [66], Asian rice variety classification by means of ML
and DL-based algorithms is studied, which uses the physical
characteristics of the seeds for classification. In [67], [68],
similar studies are conducted on maize seed and pumpkin
seed variety classification respectively by using traditional ML
algorithms. In [69], an ensemble ML algorithm is used for
wheat seed classification on the basis of their physical fea-
tures. By analyzing statistical, spectral as well as geometrical
information of the digital images of corn seeds, the ML-based
classification approach for corn variety is studied in [70].

Brief Summary

Traditionally, seed quality and vigor assessments are usually
carried out through laboratory tests and image inspections
by humans, which are laborious, time-consuming, and error-
prone. Therefore, automation by means of IoT devices and
ML approaches (for analyzing the data generated by one/more
types of IoT devices) eases the effort of seed classification.
Several supervised ML, transfer, and ensemble learning mod-
els are studied for this operation. DL algorithms, according to
some studies, are proven to be more successful in classifying
seeds than ML algorithms.

V. CROP TYPE CLASSIFICATION

Classification of crop types helps to monitor agricultural
productivity and ensure the availability of food and raw
materials for goods produced in a given region. In addition,
decisions about appropriate crops based on soil and climatic
conditions depend on crop mapping. In this section, we discuss
the role of ML in crop classification. We also summarise the
discussions in the table II.

In [51], a hyperspectral imaging spectrometer-based image
and ML and DL algorithms are used to classify and map crops
such as soybean, hybrid maize, winter wheat, and sunflower
over the cropped area. In [28], Sentinel-2-based time series
data are used to train ML and DL algorithms for crop type
classification. In [52], the time series EVI is determined from
the Moderate Resolution Imaging Spectroradiometer (MODIS)

satellite data, and the Fused Representation-based Classifica-
tion (FRC) algorithm is used for cotton pixel identification
and cotton area mapping. The harmonic features of the annual
time series EVI are obtained by applying the Fourier transform
and later these features are provided as input to the FRC
algorithm for classification of the area under cultivation. In
[53], the ML algorithm uses the temporal variations within
the tobacco crop and their correlation with other vegetation
variations to provide better classification performance. The
ML-based classifier uses the seasonal characteristics of winter
wheat obtained from satellite data and a coarse-resolution
map to update the ML label [54]. ML-based tools benefit not
only farmers but also investors in agricultural finance. Crop
identification and classification using ML tools and remote
sensing technology can help them to be more efficient in
providing loans for agricultural development [55].

Brief Summary

ML algorithms are explored to perform cropland identifica-
tion and mapping by utilizing satellite imagery, to minimize
the effort of physically conducted surveys and measurements.
A decent correlation between statistical data and ML-based
derived data is observed. Besides, DL algorithms both have
shown high accuracy as well as geometric mean of the recall
and precision scores in their respective studies.

VI. CROP MONITORING

In this section, we discuss the use of machine learning in
monitoring the nutrients and chlorophyll content and yield
prediction, with summaries provided in Table III and Table
IVv.

A. Crop health

The use of satellites to monitor the morphological charac-
teristics of a crop is preferable because of the high-resolution
images that can be obtained. Using the images acquired by
drones and satellites and ML algorithms, a remote monitoring
system of sugarcane fields is proposed in [56]. The vegetation
indices are obtained from the satellite data and the Gaussian
process regression model is used to predict the biochemical
components of the crop. Due to cloud cover, the optical images
produced by the satellites have a high probability of being
affected. In this case, in [17], satellites such as Sentinel-1
and Sentinel-3 are used to generate images of winter wheat.
These images are then used to train the proposed DL model to
determine LAI and chlorophyll content. However, the satellites
take days to revisit the desired fields. Therefore, drone-based
monitoring is a promising solution in an emergency situation.
In [19], drones are used to generate vegetation indices, and IoT
sensors are used to provide information on environmental sta-
tus to determine its impact. ML algorithms (such as SVM, NB)
and DL algorithms will be used to determine whether crops
are healthy, under stress, or unhealthy. For an energy-aware
greenhouse cultivation methodology, an intelligent horticul-
tural lighting and crop monitoring system will be developed
in [42]. The effective light intensity is provided to the lettuce
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TABLE I
ML ALGORITHMS FOR CROP TYPE CLASSIFICATION.
Reference | Year | Research goal Data for ML ML tools Research outcomes/Benefits
[51] 2023 | Classification of | Satellite hyperspectral | 2-D WA-CNN, RF and | CNN-based prediction model provide bet-
hybrid corn, soybean, | imaging SVM ter accuracy compared to the other mod-
sunflower, and winter els.
wheat
[28] 2022 | Crop type classification | Multicountry benchmark | Deep learning (DL) mod- | Effectiveness of the dataset with DL is
and segmentation dataset created by lever- | els (such as U-Net, LSTM, | shown by accuracy, F1 and precision
aging satellite imagery | CNN, etc.) scores evaluations.
and ground truth data
[52] 2021 | Identification of cotton | Satellite data FRC Compared to statistical data, the proposed
cultivated area method can identify cotton fields with R2
score of 0.83.
[53] 2020 | Tobacco crop detection | Ground survey for train- | ANN 95.81% of overall accuracy is obtained
from satellite data ing and satellite data for with the help of ANN and NDVI stacking.
testing
[54] 2022 | Winter wheat mapping | Satellite data for ML | Proposed ALU-DL, SVM, | Higher overall accuracy and F1 score are
training and testing, field | RF, U-Net and others achieved with the proposed model.
and statistical data for
validation
[55] 2022 | Sugarcane crop identi- | Satellite data and ground | Random Forests (RF), | Higher F1 score is achieved with RF and
fication with the help | survey for ML training | KNN, SVM,  Neural | KNN algorithms.
of ML-based software | and testing Networks (NN) and
tool Gradient Boosting
TABLE III
ML FOR CROP HEALTH MONITORING
Reference | Year | Research goal Data for ML ML tools Research outcomes/Benefits
[56] 2022 Remote monitoring of | Satellite, drone, and lab- | GPR Compared to laboratory experiment data,
sugarcane crop oratory data for ML GPR-based model accuracy is evaluated in
training and testing terms of R? score and normalized RMSE.
[17] 2022 | LAI and chlorophyll | Satellite data Proposed deep learning | Proposed model provides better perfor-
content determination model (UMRCGM), | mance than other models in terms of R2
of winter wheat Partial Least Squares | score and RMSE.
Regression (PLSR), RF
and XGBoost
[19] 2020 | Crop health classifica- | Multispectral data from | DNN, SVM and NB Higher accuracy (98.4%) is achieved with
tion drones and climate pa- the DNN model.
rameters from IoT sen-
Sors
[42] 2023 | Design of energy- | Amount of light received | Multi-linear regression | The chosen model provides low energy
efficient crop | by the plant and images | model (for controlling | usage of 28% than other studied mech-
monitoring system for plant growth mon- | supplemental light | anisms.
itoring in greenhouse | controller)
setup
[71] 2021 Chickpea stress level | Images of plants in lab- | ConvLSTM DL with temporal analysis provides better
classification due to | oratory setup under dif- stress classification than that with time-
water deficiency ferent stress conditions invariant analysis.
[72] 2022 | Tomato seedling stress | Chlorophyll LDA, SVM and KNN Higher recognition accuracy (of 87.1%) is
detection due to water | fluorescence parameters achieved with SVM.
deficiency and  images  under
laboratory setup

