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Abstract—In this letter, we develop a novel resource allocation
scheme for energy-efficient semantic-aware wireless networks.
The wireless users (WUs) extract semantic information from
their raw source data during the common feature extraction
(FE) phase, and then transmit their semantic features to their
paired semantic decoders at the BS over the uplink channels.
In random fading channels, the semantic similarity between
reconstructed and source data may occasionally fall below some
desired threshold resulting in a communications outage, which
leads to the notion of average semantic rate. The proposed
schemes minimize total energy consumption of WUs by deriving
closed-form global optimal solutions for the transmit powers,
processor frequencies and transmission duration of each WU,
and duration of common FE phase. Compared to conventional
bit-based communications, energy gain of proposed schemes
increases rapidly with increase of semantic rate and average SNR.

Index Terms—Semantic communications, resource allocation,
energy consumption, wireless networks.

I. INTRODUCTION

As future sixth-generation wireless systems aim to provide
significantly improved spectral and energy efficiency over cur-
rent systems, semantic communications have recently emerged
as a promising technology to achieve these goals by leveraging
artificial intelligence (AI) [1]. In semantic communications,
instead of transmitting every single bit of raw source data, the
transmitter extracts and sends their essential features to enable
the receiver to make the right inference, decision or action to
perform a specific task, resulting in a significant reduction
in data traffic. In the literature, different types of semantic
systems have been studied for different types of source data,
including text [2], speech [3], image [4], and video [5].

Motivated by the success of AI for natural language pro-
cessing, the authors of [2] developed a joint source-channel
coding method for text transmission, known as DeepSC,
where a transformer-based encoder and decoder were devel-
oped for processing semantic information in text sentences.
Based on the DeepSC framework, [6] introduces relevant
performance metrics, semantic rate and semantic similarity,
which can be used for resource allocation of semantic-aware
networks. Using these metrics, [6] maximizes the semantic
rate for a multi-user system with optimal frequency allocation,
while [7] characterizes the semantic versus bit rate region
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and power region of a two-user heterogeneous semantic and
bit system. Although originally applied to textual semantic
communications, these performance metrics are also applica-
ble to semantic systems with source data types other than
text; Specifically, [3] extended the DeepSC framework for
speech transmission, while [8] shows that image and video
transmission can be transformed into text transmission. Apart
from schemes based on joint semantic-channel coding where
the semantic encoders/decoders are trained jointly with the
channel encoders/decoders with full-resolution constellations,
there are also schemes that use variable semantic features-
to-bit quantization but require continuous adjustment of the
resource allocation parameters during the semantic commu-
nication session, thus increasing the computational load and
signalling requirements of the system [9].

Semantic-aware wireless networks have also been studied in
the context of energy efficiency in [10], however the proposed
solution is suboptimal, the semantic information extraction
subproblem is optimized independently from the resource allo-
cation parameters, and the random channel fading is neglected.
This paper arrives at the globally optimal solution for the
resource allocation of energy-efficient semantic wireless net-
works in random fading channels. The main contributions of
this paper specifically include: (1) We introduce a new perfor-
mance metric for semantic systems in fading channels, termed
average semantic rate, R̄th, which supports communication
outage events between a semantic encoder and a semantic
decoder in case of random channel fading, (2) We develop
a resource allocation scheme that minimizes (computation
and transmission) energy consumption for semantic-aware
multi-user networks while guaranteeing a minimum (average)
semantic rate for all users, and (3) Globally optimal closed-
form solutions are derived for determining the transmit powers,
computation and transmit durations, and central processing
unit (CPU) clock frequencies of the wireless users (WUs).

II. SYSTEM MODEL

A wireless network, consisting of a common base station
(BS) and K WUs, is used for semantic communication. Each
WU is equipped with a semantic encoder that is paired by a
corresponding semantic decoder at the BS, and so the WU
transmits to the BS independent semantic information to per-
form its own task. The semantic encoder of each WU extracts
the semantic features from the text-based input by using, for
example, transformer-based techniques of the DeepSC model
[2], whereas the corresponding semantic decoder at the BS
reconstructs the text from received semantic features. Actually,
BS runs K semantic decoders, one for each WU encoder. The
K semantic encoder-decoder pairs are trained for different
channel conditions before the beginning of the actual semantic
communication session, c.f. [2, Fig. 6]. We assume kth WU
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(1 ≤ k ≤ K) receives a sentence of L words at its input, and
its encoder extracts needed semantic features from a sentence
with an average length of sk semantic symbols per word.

