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Abstract—Multi-access Edge Computing (MEC) has been rec-
ognized as a key enabler for next-generation networks in support-
ing a large variety of compelling applications with challenging
requirements. With its widely proved strength and successes,
AI has to become an integral part of MEC. In this paper, we
present a novel open-source edge AI (OpenEAI) framework that
introduces a native AI plane into the recently proposed open-
source MEC framework. The AI plane is designed based on two
principles: decoupling the edge AI services into independent AI
functions; and recomposing the independent edge AI functions
into customized OpenEAI instances based on users’ specific
requirements. Typical use cases of OpenEAI are characterized
with the aid of a small-scale test network. Finally, we discuss the
opportunities and challenges facing OpenEAI.

Index Terms—Open Source, Multi-access Edge Computing,
Artificial Intelligence, Edge AI, 6G

I. INTRODUCTION

Mobile Internet traffic continues to escalate, driven by the
rapid development of the internet of things (IoTs) and various
attractive mobile applications in the vertical industries [1].
However, the conventional network architecture built upon
specialized hardware and software may fail to keep up with the
rapidly evolving deployment scenarios, service requirements
and technologies. To circumvent this impediment, an open-
source cellular network was proposed in [2] to allow operators
to adaptively customize their networks based on users’ specific
needs.

Open-source cellular networks rely on the integration of
next-generation (NG) technologies, such as network function
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virtualization, software-defined networking [3], multi-access
edge computing (MEC) [4], etc. Among these technologies,
open-source MEC serves as the core driver for cell-edge per-
formance enhancement, and supports customized radio access
networks (RANs), such as the IoT, and Ultra Reliable Low
Latency Communications (URLLC), etc [5].

The Open-RAN (O-RAN) alliance promotes the develop-
ment of open-source cellular networks and MEC that build
on virtualized network elements, white-box hardware and
standardized interfaces [6]. Flexibility and customization con-
stitute the two basic requirements of open-source wireless
networking. However, the heterogeneous NG networks rely
on diverse resources, such that conventional network manage-
ment methods based on human decisions become inadequate.
Accordingly, O-RAN has adopted artificial intelligence (AI) as
one of its core technologies [7] in support of NG networking
capabilities by leveraging a universal infrastructure, open net-
work architectures, open-source software/hardware, and other
state-of-the-art technologies [8]. The AI enhancement of O-
RAN has focused on the Intelligent RAN Controller (IRC) [9].
However, open-source MEC (OpenMEC) has not been widely
studied in the context of O-RAN. In our previous treatise [2],
OpenMEC was presented. Specifically, the monolithic MEC
services were decomposed into multiple independent MEC
functions, while the communication, caching and computing
resources in the OpenMEC system were decoupled from the
dedicated hardware and abstracted into a resource pool. Then,
the MEC functions were recomposed to provide customized
MEC services, and the resources in the resource pool were
allocated to the recomposed MEC functions as needed. But
AI was not embedded in the design of OpenMEC.

In [10], the deployment of monolithic AI services on the
open-source MEC platforms was investigated, and an edge
framework was proposed, where the ‘containerized’ AI and
edge services run on the virtual machines in the MEC servers.
Yang et al. [11] proposed an AI-enabled intelligent archi-
tecture of four layers, i.e., the intelligent sensing layer, data
mining and analytics layer, intelligent control layer and smart
application layer, to support diverse service requirements in 6G
edge networks. A distributed edge AI model was studied in
[12], where smart video surveillance services were decoupled
into a set of virtual functions to create virtual function chains
for processing video streaming data. We note that in the above
works, there is a lack of a unified orchestration mechanism for
the decoupling and recomposing of both the AI resources and
functions to provide customized AI services for users.

To fill this research gap, we present the new paradigm of
Open-Source Edge AI (OpenEAI) that leverages the advanta-
ges of open-source software/hardware to decouple the AI
functions (AIFs) from the underlying physical network and
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Fig. 1: OpenEAI Architecture

enable AIF reconfiguration, thus realizing native AI in MEC.
Specially, open-source software/hardware allows for the es-
tablishment of an OpenEAI system, where the AI services
are separated from the underlying physical network and they
are further decoupled into independent AIFs. The independent
AIFs can be recomposed as needed to provide multifarious
AI services based upon the common physical networks. The
contributions of this paper are summarized as follows. Firstly,
we introduce a native AI plane into the previously proposed
OpenMEC [2] and present the new framework of OpenEAI.
This is different from 5G networks where AI is typically an
additional function or application (APP) [13]. Secondly, we
discuss in detail the key technologies of OpenEAI, including
the microservice-based function layer, and the template as well
as instantiation scheme. More specifically, the MEC and AI
services in the function layer are decoupled into independent
control functions (CFs) and AIFs, respectively. Then a uni-
fied stateless hypertext transfer protocol-aided service-based
interface (SBI) connects the functions together to ensure that
they can communicate with one another when needed. Thirdly,
several typical use cases are investigated in the test network
to validate the flexibility and latency of OpenEAI.