crop by a combination of sunlight and LED light (which
acts as a supplement). The supplementary light controller
is controlled by a multi-linear regression model, which has
a simple learning architecture with respect to the DT and
RF algorithms and provides fairly accurate results. Compared
to the time-scheduling mechanism, about 28% reduction in
energy consumption per unit dry mass of lettuce is observed
by the proposed horticultural lighting and crop monitoring
system.

Image-based phenotyping is an emerging approach for
monitoring the biotic as well as the abiotic stress levels in
crops. ML algorithms can be used to detect stress levels at
an early stage by performing analysis on the images. In [71],
a CNN-Long Short-Term Memory (CNN-LSTM) algorithm-

based approach is used to classify stress levels in chickpea
due to water deficiency. In [72], a stress detection methodology
due to water deficiency is proposed, which uses chlorophyll
fluorescence parameters and corresponding images of tomato
seedlings. These data are utilized by the LDA, SVM, and
KNN to predict the stress level. Moreover, the authors in a
recent paper evaluate the effectiveness of machine learning
for mushroom growth monitoring [73].

B. Crop yield prediction

Crop yield estimation plays an essential role in ensuring
proper crop monitoring, irrigation, and food supply manage-
ment. The implementation of ML algorithms by processing
data available from sensors and remote devices has been
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proven effective in various academic research. The applica-
tion of ML algorithms in predictive crop yield estimation is
reported as follows.

A yield estimation architecture is designed in [74], where
data such as vegetation indices and meteorological and annual
crop yield-related data are provided as input to the ML-based
model for training. SVM, KNN, and GPR are studied to
evaluate their performance in yield estimation. In [29], climate,
irrigation, and soil moisture information are used to predict
tomato and potato yield at the end of a season. DL models
such as LSTM and Gated Recurrent Units (GRU) and their
variants are used in this study for yield prediction with the
given information. It is found that the bidirectional LSTM
(BiLSTM) (Fig. 13) outperforms other models. A Gaussian
Process (GP) is used in [30] for yield estimation of maize,
soybean, and wheat, mainly using soil moisture and canopy
greenness-related information. In [31], spectral vegetation in-
dices extracted from satellite images are used for alfalfa yield
estimation. Ridge Least Absolute Shrinkage and Selection
Operator (LASSO), GPR, RF Regression (RFR), Boosted
Regression Trees (BRT), and SVR are studied for developing
inversion models that would perform alfalfa yield estimation.
In [75], Bayesian regularisation with back-propagation algo-
rithm is used to predict cotton yield by analyzing cotton boll
opening. In another study [76], features such as canopy cover
and height, vegetation index, cotton boll size and quantity, and
irrigation-related information are used by ML models such
as ANN, SVR, and RFR for cotton yield estimation. These
algorithms are compared to determine which ML algorithm
gives the best result. In [49], an RF-based algorithm is used to
predict winter wheat yield using LAI and leaf nitrogen content
obtained from UAV images. Information related to climate,
satellites, soil parameters, and other data can be obtained from
Google Earth Engine (GEE) and used by ML algorithms for
wheat yield estimation, which is done in [77].

The DNN and RF models are reported to perform better
than other ML models such as CNN and LSTM. In [78],
UAV imagery is used to acquire the Excess Green (ExG)
color feature, which is used to predict maize yield. Linear and
non-linear regression models are investigated to develop ML
prediction models. In [32], an attempt is made to determine the
optimal stage of soybean crop development for the acquisition
of multispectral images to be used for crop yield estimation.
The MLP algorithm is used as the ML model for soybean
yield estimation. In [33], a comparative study between Multi-
ple Linear Regression, Stepwise Multiple Regression (SMR),
Generalised Linear Model (GLM), Generalised Boosted Model
(GBM), Kernel-based Regularised Least Squares (KRLS), and
RFR is carried out for predicting sugarcane yield based on the
data obtained from UAV imagery. Oil palm yield estimation is
performed in [79] by the ML algorithms such as RF, LASSO,
Extreme Gradient Boosting (XGBoost), Recursive Partitioning
and Regression Trees (RPART), and NN; by analyzing a
historical dataset of oil palm plantations and corresponding
vegetation indices obtained from satellite imagery. The LAI
and the canopy diameter of the coffee plant, collected by
the camera mounted on the UAV, are considered two crucial
parameters to estimate the coffee yield with the help of
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Fig. 13. Architecture of BiLSTM algorithm. Data sequences are transmitted
in forward and backward order to the first layer and the second layer LSTM
blocks respectively. Each LSTM block contains a forget gate (f};), an input
gate (fy), a block gate (f3;) and an output gate (o). The memory cell and the
cell output at time ¢ is denoted by c; and h, respectively.

