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ABSTRACT Over-the-air (OTA) computing has emerged as a promising technique that utilizes the
superposition property of the wireless multiple access channel (MAC) as a means for computation. In
this work, we propose a deep learning-based mechanism that approximates the pre- and post-processing
functions of OTA computing, with the ultimate goal of approximating any desired target function.
Specifically, we adopt a centralized training-decentralized execution approach that allows independent
execution of deep neural networks (DNNs) on both devices and server to interpret the pre- and post-
processing functions. The analysis is extended to the case of representing the pre- and post-processing
functions to a higher dimensional space, further facilitating the reconstruction of the target function. To
evaluate the effectiveness of the proposed method, we introduce a benchmark that serves as a lower bound
on the computational distortion, i.e., the average mean square error (MSE) between the target function
and the OTA computing estimation, which is described by closed-form solutions. It is noteworthy that the
considered benchmark can serve as a reference point for any OTA computing-based application with any
target function. Furthermore, the performance of the proposed decentralized DNN over-the-air computing
execution (DOTACE) is evaluated through simulations, demonstrating its potential.

INDEX TERMS Over-the-air computing, deep learning, decentralized model execution.

I. INTRODUCTION

DUETO the rapid and exponential growth in the number
of interconnected wireless Internet of Things (IoT)

devices, there is a critical need to address and mitigate
the challenges posed by communication bottlenecks. At
the same time, harnessing and processing massive amounts
of wireless data requires the implementation of effective
computing solutions. To address these issues, over-the-
air (OTA) computing is a promising technique that fuses
communication and computation by exploiting the inherent
broadcast properties of the wireless medium [1]. More
specifically, OTA computing is useful in scenarios where the
primary focus is on observing a function derived from the
messages of the devices, e.g., the sum of the messages, thus

eliminating the need to acquire each individual message.
The main mechanism that allows the computation of a target
function is the superposition property of the wireless multiple
access channel (MAC). In more detail, OTA computing
exploits the superposition principle along with appropriate
signal processing at both ends in order to reduce the amount
of computations required for a desired target function. Except
for that, OTA also achieves better resources management
due to simultaneous transmission at the same frequency
from all devices compared to traditional computing schemes
that follow the receive-then-compute paradigm, where data
from all devices in the network must be received in serial
fashion from every device for the required target function
computation to be performed. Remarkably, any real-valued
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function can be expressed as a function of a finite sum
of univariate functions and, thus, can be approximated by
OTA computing [2], [3]. As an example, in real-world
deployments involving sensor networks for environmental
monitoring or smart city applications, the ability to compute
aggregated data (such as average temperature, humidity, or
air quality indices) directly over the air can significantly
accelerate response times to critical events and reduce the
network’s energy footprint. Similarly, in the context of
federated learning, where preserving privacy while enabling
collaborative machine learning models is critical, OTA com-
puting can serve as a key technique to efficiently aggregate
model updates without the need to access individual data
points, thus preserving user privacy.

A. RELATED WORKS
OTA computing has been examined by the research commu-
nity from a variety of perspectives, due to its inherent ability
to fuse communication and computation and ultimately
reduce latency. For instance, in [4], the computational
distortion of OTA computing was minimized by optimizing
the pre-processing and post-processing functions of the
transmitter and receiver, respectively. Moreover, the ergodic
performance and the scaling with respect to the number
of devices were investigated. In addition, [5] proposed an
OTA computing system with multiple antenna arrays at
both the transmitter and the receiver, while minimizing the
minimum square error (MSE) between the target function
and the estimation. Also, OTA computing has been examined
in multiple-input multiple-output (MIMO) systems for a
low-complexity and low-latency computation of a vector-
valued function [6]. Additionally, OTA computing has been
proposed to facilitate federated learning (FL) applications
by transmitting of the local training parameters over-the-
air [7], [8], [9], [10], [11], [12], [13], [14]. Specifically, the
computational distortion on the convergence rate of over-
the-air-aided FL has been studied in [7], [8], [9], [10],
while in [11], [12], [13], [14] various aspects of the over-
the-air-aided FL systems have been investigated, such as
the users’ heterogeneity, and the joint optimization of the
communication and the FL procedure. Additionally, OTA
computing has been investigated as a means to reduce the
completion time of solving distributed resource allocation
problems in wireless networks by employing distributed
optimization techniques [15], [16]. Moreover, OTA com-
puting was utilized in [17] to improve the communication
efficiency of task-oriented communications.
However, it is highlighted that the vast majority of