Fig. 1: System model of the semantic-aware network.

The system time is divided into epochs of duration T , which
is subdivided into a feature extraction (FE) phase and a feature
transmission (FT) phase (c.f. Fig. (1)). During the FE phase,
each WU extracts its corresponding semantic feature vector.
Let us denote by ak the number of CPU cycles required by the
kth WU to generate semantic feature vectors with an average
length Lsk per sentence during the FE phase, and the CPU
frequency of the kth WU by fk (in CPU cycles per second).
Assuming ak = a0,∀k, the duration of the FE phase of the
kth WU is equal to a0/fk. For implementation simplicity, we
assume the FE phase is completed at the same time instant by
all WUs, and so its duration τ is determined as the maximum
of durations of the individual FE phases of all WUs,

τ = max
1≤k≤K

{
a0
fk

}
. (1)

The energy required by the kth WU to generate its semantic
feature vector is EFE

k = αa0f
2
k , where α is the energy effi-

ciency coefficient that depends on the WU’s CPU architecture.
During the FT phase, the WUs employ time division multi-

ple access (TDMA) to transmit their feature vectors to the BS
in successive non-overlapping time periods t1, t2,..., tK . Let
us denote the gain of the uplink channel between the kth WU
by gk, the transmit power of the kth WU by pk, the uplink
channel bandwidth by B, and the power spectral density of
the thermal noise at the BS receiver by N0. Thus, the energy
required by the kth WU to transmit its feature vector over the
wireless channel is determined by EFT

k = pktk, whereas the
signal-to-noise ratio (SNR) of the received signal from the kth
WU at the BS is given by γk = pkgk/(BN0).

We adopt semantic similarity, ξk, as a measure for the
“semantic accuracy” achieved between the kth WU encoder
and the BS decoder over the available communications channel
[6]. It is a function of sk and γk, i.e., ξk = ξk(sk, γk), and
can be approximated by [7, Eq. (6)]

ξk = ξk(sk, γk) = Ask,1 +
Ask,2 −Ask,1

1 + e−(Csk,1γk+Csk,2)
, (2)

where Ask,1, Ask,2, Csk,1, and Csk,2 are the parameters
defining the generalized logistic regression function. Although

generally depend on sk, we assume that these parameters are
constant for all WUs, i.e., ξk = ξ(γk), where Ask,1 = A1,
Ask,2 = A2, Csk,1 = C1 and Csk,2 = C2.

Based on ξk, we define semantic rate of kth WU by [6]

Rk =
IB

skL
ξk =

IB

skL
ξ

(
pkgk
BN0

)
, (3)

where I denotes the average amount of semantic informa-
tion contained in a sentence, and is expressed in semantic
units (suts). In (3), the ratio I/(Lsk) denotes the average
amount of semantic information per symbol of the kth WU,
and is expressed in suts/symbol, whereas Rk is expressed
in suts/second since the number of transmitted symbols per
second is numerically equal to the bandwidth B.

III. RESOURCE ALLOCATION OVER STATIC CHANNELS

We propose a resource allocation scheme for semantic
communication system that minimizes the total energy con-
sumption of all WUs. Firstly, we assume that the uplink
wireless channels for all WUs are static, which means that
gk is fixed during the entire communication session, i.e.,
gk = Ωk. We thus set the following optimization problem:

Minimize
τ,tk,fk,pk

K∑
k=1

(
pktk + αa0f

2
k

)
subject to: C1 : tk

IB
skL

ξ
(

pkΩk

BN0

)
≥ RthT, ∀k

C2 : ξ
(

pkΩk

BN0

)
≥ ξth, ∀k

C3 : τ +
∑K

k=1 tk = T,
C4 : pk ≤ Pmax, ∀k
C5 : fk ≤ fmax, ∀k
C6 : a0

fk
≤ τ, ∀k.