SVM, GBR, RFR, PLSR, and Neuroevolution of Augmenting
Topologies (NEAT) [50].

Brief Summary

Determining nutrients and chlorophyll content in crops by
means of laboratory experiments is challenging at a large
scale due to the requirements of many expert analysts, the
use of chemicals, expensive equipment, and the time required
for laboratory tests. Besides, manual on-field evaluation of
crop yield is laborious and crop growth model, such as [80],
requires a large volume of ground truth data for effective
yield prediction. Therefore, supervised ML-based approaches
in order to process data collected through satellites, drones,
and IoT sensors have been considered for crop health moni-
toring and yield prediction. It has been found that DL models
can analyze crop health more accurately than ML models.
Furthermore, DNN and BiLSTM have shown better yield
prediction performance than other ML-based algorithms.

VII. SOIL CONDITIONS AND WATER MONITORING

With modern technology, farmers can monitor soil nutrient,
water, and contaminant levels, monitor soil salinity and reg-
ulate irrigation water. Smart devices and ML algorithms can
work together to initiate irrigation based on environmental and
soil conditions, as well as plant water content. In addition,
water quality assessment, efficient use of water, and classifi-
cation of irrigation systems are also important concerns in the
agricultural sector. In this section, we discuss the role of ML
algorithms and IoT devices in monitoring soil conditions and
developing intelligent irrigation infrastructure. We highlight
the discussions in Table V and Table VI.

A. Soil conditions monitoring

A soil nutrient estimation algorithm is proposed in [81]
using a bat (BA) algorithm-supported ML learning model. The
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TABLE IV
ML FOR CROP YIELD ESTIMATION

Reference | Year | Research goal Data for ML ML tools Research outcomes/Benefits

[74] 2021 Estimation of crop | Satellite, recorded meteoro- | SVM, KNN, and GPR, SVM, KNN and GPR provide better R?
yield logical and annual yield data | RF, Gradient Boosting | and RMSE than other ML models.

Decision Tree (GBDT),
LASSO, SGD and MLP

[29] 2021 | Tomato and potato | Historical data such as cli- | LSTM, Bidirectional | BiLSTM provide better performance than

yield prediction mate, irrigation and soil | LSTM (BiLSTM), GRU | other ML models in terms of R? score
moisture and Bidirectional GRU | and MSE.
(BiGRU)

[30] 2020 | Corn, soybean and | Satellite and recorded mete- | Least square linear regres- | GP provide better performance than other
wheat yield estima- | orological data sion, RF and Gaussian pro- | ML models in terms of R2 score, low
tion cess (GP) Mean Error (ME) and RMSE.

[31] 2022 | Alfalfa yield esti- | Satellite data and recorded | Ridge, LASSO, GPR, RF | Improved RMSE performance is achieved
mation crop yeild Regression (RFR), BRT, | with GPR.

and Support Vector Re-
gression (SVR)

[75] 2021 | Cotton yield esti- | UAV-based RGB and mul- | Bayesian  regularization | Proposed model provides better perfor-
mation tispectral images and field | Back Propagation (BP) mance than linear regression model in

sampling data terms of R? score and MSE.

[76] 2020 | Cotton yield esti- | Temporal and non-temporal | ANN, SVR and RF regres- | Proposed model performs better than
mation features and irrigation status | sion (RFR) other ML models in terms of R? score

from drone data for yield and MSE.
prediction (recorded yield

data from research area for

drone method validation)

[49] 2021 | Winter wheat yield | LAI and nitrogen content | RF Compared to field and experimental ap-

estimation data from UAV imagery proach, proposed ML model provides
(field and laboratory experi- MAPE of 9.36%.
mental data for UAV method
validation)

[77] 2021 Wheat yield esti- | Climate, satellite, soil pa- | REE, DNN, CNN, and | The RF and DNN models provide rela-
mation rameters, etc. from GEE LSTM tively better performance in terms of R2

and RMSE than other models.

[78] 2020 | Maize yield predic- | UAV-RGB images of the | Linear and non-linear re- | The studied models provide R? values
tion from Excess | cultivated land (ground truth | gression based ML models | lower than 0.5 and MAPE within 6.2-
Green (ExG) color | data for ML training and 15.1%.
feature UAV method validation)

[32] 2020 | Soybean crop yield | Data from drone-based mul- | MLP The performance of the proposed method-
estimation tispectral images of cultiva- ology with MLP is reported in terms of

tion area for ML training Spearman correlations.
and testing

[33] 2020 | Sugarcane yield es- | UAV-LiDAR data of culti- | Multiple linear regression, | RFR provides better performance than
timation vated area SMR, GLM, generalized | other ML models in terms of R? score

boosted model (GBM), and RMSE.
KRLS, and RFR

[79] 2022 | Oil palm yield esti- | Satellite imagery (mapped | RF, LASSO, XGBoost, | NN and RF provide better performance

mation with historical data) RPART, and NN in terms of R?2, Nash—Sutcliffe Efficiency
(NSE), RMSE and Mean Absolute Error
coefficient (MAE).