the existing literature on OTA computing has examined
only certain types of functions, such as sum, weighted
average, and geometric mean. This limitation hinders the
potential and broad applicability of OTA computing, despite
its promise to approximate almost any function. In this
direction, in [18] an algorithm for the approximation of
an arbitrary function through a nomographic representation
was proposed. However, its scalability is hindered by the

complexity of the proposed algorithm. Furthermore, the algo-
rithm was developed based on an ideal scenario, neglecting
the inherent constraints of a wireless medium. Incorporating
deep learning-based function approximation seems to be a
promising way to address this challenge and fully exploit
the capabilities of OTA computing [19]. It is clarified that
to the best of our knowledge, only [18] and [19] focused on
investigating techniques that approximate arbitrary functions
for OTA computing applications.
In recent years, deep neural networks (DNNs) have

achieved remarkable success in a wide range of wireless
network applications. The work in [20], [21] trained a DNN
as an autoencoder to represent and jointly optimize the
transmitter and receiver of a communication system in an
end-to-end fashion. Furthermore, deep learning has shown
potential in facilitating channel estimation and signal detec-
tion in OFDM systems [22], while DNNs have exhibited
promising capabilities in performing power allocation for
interference management [23]. Motivated by the encouraging
capabilities of deep learning, [19] proposed the use of
DNNs to approximate the pre- and post-processing functions
of OTA computing. The effectiveness of this approach
was evaluated through simulations in applications such as
anomaly detection and distributed regression.

B. MOTIVATION AND CONTRIBUTION
It is apparent that in order to fully harness the potential of
OTA computing in a wireless MAC, novel techniques should
be employed that can accurately approximate any target
function. This will ultimately transform OTA computing into
a practical universal function approximator. Reference [19]
paved the way in using DNNs for this purpose. However,
the architectural and structural details of the considered
DNNs, as well as the precise procedures of training and
inference, have not been adequately clarified. In addition,
the constraints imposed by the wireless medium have not
been sufficiently addressed. In particular, the main challenge
lies in the fact that each device and the server should
possess an individual trained DNN to represent the pre-
and post-processing functions, while the training should be
performed by a single entity in a centralized manner, to
capture the characteristics of the system as a whole. For this
reason, attention should be given in training a centralized
DNN in a manner that allows the split of its architecture
between the users and the server. This process will facilitate
the creation of individual DNNs both at the users’ and
the server’s sides, that are pre-trained and can be utilized
individually by all entities. The significance of this aspect
was not stressed in [19]. In essence, the centralized training
should emulate the OTA computing procedure in a wireless
environment, learning both the pre- and post-processing
functions. Following that, the practical realization of this
lies in the decentralized execution of the partitioned DNN
among users and the server during inference.
To address those issues, the contributions of this paper

are as follows:
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• We propose a DNN-aided OTA computing mecha-
nism consisting of two stages, which facilitates the
achievement of universal function approximation. First,
we design a centralized DNN (cDNN) that is trained
by the server. The cDNN is constructed in a way
that resembles an OTA computing implementation in
a wireless MAC. Second, upon completion of training,
parts of the cDNN along with their respective trained
weights are partitioned and distributed to the users and
the server, representing the pre- and post-processing
functions of OTA computing, respectively. This process
enables decentralized DNN OTA computing execution
(DOTACE). The final output of the DOTACE is the
server’s estimation of the target function. Significantly,
the tailored design of the above mechanism ensures that
the DOTACE performs identically to the cDNN in terms
of average MSE between the estimated and the target
function. Finally, the scope of the analysis is broadened
to include the representation of pre- and post-processing
functions within a higher dimensional space, which we
call augmented vector representation. This expansion
aims at facilitating a more precise reconstruction of the
target function by introducing redundancy.

• To evaluate the performance of the DOTACE, we design
a benchmark, termed as oracle benchmark (OB). The
latter considers the presence of a “superuser” with
knowledge of all devices’ messages. As a result, this
superuser can accurately compute the target function
without any loss and transmit it to the server through
analog transmission. Following that, we derive a closed-
form solution for the minimum average MSE that
this benchmark can achieve. It is clarified that no
OTA computing-related implementation can surpass the
performance of the OB, making it universally applicable
as a performance bound and potentially enabling its
widespread use.

• The performance of the DOTACE is evaluated through
simulations in terms of average achieved MSE. We
select an example of a target function whose represen-
tation as a nomographic function is rather intractable,
encouraging the utilization of DNNs as a tool for OTA
computing applications. Simulation results demonstrate
the efficiency of our approach while providing valuable
insights.