(4)

In (4), the constraint C1 sets the minimal amount of received
semantic information from the kth WU, RthT , where Rth is
the semantic rate threshold common for all WUs, and T is the
duration of a single communication round (c.f. Fig. 1). The
constraint C2 sets a minimal common threshold ξth for the
semantic similarity between the kth WU input sentence and the
corresponding decoded sentence at the BS. The constraint C3
sets the duration of a single communications round, C4 limits
the maximum transmit power, and C5 limits the maximum
CPU frequency. The constraint C6 imposes an upper bound
on the duration of the FE phase of all WUs due to (1). Setting
rk = RthskL/(BI) and σ2

N = BN0, the solution of (4) is
given by the following theorem.

Theorem 1. The feasibility conditions for the existence of an
optimal solution of (4) is given by

a0
Tfmax

+
1

ξth

K∑
k=1

rk ≤ 1, (5)

and
ξ

(
PmaxΩk

σ2
N

)
≥ ξth (6)

The optimal local computing time, τ∗, is determined by

τ∗ = T

(
1− 1

ξth

K∑
k=1

rk

)
, (7)
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the optimal transmit powers, p∗k, are determined by

p∗k =
σ2
N

C1Ωk

(
log

(
ξth −A1

A2 − ξth

)
− C2

)
, ∀k, (8)

the optimal transmit durations, tk, are determined by

t∗k =
rk
ξth

T, ∀k, (9)

and the optimal CPU frequencies, f∗
k , are determined by

f∗
k =

a0
τ∗

, ∀k. (10)

If (5) satisfies a strict inequality, then f∗
k < fmax, ∀k; Other-

wise, if (5) satisfies a strict equality, then f∗
k = fmax, ∀k.

Proof: Please refer to Appendix A.

IV. RESOURCE ALLOCATION OVER FADING CHANNELS

If wireless channel is exposed to fading, the semantic com-
munication system will occasionally experience outages when
any channel gk is in a ”deep fading” state. Actually, when gk
is very low, C2 in (4) cannot be met even when the transmitter
transmits at its peak power Pmax. Thus, when exposed to
fading, this communication system is better described by an
averaged performance metric, i.e., the average semantic rate,
R̄th. In this case, constraint C1 in (4) should be restated as

tkBI
skL

E
[
ξ
(

pkgk
BN0

)
I
(
ξ
(

pkgk
BN0

)
≥ ξth

)]
≥ R̄thT, (11)

where E[·] denotes the expectation, and I(·) is an indicator
function defined by

I (ξ ≥ ξth) =

{
1, ξ ≥ ξth

0, ξ < ξth
. (12)

The expectation in (11) is analytically determined by

E [ξ(xk) I (ξ(xk) ≥ ξth)] =
∫∞
ξth

yfξ(y)dy =
∫∞
xth

ξ(x)fXk
(x)dx,

(13)

where fξ(·) and fXk
(·) are the probability density functions

(PDFs) of random variables (RVs) fξ and Xk, respectively.
Specifically, the RV Xk is defined by xk = pkgk/(BN0),
whereas xth is its threshold value that satisfies ξ(xth) = ξth.

To achieve high semantic similarity, the value of ξth is
usually set above 0.7. In this case, the value of ξ(x) is typically
close to A2, and (13) is tightly upper bounded by

E [ξ(xk) I (ξ(xk) ≥ ξth)] ≤ A2

∫∞
xth

fXk
(x)dx = A2FXk

(xth),

(14)

where FXk
(·) is the cumulative distribution function (CDF) of

RV Xk. In the case of Rayleigh fading channel, the PDF of
Xk is an exponential function with an average pkΩk/(BN0),
where Ωk = E[gk]. Thus, (13) is upper bounded by

E [ξ(xk) I (ξ(xk) ≥ ξth)] ≤ A2 exp

(
−xthBN0

pkΩk

)
. (15)

We therefore arrive at the following energy minimization
problem in fading uplink channels

Minimize
τ,tk,fk,pk

K∑
k=1

pktk + αa0f
2
k

subject to:

C̄1 : tk
BI
Lsk

A2 exp
(
−xthBN0

pkΩk

)
≥ R̄thT, ∀k

C3 : τ +
∑K

k=1 tk = T,
C4 : pk ≤ Pmax, ∀k
C5 : fk ≤ fmax, ∀k
C6 : a0

fk
≤ τ, ∀k

(16)

Setting r̄k = R̄thskL/(BI), xth = ξ−1(ξth) and σ2
N =

BN0, the solution of (16) is given by the following theorem.