[50] 2021 | Coffee yield esti- | UAV-imagery based data of | SVM, gradient boosting | NEAT algorithm provides better perfor-
mation from LAI | cultivation land regression (GBR), RFR, | mance than other ML models in terms of
and crown diameter PLSR, and NEAT MAPE.
of coffee crop

BA algorithm optimizes the maximum number of iterations
and the weight reduction coefficient of a weak learner in
the learning model. Besides, compared to other optimization
algorithms, it also helps in speeding up the convergence speed
of the learning model. A soil contamination estimation strategy
is proposed in [82]. Effective information for estimating the
level of pollutants in the soil is extracted from the soil
hyperspectrum. Later, Tabular Learning (TabNet) and CNN
are used to develop regression models. To ensure effective
water use for irrigation, an estimation of soil water content
is proposed in [34]. ResNet and LSTM learning networks are
jointly used to extract the spatial and time series characteristics
from the meteorological and crop growth stage data. In [83],

[84], satellite data are used and processed with ML algorithms
for soil moisture estimation. In both studies, RF achieved the
highest prediction accuracy compared to the other benchmark
ML algorithms.

B. Water monitoring

A groundwater salinity map is considered in [35] for
groundwater quality assessment. ML algorithms such as
Stochastic Gradient Boosting (StoGB), Rotation Forest (Rot-
For), and Bayesian Generalised Linear Model (Bayesglm) are
studied to compare their predictive performance in determining
the salinity level in groundwater. A water quality assessment
methodology is proposed in [36] to determine its usability
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TABLE V
ML FOR SOIL MONITORING
Reference | Year | Research goal Data for ML ML tools Research outcomes/Benefits
[81] 2022 | Soil nutrient estimation | Hyperspectral data of | Bat  Algorithm (BA)- | Higher accuracy and reliability is achieved
the collected soil sam- | AdaBoost model by the proposed model than AdaBoost
ples in laboratory setup without BA.
[82] 2022 | Soil pollution estima- | Data from soil hyper- | Attentive interpretable tab- | The proposed model is evaluated in terms
tion spectrum ular learning (TabNet) and | of RZ?, root-mean-square error (RMSE)
CNN and Ratio of Performance to Interquartile
Range (RPIQ).
[34] 2020 | Soil water content de- | Meteorological data and | Residual Network | ResBiLSTM provides better performance
termination from me- field survey (ResNet) and Bi- in terms of MSE, MAE, root mean
teorological and crop directional LSTM-based | squared error (RMSE), MAPE and R?
growth stage data algorithm (ResBiLSTM), | score.
SVR, random forest (RF),
MLP and CNN-LSTM-
based approaches
[83] 2021 Soil moisture Satellite data and field | SVR, RF, and Gradient | RF provides better performance than other
estimation survey Boosting Regression Tree | models in terms of R? score and RMSE.
(GBRT)
[84] 2021 Linear regression, ridge re- | RF provides lower MSE with tested data
gression, kernel ridge re- | compared to other models.
gression, SVR and RF
- IaFyCer > Output [37], supervised ML algorithms are used to classify different
'Step 1 TRe irrigation systems, such as drip irrigation, sprinkler irrigation,
' and flood irrigation. The proposed classifiers also identify
[oplit j— whether an irrigation system is installed in the field. DL is
T N B e R R e T shown to achieve the best classification accuracy. In [90],
| | climate and irrigation-related parameters are used to predict
1[LAT_}+{Mask], . .
—— | the sap flow of crops using an ML algorithm-based approach.
BN The prediction accuracy of several ML algorithms is studied
Feat and compared in the study. In [45], an intelligent selective
eature o . L .
= e attributes irrigation system is proposed which identifies the dry parts of
(a) the cropland with the help of thermal images generated by the
smart devices. The irrigation pattern is generated by an ML
Encoded regression-based algorithm. To optimize the irrigation process,
representation a methodology based on computer vision methods is proposed
Step 1| T Tistep2| T 1 in [46]. The irrigation rate at the desired location of the crop
I I . . . . . .
! FT V! | field is determined by a trained NN. In [86] an irrigation
| L ! water-saving scheme is proposed that uses temperature and
i IaFyCer i i |aFyCer E humidity data to determine the rate of evapotranspiration with
oo T 1 ----- [ 1 ----- : the help of ML algorithm. GNB, SVM, KNN, and ANN
& Recfggiarrlégted are studied to evaluate the prediction performance. In [87],

(b)

Fig. 14.  Architecture of TabNet algorithm [(a) TabNet encoder (b) TabNet

decoder].

Agg.: Aggregation. AT: Attentive Transformer (performing feature selection
on the features obtained from split block, which divides data features into
data to be utilized by AT and that to be utilized at the output). BN: Batch
Normalization. FC: Fully Connected. FT: Feature Transformer (executing
processing of data features). ReLU: Rectified Linear Unit.

for drinking and irrigation. ML algorithms such as RF, LR,
and SVM are evaluated for water classification accuracy.
In [85], a fused learning model, formed by random vector
functional link network and group method of data handling
model (RVFL-GMDH), is proposed to assess water quality
for the aquaculture industry. Compared to ANN, SVM, REF,
DT, and DenseNet, the proposed model has shown better
prediction accuracy on the unseen dataset. Thus this model
can also be explored in cropland irrigation application. In

improved versions of RVFL and RVM are implemented for
evapotranspiration modeling. The influence of the artificial
hummingbird algorithm (AHA) and the quantum-based avian
navigation optimizer algorithm (QANA) on each of these
algorithms are separately investigated. The study showed
considerable improved performances by the hybrid prediction
models compared to the base RVFL and RVM models. In
[88], improvement of RVFL learning model by metaheuristic
algorithms, such as particle swarm optimization (PSO), the
genetic algorithm (GA), the grey wolf optimization (GWO),
the salp swarm algorithm (SSA), the social spider optimization
(8S0O), and the hunger games search algorithm (HGS) are
investigated for drought modeling. RVFL with HGS has shown
better prediction results than the other RVFL models. In
[89], two algorithms, namely Adaptive Neuro-Fuzzy Inference
System (ANFIS (Fig. 15), developed from ANN and Fuzzy
Inference System) and Seasons Optimisation-based ANFIS
(SO-ANFIS) are implemented to predict the efficiency of water
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TABLE VI
ML FOR WATER MONITORING