C. NOTATION
From hereon, vectors are represented as bold lowercase
letters. The Euclidean norm is denoted as ‖·‖2 and the
cardinality of a set or the absolute value of a real number,
depending on the context, is denoted as | · |. The expectation
of a random variable is denoted as E[ · ]. Finally, the symbol
� is used to represent element-wise vector multiplication.

II. OTA COMPUTING PRELIMINARIES
We consider a wireless network consisting of K users,
indexed as k ∈ K � {1, 2, . . . ,K}, and a base station (BS)

collocated with a server. In the following, the terms BS
and server are used interchangeably. Each user possesses a
measurement xk ∈ R, ∀k ∈ K to transmit to the BS. The
task of the BS is to compute a desired function of interest,
φ : RK → R, which is a function of all the measurements
xk, ∀k ∈ K. According to [2], it is possible to express any
multivariate real-valued function as a composition of a finite
sum of univariate functions. This means that there exists a
collection of pre-processing functions, denoted as fk : R →
R, ∀k ∈ K, and a post-processing function g : R → R, such
that the original function can be expressed as

φ(x1, x2, . . . , xK) = g

(
K∑
k=1

fk(xk)

)
. (1)

Based on this idea and by exploiting the superposition
property of a wireless MAC, devices can transmit their
measurements xk simultaneously by selecting an appropriate
pre-processing function fk. The transmitted signals are
aggregated over-the-air, while subsequently the BS constructs
the target function by applying the post-processing function
g to the superimposed received signal. In a real wireless
environment, with the presence of fading and additive noise,
the estimation of the target function at the BS side is
expressed as

φ̂ = g

(
K∑
k=1

hkfk(xk) + n

)
, (2)

where hk ∈ C denotes the channel coefficient of the k-th
user. Hereinafter, it is clarified that the channel coefficients
are treated as real numbers, since with perfect CSI at the
transmitter, the magnitude of hk can remain unchanged by
only adjusting its phase, i.e., phase compensation [4]. It
is also assumed that the devices’ transmissions are well
synchronized [7]. Moreover, n is additive white Gaussian
noise (AWGN) at the receiver and follows the normal
distribution N (0, σ 2

n )1 with zero mean and variance σ 2
n . By

considering a peak average power constraint P for each
device, the average transmit power must satisfy

E

[
|fk(xk)|2

]
≤ P, ∀k ∈ K, (3)

where the expectation is taken with respect to the randomness
of the measurement xk. The statistical properties of xk are
arbitrary.

III. PROPOSED DNN OTA COMPUTING MECHANISM
The main objective of this work is the proper design of
DNNs to approximate the pre-processing functions fk, ∀k ∈
K, and the post-processing function g. First, we assume a
dedicated trained DNN to approximate each of the above
functions. The trained parameters of the DNNs are denoted

1Although the noise n has both in-phase and quadrature components,
the quadrature component is completely rejected when using an amplitude
modulation (AM) coherent detection at the receiver [24]. As a consequence,
n is real-valued and simply additive at the receiver.
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as wk, ∀k ∈ K, and wg, respectively. Accordingly, the
parameterized approximations of the above functions are
denoted as fwk , ∀k ∈ K, and gwg . Taking these into account,
the estimation φ̂ of the target function φ at the BS can be
expressed as

φ̂ = gwg

(
K∑
k=1

hkfwk(xk; hk) + n

)
. (4)

The rationale behind incorporating the channel coefficient hk
as an input to the function fwk will become clear later in this
work. Also, note here the assumption of utilizing multiple
DNNs, corresponding to each of the devices pre-processing
functions and the server’s post-processing function. The
strategy that should be adopted for the effective design of
such a system is not readily apparent. The challenge lies
in the underlying interdependencies in the structure of the
DNNs, considering that the devices and the server should
somehow cooperate to approximate the target function with
minimal error. Thus, the system should be analyzed from
a holistic perspective, i.e., a unified loss function should
be defined that aims to capture the system as a whole.
To address this issue, we adopt a centralized training-
decentralized execution approach, which will be explained
in detail later in this section.

A. EXTENSION TO AN AUGMENTED VECTOR
REPRESENTATION
Since we invoke the use of DNNs, there is no restriction in
requiring that fwk , ∀k ∈ K, is scalar. As such, let fwk : R →
R
M , ∀k ∈ K, where M is the size of the output of fwk , which

we call the augmented vector. Also, let gwg : R
M → R.