II. OPENEAI ARCHITECTURE

To extend the associated intelligent control in the access
domain, such as the IRC in O-RAN, to the edge domain, we
propose the OpenEAI framework by introducing a native AI
plane into OpenMEC. To provide customized edge AI, the ti-
ghtly coupled AI resources and functions of the conventional
AI-enabled networks have to be appropriately decoupled, so
that the decoupled AI resources and functions can be reassem-
bled dynamically according to the users’ specific requirements.
The OpenEAI architecture of Fig. 1 consists of four horizontal
layers and three vertical planes, i.e., the infrastructure, virtua-
lization, function, as well as application layers, and the control,
AI, as well as the management and orchestration (MANO)
planes. In the following, we describe in detail the four hori-
zontal layers and the three vertical planes.

A. The four horizontal layers

The infrastructure layer, at the bottom of Fig. 1, con-
tains all the resources of the system, including computing
resources such as general purpose CPU/GPUs; caching re-
sources; and communication resources such as NG nodeB.
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The virtualization layer, which is right above the in-
frastructure layer in Fig. 1, decouples the underlying re-
sources from the hardware and abstracts them into a resource
pool, where the communication resource (such as bandwidth),
caching resource (such as SSD) and computing resource (such
as CPU) are divided into logical resource groups. Upon receiv-
ing the application requests, the required AIFs are invoked,
while the logical resource groups are re-organized as necessary
for use by the AIFs invoked and allocated to the AIFs to
optimize their operations.

On top of the virtualization layer of Fig. 1 lies the function
layer. In contrast to the conventional monolithic MEC system,
the function layer of OpenEAI contains a unified SBI and
diverse CFs and AIFs. For instance, the MEC services are
decoupled into independent CFs (e.g., Communication Proto-
col Conversion Function (CPCF) and CF Repository Function
(CRF) [2]). Furthermore, the user plane function (UPF) is sunk
from the 5G core network to OpenEAI. The CFs and AIFs
can be recomposed, activated and released in a timely fashion
based on the service requirements.

The application layer is the top layer of Fig. 1 and con-
tains various APPs for end-user support. Once called by users,
the APPs will automatically call the associated CFs and AIFs
at the function layer and Dockers at the virtualization layer.

B. The three vertical planes

As the core of OpenEAI, the vertical AI plane of Fig.
1 sinks the model training and real-time reasoning processes
of the AI algorithm from the cloud to the edge, thereby
reducing the transmission delay of training data. The AI
plane involves all the four horizontal layers of OpenEAI. Its
application layer consists of the template selector (TS) and of
the template information base (TIB). Its function layer builds
on the idea of micro-services and decouples the AI service into
several AIFs as well as a SBI. Its virtualization layer contains
the environment library, where the running environment can
be selected according to the current resource status, to the
characteristics of the network applications, and to the users’
service requests. The running environment is essentially the
programming language used by the virtualization layer for
abstracting the underlying resources. The infrastructure layer
provides the resources required for AI services.

The vertical control plane stems from software-defined
networking that decouples the control signaling from the data
transmission. It is mainly responsible for the control data
processing and transmission from the infrastructure layer up
to the application layer of Fig. 1.

The vertical MANO plane is composed of the virtualized
infrastructure manager (VIM) at the virtualization layer, the
MANO of the functions at the function layer and the MANO of
the APPs at the application layer. The MANO plane transforms
the service requests from the control plane into the MANO’s
commands, which contain both the required runtime environ-
ment, the functions and resources of the service. The VIM
manages the virtualized resources according to the MANO’s
commands, so as to ensure that the appropriate computing,
caching and communication resources are supplied for the

upper layers of Fig. 1. The MANO plane is responsible
for managing and orchestrating the AIFs and APPs, as well
as scheduling the VIM to allocate resources for supporting
the MEC reconfiguration, where the OpenEAI’s template and
instantiation scheme are used for flexibly implementing the
MEC reconfiguration per service requirement.

III. NATIVE AI IN OPENEAI

In the OpenEAI framework, native AI is realized by the AI
plane decoupling and recomposing. Specifically, the monolith-
ic AI services are decoupled into independent functional mo-
dules (i.e., AIFs), each of which has its own complete business
rationale and concentrates on a specific task, such as raw data
collection, AI model training, etc. Any of the AIFs is able to
communicate with other AIFs via the unified SBI based on the
hypertext transfer protocol, and can be invoked to cooperate
with other AIFs to provide customized AI services for users
as and when needed. The OpenEAI template and instantiation
scheme is devised to reconfigure the AIFs and resources
according to the users’ specific requirements, as commanded
by the MANO. After receiving the application requests, the
MANO of the functions sends the AIF activation signals to the
AIFs required by the applications to invoke them. Meanwhile,
the VIM allocates the communication, caching and computing
resources in the resource pool to the AIFs invoked, and
configures the runtime environment for the applications.

A. OpenEAI AIFs

The AIFs in the OpenEAI system are multi-faceted and the
functional types are continuously evolving. For better under-
standing, we elaborate on five representative AIFs, including
the Data Collection Function (DCF), Data Preprocessing Func-
tion (DPF), Model Training Function (MTF), Model Validation
Function (MVF) and Data Storage Function (DSF), as shown
in Fig. 1.