Reference | Year | Research goal Data for ML ML tools Research Outcomes/Benefits

[35] 2020 | Groundwater salinity | Electrical conductivity | StoGB, RotFor, and | StoGB provides better salinity prediction
mapping for water | of water, collected from | Bayesglm and the other algorithms provides higher
quality assessment management company Kappa values.

[36] 2022 | Water quality assess- | Dataset collected from | RF, LR, and SVM LR and SVM provide better drinking and
ment for drinkability | other studies irrigation water quality assessment respec-
and irrigation tively.

[85] 2021 | Determination of water | Images of water samples | RVFL-GMDH, ANN, | Higher prediction accuracy is achieved by
quality with labels SVM, RF, DT and | the proposed model.

DenseNet

[37] 2022 | Classification of irriga- | Satellite data and field | Residual Network | ResNET provide best classification perfor-
tion systems survey of crop land (ResNET), Time series | mance.

forest and Random
Convolutional Kernel
Transform (ROCKET)

[45] 2023 Selective irrigation of | UAV-based thermal im- | KNN, SVM, RF, and NN RF model provides lowest MSE in pre-
dry part of the crop cul- | ages dicting sprinkler parameters.
tivation land

[46] 2022 | Water usage optimiza- | In-field computer moni- | Support Vector Machine | BPNN and CNN with resilient propaga-
tion for irrigation on | toring system (SVM), CNN, and Back | tion training accurately identify crop and
the basis of crop iden- Propagation Neural Net- | growth stage and regulate irrigation ac-
tification and growth work (BPNN)-based algo- | cordingly.
stage rithms

[86] 2022 | Trrigation water conser- | Evapotranspiration esti- | Gaussian NB  (GNB), | KNN provides better evapotranspiration
vation scheme mation from in-field IoT | SVM, k-Nearest | prediction than the other ML algorithms

Sensors Neighbours (KNN),
and ANN

[87] 2023 | Evapotranspiration Minimum and maximum | Hybrid models | Considerable improved RMSE, MAE,
modeling climate temperatures | (RVFL-AHA, RVM-AHA, R2, and NSE scores are achieved with the

and extraterrestrial | RVM-QANA, proposed hybrid models
ratiation RVFL-QANA), base
RVFL and base RVM

[88] 2021 | Drought modeling in | Collected monthly pre- | RVFL-PSO, RVFL-GA, | RVFL-HGS has shown better performance
terms of standard pre- | cipitation data RVFL-GWO, RVFL-SSO, | in terms of RMSE, MAE, R2, and NSE
cipitation index (SPI) RVFL-SSA, and RVFL- scores than the other models.

HGS

[89] 2022 | Water usage efficiency | Field studies for climate, ANFIS, SO-ANFIS, GPR, SO-ANFIS provides better water usage ef-

and yield determination | soil parameters, irriga- | and RF ficiency and yield predictions for Narrow
tion, fertilizers and yield Strip Irrigation (NSI) based cultivation
data system

| Label, ~__ pollution, and water content by analyzing different types of

Inputx< Label;—>® ® data such as hyperspectral, meteorological, satellite, UAV, and
Labelxg/ \ field data. Other than RF, StoGB, LR, SVM, ResNet, BPNN,
Label, ~__ /1®_>OmpUt CNN, RVFL, GMDH, KNN, and SO-ANFIS are proposed
Inputy< Labe|:2_,® ® for use cases such as drinking and irrigation water quality
| Labelys/ assessment, irrigation system classification, identification of
selective irrigation soil, and water usage efficiency. These
wl Llay?lz LIayFIS. LIay?I ; I_|ay?|5 proposed scherges not only aim at mitigating human effort

but also at providing high prediction performances.

Fig. 15. Architecture of ANFIS, a five layered network-based algorithm.

The first layer determines the level of dependence of each input data on
different fuzzy domains. The second layer aims in obtaining the weight of the
rules from the product of each node’s input values. The third layer computes
the importance of regulations through normalization of the weight of the
rules. The fourth layer generates a rules layer by performing mathematical
operations on the input data. The fifth layer generates the output of the
network.

use during irrigation. Improved performance is achieved over
state-of-the-art water use efficiency estimators.

Brief Summary

Algorithms such as BA-AdaBoost, TabNet, ResBiLSTM,
and RF have shown improved performances for soil nutrients,

VIII. PREVENTIVE MEASURES FOR CROPS

In this section, we discuss the preventive measures for crops
with ML-based systems in terms of crop disease prediction,
and detection of pests, and weeds with ML. We also highlight
the discussions in Table VII-Table IX.

A. Crop Disease detection

Farmers’ efforts to detect crop diseases can be facilitated
with the help of smart IoT devices and ML-based disease
detection systems. In [91], a real-time crop monitoring system
is designed to analyze the data collected by IoT sensors.
SVM and CNN-based algorithms are proposed to analyze the
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TABLE VII
ML FOR CROP DISEASE DETECTION

Reference | Year | Research goal Data for ML ML tools Research outcomes/Benefits

[91] 2021 Leaf disease identifica- | IoT sensors and cam- | Ensemble SVM, SVM, | The ENSVM and CNN-based approaches
tion eras for cropland envi- | CNN, Naive Bayes (NB) perform better in terms of recall, speci-

ronmental data and im- ficity, accuracy, and precision scores.
ages

[92] 2020 | Crop disease prediction | Cameras installed in | CNN The proposed CNN-based framework pro-

crop land vides 99.24% detection accuracy.