This strategy allows the representation of signals in a higher
dimensional space, increasing the potential for more accurate
reconstruction of the target function. However, to transmit
the augmented vector via OTA computing, each entry of
the vector should be aggregated over-the-air separately.
To accomplish this, we consider an analog multi-carrier
(MC) OTA computing implementation [7]. In the MC-OTA
protocol, the available bandwidth is divided by the number of
non-interfering subcarriers, which is considered to be equal
to M for simplicity. Hence, each element of the augmented
vector is aggregated over-the-air in a single orthogonal
subcarrier. Consequently, the received signal at the BS side
can be expressed as

φ̂ = gwg

(
K∑
k=1

hk � fwk(xk;hk) + n

)
, (5)

where hk = (hk,1, . . . , hk,M) ∈ R
M , with hk,m being the

channel coefficient of user k in the m-th subcarrier. Also,
n ∼ N (0, σ 2

n
M IM), where IM denotes the M × M identity

matrix. Note that the variance of the noise is spread among
the subcarriers.
For the sake of fairness between single-carrier OTA and

MC OTA, it is essential to ensure not only that the total

bandwidth is the same in both cases, but also that the
energy for an OTA transmission is equivalent. Here, with the
term OTA transmission we refer to the transmission of the
measurement xk, for an arbitrary user k. Since the bandwidth
in the single-carrier OTA computing isW and the peak power
constraint is P, the energy for an OTA transmission in the
single-carrier case is E = PTs = P/W, where Ts = 1/W
is the symbol duration. Accordingly, the energy for an MC
OTA transmission case is given as

EMC = PMC
W
M

, (6)

where PMC = ∑M
i=1 Pi denotes the maximum power of

MC OTA across all subcarriers. To enforce same energy
levels between the MC and the single-carrier OTA computing
transmissions, we have

P

W
= PMC

W
M

⇒ PMC = P

M
. (7)

As a result, the average power constraint of a user for the
MC OTA computing should satisfy

E

[∥∥fwk(xk;hk)∥∥2
2

]
≤ P

M
, ∀k ∈ K. (8)

It is clarified that the application of augmented vector
representation, as described previously, can also be extended
to MIMO OTA systems, such as in [6].

B. CENTRALIZED TRAINING
First, a single cDNN is considered and its training parameters
are represented by w = (w1,w2, . . . ,wK,wg). The cDNN
resides in the server whose task is to train it. The structure
of the cDNN is depicted in Fig. 1. The concatenated feature
vector which is fed as input to the cDNN is described as
v = (x1,h1, x2,h2, . . . , xK,hK) ∈ R

K+KM . Following that,
each tuple {xk,hk}k∈K is passed through a separate set of
hidden layers (HLs), represented by the training parameters
wk, ∀k ∈ K. Next, the output of each set of HLs is passed
through the customized activation function A : R

M → S,
where S is the surface of the M-dimensional sphere with

radius
√

P
M , with

A(z) =
√
P

M

z
‖z‖2

. (9)

This function is chosen to satisfy the average power
constraint of the devices in (8), while it is easy to see that
‖A(z)‖2

2 = P
M . Therefore, the considered activation function

is the underlying mechanism that regulates the power of the
signal to facilitate OTA computing and also performs the
power allocation among the subcarriers. While theoretically
selecting the function A′(z) � A(z) � tanh (z) may seem
more prudent, as it does not necessarily enforce equality
in (8), experimental observations indicate that it achieves
slightly lower performance compared to using A(z). This
is probably due to its complicated form as an activation
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FIGURE 1. cDNN Architecture.

function for a neural network. However, in case where M =
1, selecting the activation function A′(z), which is reduced
to

√
P tanh (z), works fine. On the contrary, the function

A(z) fails completely when M = 1, since it only outputs the
values ±√

P.
Up to this point, the purpose of this part of the cDNN

is to provide an interpretation of the functions fwk , ∀k ∈ K.
In what follows, each augmented vector sk is multiplied
element-wise with the respective input hk, ∀k ∈ K. Next,
a noise layer is added in the resulting sum of products,∑

k∈K hk � sk. This part of the cDNN aims to mimic the
over-the-air transmission in a wireless MAC. To this end, a
set of HLs is included, represented by the training parameters
wg, aiming to interpret the function gwg . The ultimate goal
of the cDNN is to provide an approximation of the target
function φ through its final output, denoted as φ̂c = φ̂c(v,w).