Theorem 2. The feasibility condition for the existence of an
optimal solution of (16) is given by

a0
Tfmax

+
1

A2

K∑
k=1

r̄k exp

(
xthσ

2
N

PmaxΩk

)
≤ 1. (17)

In this case, the optimal local computing time, τ∗, is deter-
mined as the solution to the transcendental equation

1

A2

K∑
k=1

r̄kT exp

(
xthσ

2
N

pk(τ∗)Ωk

)
= T − τ∗, (18)

where

pk(τ) =
xthσ

2
N

2Ωk

(
1 +

√
1 +

8Kαa30Ωk

τ3xthσ2
N

)
, ∀k. (19)

Given τ∗, the optimal transmit powers, p∗k, are determined by

p∗k = min {pk(τ∗), Pmax} , ∀k, (20)

the optimal transmit durations, tk, are determined by

t∗k =
r̄kT

A2
exp

(
xthσ

2
N

p∗kΩk

)
, ∀k, (21)

and the optimal CPU frequencies, f∗
k , are determined by

f∗
k =

a0
τ∗

, ∀k. (22)

If (17) satisfies a strict inequality, then f∗
k < fmax, ∀k; Oth-

erwise, if (17) satisfies a strict equality, then f∗
k = fmax, ∀k.

Proof: Please refer to Appendix B.

V. NUMERICAL RESULTS

We illustrate the energy consumption of proposed schemes
in a semantically aware wireless network with K = 10
WUs. The (average) gain of both static and fading channels
is calculated according to Ωk = ρ · r−2.7

k , where ρ = −30dB
is the referent path loss at one meter, the path loss exponent
equals 2.7, and rk is the distance between the kth WU and
the BS. System parameters are set to N0 = −140 dBm/Hz,
B = 10 MHz, and T = 1 s; WUs’ parameters are set
to α = 10−28, a0 = 0.2 CPU gigacycles, Pmax = 1
Watts, fmax = 3 GHz, ξth = 0.7, and sk = s0 = 4,∀k,
semantic symbols per word. Similar to [7], the parame-
ters of the generalized logistic function in (2) are set to
A1 = 0.37, A2 = 0.98, C1 = 0.2525, and C2 = −0.7985.
Both figures depict the average energy consumption per user,
calculated as Eavg = (1/K)

∑K
k=1

(
pktk + αa0f

2
k

)
.

Benchmark schemes: For comparative analysis, we use
two resource allocation schemes for a conventional wireless
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network. Data processing in both benchmark schemes is
neglected (i.e., τ = 0), yielding a lower bound estimate
on the energy consumption. The schemes minimize transmit
energy consumption, Ec,avg = (1/K)

∑K
k=1 pktk, subject

to constraints C3 and C4, and scheme specific constraint
C1. Benchmark Scheme 1 applies to static channels and
optimizes (pk, tk),∀k, for transmit energy minimization with
C1 given by tkB log2 (1 + pkΩk/(BN0)) ≥ Rc,thT ; Here,
Rc,th = (µ0L/I)Rth is the bit rate threshold equivalent to
the semantic rate threshold Rth, where µk = µ0 = 32,∀k, is
the average number of bits per word [6, Eq. (12)]. Benchmark
Scheme 2 applies to Rayleigh fading channels and optimizes
(pk, tk, Rk),∀k, for transmit energy minimization with C1
given by tkBRk ·Pr{log2(1+pkgk/(BN0)) > Rk} ≥ R̄c,thT ;
Here, Rk is the fixed rate of kth (non-semantic) WU, the term
Pr {·} is the non-outage probability, and the equivalent average
bit rate threshold is given by R̄c,th = (µ0L/I)R̄th.

Fig. 2 depicts Eavg versus Rth, assuming K = 10 WUs are
uniformly distributed in a circle with radius r0 around the BS.
Eavg increases with increasing Rth since WUs need to convey
increasing amount of semantic data; Eavg also increases with
r0 due to the increasing transmit power needed to maintain
the desired semantic similarity at the receiver. Relative to
the static channel, random fading leads to higher energy
consumption due to energy wastage when communication

outages occur. For lower Rth, a conventional wireless network
can consume less energy than a semantically aware network
due to the additional energy needed for feature extraction local
processing. However, when Rth and/or r0 increase, the energy
consumption of both benchmark schemes rapidly increases,
because the transmit energy dominates over the energy needed
for feature extraction and it takes much more energy to
transmit non-semantic data rather than to transmit some of
their features, especially in the case of fading channels.