[93] 2020 | Disease detection in | Images collected from a | Deep CNN, K-means clus- | The proposed deep CNN model provide
citrus plants and fruits dataset [94] tering and simple NN clas- | better performance in terms of detection

sifier accuracy, amount of required training pa-
rameters and execution time.

[95] 2022 | Tomato leaves disease | Images from NIR cam- | CNN, SVM, MLP, TDNN | The CNN performs better than the other
detection era and ANFIS models in terms of Intersection Over

Union (IOU) and Pixel Accuracy (PA).

[96] 2021 Rice blast prediction Recorded weather data | MLP, SVM, RNN, and | The PNN-based model performs better in

(such as, air and soil | PNN terms of accuracy, precision, recall and F-
temperatures, mean rel- measure scores than the other models.
ative humidity, and sun-
light) and corresponding
event of rice blast
TABLE VIII
ML FOR PEST DETECTION FOR CROPS

Reference | Year | Research goal Data for ML ML tools Research Outcomes/Benefits

[43] 2021 | Energy-efficient Images from IoT sensors | LeNet-5, VGG16 and Mo- | VGG16 provide marginally better accu-
pest controlling | and camera in indoor setup bileNetV2 racy with recall, precision, and F-scores
system than the other two algorithms.

[44] 2020 | Pest classification, | Dataset containing HD im- | Global activated Feature | GaFPN provides better Mean Average
localization, ages (captured by a camera | Pyramid Network | Precision (mAP) than the other two mod-
and severity | inside pest trap) and expert | (GaFPN) and Local | els, i.e., Faster R-CNN and FPN.
determination validations activated Region Proposal

Network (LaRPN)

[38] 2021 Pest detection with | Images from smartphones, | FasterRCNN, SSD, and | FasterRCNN with MobileNet provides
fast computational | traps, search engines, and | RetinaNet for detection; | better accuracy and execution time than
speed photo sharing platform (es- | VGG, ResNet, DenseNet, | the other models.

pecially for dataset genera- | and MobileNet for feature
tion for ML training) extraction

[97] 2021 | Determination of | Satellite imagery for datain- | Proposed HMM and the | HMM provides better overall accuracy
the severity of | put and ground data for val- | Autoregressive Integrated | and Kappa score than the ARIMA model.
locust and damages | idation Moving Average (ARIMA)
caused by them model

TABLE IX
ML FOR WEED DETECTION IN CROP FIELDS

Reference | Year | Research goal Data for ML ML tools Research outcomes/Benefits

[39] 2022 | Mitigation of over- | Dataset collected from [98], | Proposed model with Vi- | The proposed model provides better ac-
lapping and occlu- | [99] sual Graphics Group-16 | curacy, precision score, recall score, F1
sion of leaves and (VGG-16), Residential En- | score, false positive and negative scores
image illumination ergy Services Network-50 | with respect to state-of-the-art models.
problem (ResNet-50) and Inception-

v3

[47] 2020 | Quick detection of | Images from the online | Proposed DTL with k- | The proposed model provides better recall
a visual object such | source means++ algorithms and precision score than the DTL with k-
as weed means clustering algorithm.

[40] 2019 | Crop row detection | UAV-based RGB images Proposed CNN-based algo- | The proposed model provides higher re-
as an aid for rithm call, precision, F-score and IoU than other
weed detection, state-of-the-art models.
sowing seeds, and
harvesting

[41] 2019 | Weed species clas- | Images from a developed | DNN powered by Field | Proposed scheme reduces power con-
sification database, reported in [100] Programmable Gate Array | sumption by 7 times and computes 2.86

(FPGA) times faster than DNN with GPU.

collected data for leaf disease identification. In [92], a cyber-
physical system (CPS) for crop monitoring is designed where
crop images are analyzed using CNN to predict disease(s).
The proposed system is also evaluated for tracking of irri-
gation along with crop disease prediction. In [93], disease

detection in citrus plants and fruits is performed using a three-
module learning architecture. The ML architecture includes
deep CNN, K-means clustering, and a simple NN classifier.
In [95], IoT and ML-based intelligent agricultural systems are
developed, where a sensor records environmental data and
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TABLE X

ADVANTAGES, LIMITATIONS AND EFFECTIVE USE CASE OF ML ALGORITHMS IN SMART AGRICULTURE.