To train the cDNN, a training dataset is first generated,
denoted as {vt, φ(xt)}t∈T , where T is the set of all training
samples and x = (x1, x2, . . . , xK). Hence, vt represents the
t-th input sample and φ(xt) is the value of the target function
given the t-th input sample. Following that, the loss function
of the cDNN is selected as the MSE between the target
function and the output of the cDNN, i.e.,

L
(
φ, φ̂c

)
= 1

|T |
∑
t∈T

(
φ(xt) − φ̂c(vt,w)

)2
. (10)

Finally, the server trains the cDNN by using standard back-
propagation to minimize the loss function, i.e., find w∗ =
argmin

w
L(φ, φ̂c).

C. DECENTRALIZED DNN OVER-THE-AIR EXECUTION
(DOTACE)
The previous process described the centralized training of
a cDNN, which aims to capture the characteristics of OTA
computing and approximate the pre- and post-processing
functions. However, to practically use DNNs for this task
in the context of a wireless network, each device, as
well as the BS, should possess a dedicated trained DNN

FIGURE 2. Decentralized DNN OTA computing execution.

which individually approximates the pre- and post-processing
functions, respectively. In this direction, the procedure of the
DOTACE is described below.
First, after the training of the cDNN, the server sends

the trained parameters wk to each device k. Taking this into
consideration, each user owns a trained local DNN, which is
denoted as fwk . The architecture of the local DNN for user k is
equivalent to the corresponding part of the cDNN, including
the activation function A(·), implying that fwk(xk;hk) = sk. In
other words, when user k forward-passes its local DNN given
the input vector (xk,hk), the corresponding output is equal
to sk, which is the augmented vector. Similarly, the server
uses the parameters wg to create another DNN representing
the function gwg . At this point, since all users and the server
own an approximator for the functions fk, ∀k ∈ K and g,
the OTA computing technique can be implemented, while
this process is depicted in Fig. 2. It should be highlighted
that unlike the cDNNs structure, where sk is multiplied with
hk,∀k ∈ K, in the DOTACE there is no need to adopt such
an approach. The multiplication with the channel coefficients
and the summation of all signals will take place over-the-
air via the wireless MAC. The output of the DOTACE is
denoted as φ̂, which is an estimation of the target function φ.
It is now evident that the cDNN has been designed to allow

its decentralized execution. Its tailored architecture and the
incorporation of OTA computing principles throughout the
design aim to guarantee the effectiveness of the DOTACE.
To solidify this claim, we present the following remark.
Remark 1: In the absence of AWGN, meaning that n =

0 and the AWGN layer is discarded from the cDNN, it
holds φ̂ = φ̂c, i.e., the cDNN and DOTACE have the same
estimation output.
This remark indicates that in the absence of AWGN, the

outputs of the cDNN and the DOTACE are identical. This
is easy to verify. Given an input vector v, the forward-
pass of the cDNN yields identical result with the DOTACE.
Alternatively, if the two implementations are viewed as
computational graphs, these graphs are identical. Moreover,
even in the presence of AWGN, it is straightforward to
see that the outputs are the same in expectation, i.e.,
En[φ̂] = En[φ̂c]. This observation is very encouraging, since

2962 VOLUME 5, 2024



it suggests that if the cDNN provides an accurate estimation
of the target function φ, so does the DOTACE.
Remark 2: The DOTACE requires only transmitter CSI.
Recall that the feature input vector of each local DNN fwk

is (xk,hk),∀k ∈ K. This implies that user k only requires
information about its own channel hk, while neither the
remaining users, K \ {k}, nor the BS need this information.
This fact is of paramount importance, as it reduces the
pilot signaling overhead related with the CSI acquisition.
Moreover, the requirement for the BS to collect all users’
CSI and calculate the pre-processing and post-processing
functions, which subsequently are sent back to the users [4],
is eliminated.

IV. ORACLE BENCHMARK
A. DESCRIPTION
In order to assess and evaluate the performance of DOTACE,
it is crucial to provide a benchmark. This benchmark will
serve as a reference point for comparing and measuring
the effectiveness of DOTACE. In this context, we propose
the utilization of an OB, which is outlined as follows.
Consider the existence of a “superuser” with knowledge
of all users’ signals x1, x2, . . . , xK , while being able to
compute the target function φ(x) instantly and losslessly.
Afterwards, the superuser transmits φ to the server via a
wireless analog transmission, thus the received signal at the
BS is expressed as

y = 1

a

(√
Pshφ + n

)
, (11)

where h is the complex channel coefficient experienced by
the superuser, Ps is the transmit power, and a > 0 is the
BS post-processing scaling factor. For a fair comparison, we
assume that the peak power constraint of the superuser is KP,
i.e., equal to the sum of the users’ peak power constraints.
Hence, the average transmit power should satisfy