Fig. 3 depicts Eavg versus r0, assuming all WUs are placed
along a circle with radius r0 from the BS. Note, a low value of
r0 actually corresponds to a high value of received SNR, and
vice versa. The benchmark schemes perform slightly better
in the high SNR regime, because the SNR can support large
data transfers while the semantic schemes spend some addi-
tional energy on feature extraction. As r0 increases, the SNR
decreases and the proposed semantic schemes significantly
outperform the benchmark schemes, because the amount of
semantic data is much lower than the non-semantic data.
The energy gain of the proposed schemes rapidly increases
with increasing r0 and Rth. In our future work, we will
apply the proposed energy minimization framework to develop
resource allocation schemes for multiple semantic users aimed
at realizing a common task.

APPENDIX A
PROOF OF THEOREM 1

It can be shown that (4) has a unique optimal solution.
First, let us observe that, to minimize the objective function,
the optimal values of fk must be as small as possible, but
not smaller than the common value of a0/τ that satisfies C6.
Since fk does not appear in the rest of the constraints, C6 is
satisfied with strict equality, which yields (10). Let us further
assume that, in addition to C6, the constraints C1, C2 and C3
are also satisfied by strict equalities, yielding (7), (8), and (9),
whereas C4 and C5 are satisfied with strict inequalities. We
obtain the feasibility condition (5) from (7) and τ ≥ a0/fmax.

In the following, the Lagrange multiplier method is used
to verify that the point (τ∗, p∗k, t

∗
k, f

∗
k ), determined by (7)-

(10), is the desired global minimum solution of (4). Setting
bk = σ2

N/Ωk, the Lagrangian of (4) is given by

L1 =

K∑
k=1

(
pktk +

αa30
τ2

)
−

K∑
k=1

λk

(
tkξ

(
pk
bk

)
− rkT

)

−
K∑

k=1

µk

(
ξ

(
pk
bk

)
− ξth

)
− λ0

(
τ +

K∑
k=1

tk − T

)
, (23)

where λk, µk and λ0 in (23) are the Lagrange multipliers
associated with the constraints C1, C2, and C3, respectively,
which must be non-zero if these constraints are satisfied by
equality. To show λk, µk and λ0 have non-zero values, we
set the first derivatives of (23) with respect to pk, tk and τ to
zero, which yields

dL1

dpk
= tk − λktk

bk
ξ′
(

pk

bk

)
− µk

bk
ξ′
(

pk

bk

)
= 0, ∀k. (24)

dL1

dtk
= pk − λ0 − λkξ

(
pk

bk

)
= 0, ∀k. (25)

dL1

dτ = − 2Kαa3
0

τ3 − λ0 = 0, (26)
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where the first derivative of ξ at the proposed optimal point
satisfies ξ′(pk/bk) = C1(A1 − ξth)(A2 − ξth)/(A1 − A2).
From (26), we obtain λ0 = −2Kαa30/τ

3, which is non-zero
for any positive τ , thus validating the assumption that C3 is
met by strict equality. From (25), we obtain λk = ξ−1

th (pk +
2Kαa30/τ

3), which is non-zero for any positive τ, pk, thus
validating the assumption that C1 is met by strict equality.

From (24), we obtain µk = tk
[
bk/ξ

′(pk/bk) − ξ−1
th (pk +

2Kαa30/τ
3)
]
, which is non-zero for any positive τ, pk, tk, thus

validating the assumption that C2 is met by strict equality. Ac-
tually, pk must be as small as possible, but still not smaller than
some value that guarantees the minimum semantic similarity
of the decoded data, ξth, imposed by C2. Specifically, since
the function ξ(pk/bk) increases in pk, the optimal transmit
power should satisfy C2 by equality. Note, C4 is relevant for
the feasibility of the solution, c.f. (6).

APPENDIX B
PROOF OF THEOREM 2

Although (16) is a non-convex optimization problem, it
can still be shown to have a unique optimal solution. First,
applying similar reasoning as in the proof of Theorem 1, we
conclude C6 is satisfied with strict equality, which yields (22).