Algorithms Advantage(s) Limitation(s) Effective use case(s)
ANFIS ‘Water monitoring
e Quick learning capabilities and identi- e Requires expert knowledge in designing algorithm for
fying non-linear input-output relation- new data
ship. o Requires large datasets for effective performance [101].
e Low memorization errors e Curse of dimensionality
BiLSTM Consumes high training time [102]. Crop yield estimation
o Predicts future data on the basis of
time-series data.
e Learns forward and backward features
from the given data
CNN Identifies data features automatically [103] Seed monitoring, crop
o Requires large datasets for effective performance. type classification, crop
o Prone to overfitting. disease detection, weed
o Extensively computationally demanding. detection.
DTL Negative transfer can cause low accuracy if the source and | Weed detection
e Saves training time due to the ability | target learners are not well related [104].
of data feature transfer
o Address training issue with small data
Ensemble Seed monitoring.
Learning o Effective performance with large or o Ensembling is not easily interpretable, making it diffi-
lack of data by combining multi- cult to anticipate and explain the output of the combined
ple weak learners to create a strong model[105].
learner e Combining multiple models into one is costly in terms
o Better performance and enhanced pre- of both time and memory usage.
cision over individual learners
e Minimize the likelihood of overfitting
and underfitting.
FPN Requires large datasets for effective performance Pest detection.
o Inherits the advantages of DL algo-
rithms.
o Able to identify small objects.
GP Sensitive to high data ranges, causing potential inaccuracy | Crop health monitoring,
o Easy to define signal and noise ratio | with test data crop yield estimation.
in kernel function.
o Address black box issue in other ML
algorithms.
KNN Allows addition of new data without affect- | Consumes high execution time [106]. Water monitoring
ing the model accuracy
MobileNet Pest detection
e Optimizes CNN-based classifiers o Requires large datasets for effective performance.
without compromizing accuracy for e Less accurate than larger CNNs.
mobile device compatibility. e Requires larger training time.
o Fewer parameters compared to other
CNN models, low-latency, low-power
models
PNN Crop disease detection
e Higher classification accuracy than o Slow execution time
that of NNs. e Requires high memory space [107]
o Relatively insensitive to outliers.
o Faster than NNs.
ResNet Water monitoring
e Improved accuracy over traditional e Requires large datasets for effective performance.
DNNE . e Prone to overfitting.
o Faster convergence. e Higher complexity than conventional DNN's
e Can be used for Transfer learning.
o Identifies data features automatically.
RF Has the advantages of ensemble methods | Feature extraction depends on human judgement, leading to | Soil monitoring
with a high tolerance for data faults. Address | potential inaccuracy [108]
collinearity and overfitting issues
RVFL Less training time than iterative tuning-based | Manual assignment of parameters is required. Water monitoring
ML algorithms
TabNet Same as other DL models and is effective in Soil monitoring
handling tabular data
UMRCGM Large datasets for effective performance, large training time Crop health monitoring
VGG-16 Identifies data features automatically Weed detection
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Fig. 16. Architecture of PNN (4-layered network) algorithm. Pattern layer
computes a vector from the Euclidean distance between training data (found
in the input layer) and radial center in a defined class. The summation layer
contains the added result of each class. In the end, the output layer contains
the weighted sum of the results determined in the summation layer.

soil moisture, and an ML algorithm such as CNN is used
to identify diseases in foliage plants. To improve the rice
blast occurrence prediction performance of the ML model by
considering soil temperature as a factor along with the other
environmental parameters such as air temperature, sunlight and
relative humidity, a probabilistic neural network (PNN)-based
prediction model is proposed in [96]. The proposed model has
shown higher prediction performance than MLP, SVM and
RNN models.

B. Pest control for crops

ML algorithms must be designed to identify anomalous
objects so that detection devices can perform the necessary op-
erations using these approaches. In [43], a pest control system
using energy-efficient devices is proposed. Compatible CNN-
based algorithms are proposed to perform the detection and
classification of foreign objects. Although VGGI16 provides
better accuracy, recall, precision, and F-score performance
than LeNet-5 and MobileNetV2, low energy is consumed by
the LeNet-5-based pest control system. In [44], a two-stage
DL algorithm is proposed for pest classification and severity
determination. The first stage algorithm extracts the features
of the pest, and the second stage determines the location of the
pest. Several CNN-based ML algorithms are analyzed in [38]
not only in terms of pest detection accuracy but also in terms
of computational speed. In [97], the Hidden Markov Model
(HMM) is used to analyze time series data (obtained from
satellites) to determine the severity of pests such as locusts
and to estimate the damage caused by such pests.

C. Weed management

DL has received much attention in weed detection from
camera sensor-generated images due to the ability of such
algorithms to learn image features. Taking this advantage into
account, a CNN-based learning model is developed in [39]. A
three-CNN feature extractor architecture is implemented to ad-
dress issues such as overlapping and occluding foliage and the

image illumination problem. In [47], a DTL is implemented
for fast detection of visual objects, which would reduce the
computational load. Also, an improved version of k-means
clustering is proposed to increase clustering performance. In
[40], the detection of crop rows is considered a measure to
guide autonomous agricultural machines for operations such
as weed detection, seeding, and harvesting. Row detection in
agricultural fields is performed using CNN and Hough trans-
form. DNN networks, usually trained on a graphics processing
unit (GPU), can provide the desired performance at the cost of
high power consumption. Therefore, a DNN network powered
by a Field Programmable Gate Array (FPGA) is studied in [41]
and compared with the DNN powered by GPU. The study
shows that the FPGA-driven DNN is more energy efficient
than the GPU-driven DNN, which can motivate the designers
to design an energy-efficient robotic weed management sys-
tem.

Brief Summary

Several ML learning models are explored for disease and
pest detections for crops as well as weed detection by analyz-
ing data collected from surveys, satellites and IoT devices, to
shift the dimension of these use cases from traditional labor-
based approaches to automation-based approaches. DL-based
schemes have outperformed other supervised and unsupervised
learning-based schemes in a study for crop disease prediction.
Evaluation of several DL learning models is also conducted
for pest and weed detection-related studies to determine the
best DL models for respective applications. Table X highlights
the advantages, limitations of the ML algorithms and their
effective usage in smart agriculture.