E

[
Psφ

2
]

≤ KP. (12)

The expected MSE between y and φ, defined as

F � E

[
(φ − y)2

]
, (13)

is used as the OB. The term oracle originates from
the concept of an imaginary scenario, where a superuser
possesses complete knowledge of all other users’ messages.
Obviously, the performance of the OB in terms of MSE
cannot be surpassed by any OTA computing-based scheme,
since the superuser has knowledge of the target function prior
to its transmission to the BS. Therefore, the OB serves as an
MSE lower bound not only for the proposed DOTACE, but
in general for any OTA computing-based implementation.

B. MINIMUM EXPECTED MSE
In this subsection, the minimum value of the expected MSE
between the target value and the BS’s estimation is derived.
First, we normalize φ as

φ̃ = φ − μφ

σφ

, (14)

where μφ is the mean and σφ the standard deviation of
φ. As such, φ̃ is a random variable with zero mean and
unit variance. Next, by setting the transmit power as Ps =
KP, it is easy to verify that E[Psφ̃2] = KP, which satisfies
the constraint in (12). With this in mind, and taking into
account (11), the received signal at the BS is given by

yr = 1

a

(√
KPhφ̃ + n

)
. (15)

To recover the signal φ assuming its statistics are known,
the BS denormalizes yr and calculates the estimation

ŷ = σφyr + μφ

= σφ

a

(√
KPh

φ − μφ

σφ

+ n

)
+ μφ. (16)

The objective of the BS is to find the optimal parameter a,
such that the expected MSE between φ and ŷ is minimized,
i.e.,

a∗ = argmin
a>0

F(a), (17)

where

F(a) = Eφ,n

[(
φ − ŷ

)2
]

= Eφ,n

[(
φ − σφ

a
(h

√
KP

φ − μφ

σφ

+ n) − μφ

)2
]
.

(18)

Note that we assume perfect CSI and, thus, h is known,
while the expectation in (18) is taken with respect to the
randomness of the signal φ and the noise n.
Proposition 1: The optimal a of problem (17) is given as

a∗ = h2KP+ σ 2
n

h
√
KP

(19)

and the minimum achieved MSE of the OB is equal to

F
(
a∗) = σ 2

φ

γ + 1
, (20)

where γ � h2KP
σ 2
n

reflects the signal-to-noise ratio (SNR).
Proof: To deal with (17), we first simplify the objective

function. After some algebraic manipulations, the objective
function is given by

F(a) = σ 2
φ

(
1 − h

√
KP

a

)2

+ σ 2
φσ 2

n

a2
. (21)

It is easy to observe that the first derivative of F with respect
to a is equal to

dF(a)

da
= 2σ 2

φ

(
h
√
KP

a2
− h2KP+ σ 2

n

a3

)
. (22)

The extrema of (21) are known to be achieved at the roots
of (22). It is straightforward to see that the root of (22),
which is equal to

aext = h2KP+ σ 2
n

h
√
KP

, (23)
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is unique, which implies that the extremum is global, since
F(a) is continuous and its domain is a continuous interval.
If we rewrite (22) more conveniently as

dF(a)

da
= −2σ 2

φ

a2

(
h2KP+ σ 2

n

a
− h

√
KP

)
, (24)

it is obvious that for a < aext and for a > aext the sign of
(24) is negative and positive, respectively, meaning that the
extremum achieved at a = aext is the global minimum due to
the monotonicity of F, thus a∗ = aext. After substituting (23)
in (21) and performing some algebraic manipulations, the
minimum of F can be calculated as in (20), which completes
the proof.
Driven by Proposition 1, we present the following remark.
Remark 3: In very high and very low SNR regimes, i.e.,

γ → ∞ and γ → 0, the minimum expected value of the
MSE given by (20) becomes

lim
γ→∞F

(
a∗) = 0 (25)

and

lim
γ→0

F
(
a∗) = σ 2

φ . (26)

As expected, for very high SNR, the average MSE is zero.
Accordingly, for very low SNR, the result in (26) coincides
with that of [25]. This indicates that the optimal estimation
in this case, which results in minimum MSE, is determined
by the variance of the target signal.