Case A) Let us now assume that, in addition to C6, the
constraints C̄1 and C3 are also satisfied with strict equalities,
whereas C4 and C5 are satisfied with strict inequalities. In
this case, the Lagrange multiplier method can be used to
determine the local extrema of (16), which actually turns out
to be a single (global) minimum. Setting bk = σ2

N/Ωk, the
Lagrangian of (16) is given by

L2 =

K∑
k=1

(
pktk +

αa30
τ2

)
−

K∑
k=1

λk

×
(
tk exp

(
−xthbk

pk

)
− r̄kT

A2

)
− λ0

(
τ +

K∑
k=1

tk − T
)
, (27)

where λk and λ0 in (27) are the Lagrange multipliers asso-
ciated with the constraints C̄1 and C3, respectively, which
must be non-zero if these constraints are satisfied by equality.
To determine the stationary points of (16), we set the first
derivatives of (27) with respect to pk, tk and τ to zero, i.e.,

dL2

dpk
= tk

(
1− λk exp

(
−xthbk

pk

)
xthbk
p2
k

)
= 0, ∀k. (28)

dL2

dtk
= pk − λ0 − λk exp

(
−xthbk

pk

)
= 0, ∀k. (29)

dL2

dτ = − 2Kαa3
0

τ3 − λ0 = 0. (30)

From (28), we obtain λk = (p2k/(xthbk)) exp(xthbk/pk)
which is non-zero for any pk, thus validating the assumption
that C̄1 is met with strict equality. From (30), we obtain
λ0 = −2Kαa30/τ

3 which is non-zero for any τ > 0, thus
validating the assumption that C3 is met with strict equality.
Inserting these expressions for λk and λ0 into (29) yields a
quadratic equation with respect to pk,

p2k − xthbkpk − 2Kαa30xthbk
τ3

= 0, (31)

which has a single positive solution given by (19). Com-
bining equality constraints C̄1 and C3 with (19) yields

the transcendental expression given by (18). If T >
(1/A2)

∑K
k=1 r̄kT , then (18) has a unique solution τ∗, be-

cause, increasing τ from zero to T , the left hand side
of (18) monotonically increases from (1/A2)

∑K
k=1 r̄kT to

(1/A2)
∑K

k=1 r̄kT exp(xthbk/pk(T )), whereas the right hand
side decreases from T to zero. Inserting τ∗ into (19) yields the
optimal transmit power, p∗k(τ

∗), whereas the optimal transmit
duration is given by t∗k = (1/A2) r̄kT exp(xthbk/p

∗
k(τ

∗)).
Case B) Let us assume that, in addition to C̄1, C3 and C6,
C4 is also satisfied with strict equality, whereas C5 is satisfied
with strict inequality. In this case, the Lagrangian L2 is again
given by (27) with pk replaced by Pmax, while tk and τ
remain as unknown variables. Setting the first derivatives of
L2 with respect to tk and τ to zero again yields (29) and (30),
which implies non-zero values of λk and λ0, thus validating
the assumption that C̄1 and C3 are satisfied by strict equalities.

Combining cases A and B gives (20) and (21). To show
that the single stationary point (τ∗, f∗

k , p
∗
k, t

∗
k) is actually

the (global) minimum of (16), we apply C̄1 to the objec-
tive function to express tk via pk, which gives the func-
tion (1/A2)

∑K
k=1 r̄kTpk exp(xthbk/pk)+αa30/τ

2. Since this
function is convex in τ and pk,∀k, the point (τ∗, f∗

k , p
∗
k, t

∗
k)

determined by Theorem 2 is the optimal solution of (16).
Case C) If all the constraints of (16) are satisfied by

strict equalities, then its feasible solution set is a single point
at the intersection of all equality constraints: p∗k = Pmax,
f∗
k = fmax, t∗k = (1/A2) r̄kT exp(xthbk/Pmax), and τ∗ =
a0/fmax. In this case, the solution exists if T is exactly
equal to Tmin = τ∗ +

∑K
k=1 t

∗
k. Thus, T ≥ Tmin, which

implies that (17) is the feasibility condition for the existence
of an optimal solution, because it is stricter than the condition
T > (1/A2)

∑K
k=1 r̄kT mentioned in Case A.
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