IX. CHALLENGES IN THE DEPLOYMENT OF SMART
AGRICULTURAL SYSTEMS

Smart devices, communication protocols, and ML algo-
rithms have promising applications in agriculture, as can
be seen from the above discussions. However, the practical
implementation of smart agricultural systems raises several
issues. We discuss such issues/challenges in this section.

a) Affordability and durability of smart lIoT sensors and
equipment: Farmers have to take out loans to buy fertilizer,
tractors, etc. to run their farms. The cost of smart IoT
sensors will be an additional burden for them: the availability,
import, and quality of these sensors determine their market
price, which can be very high. Therefore, high initial and
operational costs will discourage farmers from installing these
sensors in their fields. The operational life of these sensors
is another major concern. Battery-powered sensors with low-
power backup raise reliability issues due to the hindrance of
continuous data generation. A battery charging/replacement
planning strategy needs to be developed to address this issue.
Special care must be taken when installing sensors to protect
them from extreme weather conditions.

b) Data accumulation: As stated in Subsection II-B, mul-
tiple IoT sensors, UAVs/UGVs, and satellites can be integrated
into a smart agriculture architecture, generating heterogeneous
data. The accumulation and processing of these large amounts
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of data require a huge effort to obtain useful information
to accelerate agricultural production tasks. Even the use of
ML algorithms can be inefficient in terms of accuracy and
computational resources. Therefore, it is crucial to design ML
algorithms in such a way that satisfactory accuracy is achieved
in less time and the computational burden is minimized.

c) Universality of ML: Another issue with ML-based
smart agriculture applications is their universality. A smart
agriculture tool developed with ML for a specific application
in one region may prove to be effective. However, it is not
guaranteed to provide accurate information when applied in
another region. The reason for this is that environmental
conditions and the characteristics of farmland vary from one
region to another. Therefore, it will be difficult to construct
statistical information for designing effective ML algorithms.
This raises the issue of the scalability of the ML smart
agriculture architecture.

d) Lack of  farmers’ education/training:
Education/training is essential for farmers to use smart
technologies for agricultural applications. However, in
developing countries, most agricultural activities are carried
out by farmers without formal education or training. It is
therefore difficult for them to learn about new and emerging
technologies and apply them to improve their agricultural
production. The operation of devices such as smartphones,
UAVs/drones, smartphone applications, etc. requires skilled
manpower. Farmers will not be able to operate these devices
or use the information they receive, or both, if they are not
properly trained. Collaborative efforts between government
and private organizations can ensure effective training of
farmers to adopt smart agricultural innovations and increase
their productivity.

e) Lack of synchronization among the farmers and the
researchers: The success of ML-based intelligent agricultural
models depends on the accuracy of their formulation of
agricultural problems as decision models. This is possible if
the ML model developers are aware of the problems that
occur in agricultural production processes. However, it is
generally not possible for them to learn about such problems
themselves. Therefore, in order to build effective ML model(s)
for intelligent agricultural application(s), it is important to
include information collected from farmers and professionals
in agricultural fields together with information from other
sources (sensors, satellites, etc.). The synchronization between
farmers, professionals, and ML model developers can ensure
an effective architectural model construction of ML-based
smart agriculture.

f) Effective network connectivity: Farmland is mostly
located in rural areas where network access is limited. This
limits the use of intelligent agricultural systems, as these
systems use network connections to transmit information. Data
such as atmospheric temperature, moisture levels, nutrient
levels in crops and soil, high-quality leaves, images of crops
and farmland, etc. need to be transmitted quickly and reliably,
which requires uninterrupted network connectivity at high
data rates. As mentioned in Section II-A, it is necessary
to use communication technologies that offer high network
coverage and data rates with low power consumption and

implementation costs.

g) Data privacy and security: While developing ML
models for predictive operations in agriculture-related oper-
ations, data privacy and security must be considered as one
of the major concerns. The heterogeneity of various agricul-
tural production-related data creates challenges in maintaining
privacy, especially when the data contains any information
related to farmers [2]. ML algorithms such as federated
learning (FL) can be implemented in such a scenario as they
allow the sharing of ML parameters without sharing the real
data [10]. Another issue is the security of the overall smart
agricultural system architecture against various cyber threats.
ML algorithms have been explored to discover their potential
to detect any intrusion from unwanted devices. Therefore,
research interest in the use of such learning models in smart
agriculture is no exception.

X. CONCLUSION

The agricultural sector is about to be revolutionized by the
introduction of new communication, device, and computing
technologies. Various smart IoT sensors, UAVs, and satellites
are being used to monitor land management and agricultural
production processes. These heterogeneous data generated
from different sources require proper management for efficient
agricultural operations. ML algorithm-based approaches are
discovered as promising measures to interpret the required
information from a large amount of data generated by the
aforementioned sources. Therefore, the implementation of ML
models in intelligent agricultural applications is of massive
research interest.

First, we discuss the evolution of the agricultural industry.
We present research trends in ML algorithm-based intelligent
agricultural systems over several years. Later, we describe the
enablers for future smart agricultural systems and elaborate
on the collection of agricultural data from different sources
and their processing. We also discuss recent studies on ML
algorithms for different agricultural use cases and their results.
Several issues may arise in the deployment of ML-based
approaches in large-scale agricultural applications, which we
highlight at the end. Based on the discussions, we realize the
following future research possibilities. To address the issue of
ML universality, appropriate determination of environmental
and farmland characteristics of the cultivable region is required
to determine, which will be utilized by the ML algorithms.
DL-based approaches are advantageous in this case due to
their capability of learning features from such data. However,
some DL algorithms consume high memory during com-
putation time, which limits their implementation. Therefore,
compatible DL algorithms are required to be designed for
running on devices with limited computation and memory
resources. Furthermore, prediction models based on algorithm
such as RVFL have shown better performance than some ML
algorithms in water monitoring applications, which opens the
door for exploring the compatibility of such algorithms in
other agricultural application. In general, ML algorithms are
accelerated by GPUs, which typically consumes high electrical
power and consequently is challenging for the deployement
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of GPU-powered ML based portable and resource-constrained
AloT systems. Therefore, the implementation of ML algo-
rithms on energy-efficient and fast computing-supported neural
accelerators (e.g. FGPA) for such systems is another research
direction. To end with, the aim of this review is to provide an
overview of current research practices and potential research
areas in the field of agriculture.
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