V. SIMULATIONS
To evaluate the performance of the proposed DOTACE
framework, we first consider a wireless network with K =
2 users, while their measurements x1, x2 are independent
and identically distributed and follow uniform distribution in
[−√

3,
√

3]. Therefore, x1 and x2 have zero mean and unit
variance. As in [18], we choose the following target function

φA(x1, x2) = 1

φA,max
(x1 + x1x2 + x2)

2, (27)

where φA,max = (2
√

3+3)2. As such, φA ∈ [0, 1]. After some
computations, we have calculated the mean and standard
deviation of φA as μφA = 0.0718 and σ 2

φA
= 0.0145.

In general, if calculating the mean and variance of a
function φ becomes intractable, one can resort to using the
sampled mean and variance as an alternative. Moreover,
the channel coefficients between the users and the BS
are independent and identically distributed and follow the
Rayleigh distribution with scale parameter 1/

√
2. We also set

the peak transmit power of the users as P = 1W. As a result,
the average received SNR of a single user transmission in a
single carrier is equal to −20 log10(σn) dB.
At first glance, one might argue that the nomographic

form of φA in (27) can be described by the pre-processing
functions fk(xk) = ln (xk + 1), k ∈ {1, 2}, and the post-
processing function g(r) = (exp (r) − 1)2, where r =∑2

k=1 fk(xk) is the ideally received signal at the BS.

Unfortunately, this representation does not hold for xk ≤
−1. Therefore, the assumed pre-processing functions cannot
be used to describe φA, which triggers the exploration of
more sophisticated functions to achieve this goal. Beside this,
with the inclusion of fading, noise, and power constraints,
representing φA in a (quasi) nomographic form would
become even more challenging, if not impossible. In contrast,
the proposed DNN mechanism is not affected by the domain
of the measurements and also satisfies the considered power
constraint by design.
To evaluate the performance of DOTACE for a larger

number of users, we consider the target function

φB(x1, x2, . . . , xK) =
K∑
k=1

xk +
K∏
k=1

xk. (28)

Again, it is not obvious that φB can be represented in a
nomographic closed-form. Since no current method can
be used as a benchmark for these functions, to assess the
performance of the proposed DOTACE scheme, we conduct
a comparative analysis against the OB scheme.

A. CDNN SETUP
Next, the structure of the cDNN is outlined, noting that the
cDNN hyperparameters were obtained through simulation
experiments and fine-tuning. For the HLs representing the
functions fwk , ∀k ∈ K, we used two fully connected feed-
forward layers with 256 neurons and ReLU activation,
followed by a layer ofM nodes passing through the activation
function A(·). Also, for the HLs representing gwg , we used
an input layer consisting of M nodes and a single fully
connected feed forward layer with 256 neurons followed by
a single node layer with no activation, which is the final
output. For the training dataset, |T | = 5 × 104 samples
were generated. It was observed that further increasing the
number of the cDNN’s training parameters or the size of the
training dataset does not result in substantial improvement.
Moreover, the optimization algorithm used to train the cDNN
is the Adam [26], with the first and second moments of the
decay rate set to 0.99 and 0.999, respectively. In addition,
the learning rate was set to 0.001 and the batch size to 64.
The training process included 200 epochs, although it was
observed through experimentation that a steady state can be
achieved with fewer epochs. Finally, in the testing phase,
3 × 104 samples were used.2

B. RESULTS AND DISCUSSION
In Fig. 3, the performance of the cDNN, DOTACE, and the
OB are demonstrated for the function φA. The evaluation
metric is the average MSE, which was calculated for different
values of the average received SNR. It should be noted that a
dedicated cDNN was trained for each SNR value. In practical
implementations, alterations in environmental factors, e.g.,

2In the spirit of reproducible research, the code used for the simulations
is available at: https://github.com/paulBooz/OTA-DNN.
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FIGURE 3. Average MSE versus average received SNR for the target function φA.

channel distribution, number of users, would necessitate the
retraining of the cDNN. The task of tackling the dynamic
changes in the context of DNNs is left for future work, as
it remains a distinct and standalone open challenge [27].
Moreover, for this figure we consider flat-fading channels
in an analog MC system with M = 4 subcarriers. The flat-
fading assumption ensures that the comparison with OB,
where a single carrier is considered, is fair. Also, the OB
is constructed by substituting the optimal scaling parameter
a∗ from (19) into (15). Finally, recall that the worst case
scenario of the average MSE is equal to σ 2

φ , as outlined in
Remark 3.
First, it is observed that the cDNN and DOTACE illustrate

identical performance, validating Remark 1. This fact again
corroborates the effectiveness of the centralized training-
decentralized execution approach. Moreover, in a very low
SNR regime, all approaches fail to provide a good estimation
and converge to the worst case MSE. As the SNR increases,
both the DOTACE and the OB significantly outperform the
MSE worst case scenario. Also, the gap between DOTACE
and OB increases as the SNR reaches higher levels. This
is reasonable, since the average MSE of OB asymptotically
tends to zero, as suggested in Remark 3. Furthermore, the
MSE of DOTACE is expected to reach a floor, possibly
due to the inherent approximation error associated with the
DNNs. However, recall that the OB reflects a hypothetical
scenario that is unattainable in practice.
In Fig 4, we illustrate the evolution of the training loss

over multiple epochs, with a fixed received SNR of 30 dB.
The purpose of this figure is to provide insights into the
selection of the learning rate and the activation function of
the HLs. This simulation justifies the choice of a learning rate
of 0.001, as it consistently yields the lowest loss compared
to other learning rate values. Additionally, we observe that
using the activation function A(·) from equation (9) leads to
a reduction in loss compared to the alternative choice, A′(·),
which justifies the adoption of the former.
In Fig. 5, different sizes M of the augmented vector are

demonstrated. It is obvious that the MSE is reduced as M

FIGURE 4. Average MSE versus training epochs for the target function φA.

FIGURE 5. Average MSE versus average received SNR for various sizes of the
augmented vector for the target function φA.

increases, with a notable difference when sweeping M from
2 to 4. The case M = 1 corresponds to a single-carrier
transmission. This experiment verifies the efficiency of using
higher dimensional vectors to represent the output of the
pre-processing functions. However, it should be clarified that
the transmission time grows proportionally with M, since M
also defines the number of subcarriers in the MC DOTACE.
This is related to the analog symbol duration, which in the
case of MC transmission is equal to M

W . It is evident that
the value M = 4 seems suitable for achieving a satisfactory
MSE-transmission delay trade-off.
In the continue, we evaluate the performance of DOTACE

for a larger number of users on the function φB. First, it is
easy to verify that σ 2

φB
= K+ 1. For this reason, we choose

to evaluate the metric of the normalized expected MSE, i.e.,
E[MSE]
K+1 , implying that the worst case performance occurs

when the considered metric is equal to 1, for any choice
of K. For this simulation the cDNN was trained for 200
epochs, an augmented vector size of M = 4 was chosen,
and the SNR was set to 30 dB. In Fig. 6, the normalized
average MSE versus the number of users is demonstrated.

VOLUME 5, 2024 2965



BOUZINIS et al.: UNIVERSAL FUNCTION APPROXIMATION THROUGH OTA COMPUTING

FIGURE 6. Normalized average MSE versus number of users for the target
function φB.

It can be observed that as K increases, the normalized
MSE of DOTACE also increases. This behavior is probably
related to insufficient knowledge of user CSI combined
with the challenge of representing φB in nomographic
form. Recall that each user has knowledge of its individual
CSI. Thus, as the number of users increases, it becomes
increasingly difficult to find suitable pre- and post-processing
functions, partly due to the detrimental effects of limited
CSI knowledge. This aspect presents potential avenues for
future exploration concerning the scalability of DOTACE.
Nevertheless, even when considering K = 10 users, the
normalized MSE of DOTACE is an order of magnitude lower
than the worst-case scenario. This observation suggests that
DOTACE does not rely on random guesses, but rather learns
to imperfectly represent φB in nomographic form.

VI. CONCLUSION
In this work, the use of a deep learning mechanism is invoked
to approximate the pre- and post-processing functions of
OTA computing. The proposed mechanism is based on
centralized training, which encapsulates the characteristics
of a wireless MAC, and DOTACE, which allows the users
and the server to independently approximate the pre- and
post-processing functions, respectively. The vision is to
facilitate the approximation of any function through OTA
computing, without limiting its use to specific functions that
are currently handled. Significantly, DOTACE requires only
transmitter CSI. Our study also focused on the introduction
of a benchmark scheme that serves as a reference point on
the computational distortion of any OTA computing target
function. The numerical results revealed both the potential
and the limitations of the proposed mechanism. To further
unveil the merits of DOTACE, the inclusion of complete
CSI knowledge both at the transmitter and the receiver, in
the expense of additional overhead, can be an avenue for
future research. To pave the way for practical applications,
exploration of techniques aimed at enhancing the scalability
of DOTACE can also be pursued in this direction.
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