• DCF is responsible for collecting the raw data to form
the training data sets that are required for training AI
models. If all the collected data is valid and can be used
directly, then the data will be transmitted to the MTF
for training. Otherwise the data will be transmitted to the
DPF for preprocessing before training.

• DPF preprocesses the raw data through data sampling,
feature extraction, dimension reduction and by removing
the invalid or biased contents and transforms the prepro-
cessed data into the form required by the MTF.

• MTF is used for training the core models of all the AI
algorithms. After receiving the required model type and
application requests, the uniform resource locator (URL)
of the request will be resolved by the application layer,
and the related parameters of the URL will be extracted
to match with the AI algorithm by the MTF. Then, the
corresponding AI algorithm is selected for training the
model to meet the application requirements. Specifically,
the application requirements cover the application type
(such as traffic identification, multi-dimensional resource
allocation, etc.) and the key performance indicators such
as latency, rate, etc.

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3411772

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 23,2024 at 08:44:43 UTC from IEEE Xplore.  Restrictions apply. 



4

• MVF is in charge of evaluating the performance of
the AI models explicitly. MVF performs both model
validation during model training and model validation
during real-time reasoning, where the former validates
the training accuracy of the AI models when training
has finished, while the latter validates the core models of
the new AI algorithms based on the existing AI models.
These new AI algorithms are derived from the existing
AI algorithms.

• DSF stores and manages all the data in the AI plane
centrally, including all the parameters of the AIFs. Other
AIFs can access the data in the DSF through the unified
SBI and can update the data dynamically according to
the users’ AI service requirements.

The above AIFs cover the main functions of the OpenEAI
system. They can be activated by the MANO of the functions
according to the service requirements.

B. OpenEAI Reconfiguration

The OpenEAI reconfiguration uses template and instantia-
tion to activate the AIFs, configure the runtime environment,
and allocate resources according to the types of applications
so as to provide customized intelligent services for the users.
A template provides a universal solution for a certain type

of problems by extracting and abstracting their commonalities.
The template information (Tinf) of a certain AI application
contains the constituent elements of the application, including
the type of AIFs, plus the resource and runtime environment
requirements. The template of each application has its unique
template identifier (Tid), which is stored in the TS. The
predefinition of a template for a specific application in the
OpenEAI system defines parameters for the AIF activation,
resource allocation and runtime environment configuration
according to the specific requirement of the application.
Instantiation is a process that responds to a service

request by creating an instance, i.e. an AI service for a certain
application, according to the template. When receiving an
instantiation request, the instance will be created according to
the parameters in the template. Specially, if the corresponding
template does not exist, the template will be established.

The workflow of OpenEAI instantiation is shown in Fig. 1
where they are numbered as follows:

(1) The MANO plane monitors the application layer con-
tinuously, and sends the template selection request to
the TS when receiving an application request.

(2) The TS selects the template according to the application
type, and sends the Tid of the selected template to the
TIB to request the Tinf.

(3) The TIB extracts the corresponding Tinf and feeds the
Tinf back to the TS.

(4) The TS sends the received Tinf to the MANO plane.
(5) The MANO plane implements the instantiation accord-

ing to the Tinf:
(a) Configure the runtime environment of the applica-

tion.
(b) Activate the related AIFs.
(c) Allocate the required resources for the AIFs.

IV. DEMONSTRATION IN A TEST NETWORK

In this section, our proposed OpenEAI will be assessed
in a small-scale test network for two typical use cases, i.e.,
native AI-enabled traffic identification and resource allocation.
Fig. 2 shows the architecture of the test network, which
is a 3GPP R15-based cellular network built on open-source
software and open-air-interface. Our proposed OpenEAI is
installed in a general x86 server that is connected to the
5G network through UPF. The Docker containers embark on
abstracing and virtualizing the communication, storage and
computing resources on the general x86 server so that the
resources can be shared by the CFs and AIFs. Kubernetes is
used centrally to orchestrate the deployment, scheduling and
life-cycle management of the Docker containers. To verify
the advantages of our proposed OpenEAI, we include the
following benchmarks for performance comparison: 1) The
Cloud-based AI (CloudAI) scheme, where the AI algorithms
are deployed at the cloud server. 2) The Plugable edge AI
(PlugEAI) scheme, where all the data and the parameters of
the AI functional modules are packaged as a whole to be used
as a plug-in edge AI application. 3) The Non-AI scheme,
where the traditional optimization methods (such as convex
optimization, etc.) are used to optimize the MEC system
(such as communication, caching and computing resources
allocation) when the application requests arrive.

In order to verify the feasibility of the proposed OpenEAI
relying on the microservice-based AI plane decoupling as well
as the Kubernetes-based template and instantiation scheme,
traffic identification based on a Convolutional Neural Network
is firstly exemplified as an instance, which classifies the
services according to the characteristics of their data packets
in the test network.

Having determined the traffic type, OpenEAI allocates com-
munication, computing, and caching resources based on deep
reinforcement learning (DRL) [14]. To validate the advantage
of the microservice-based AI plane, the resource allocation
model is tested for edge video caching and task offloading.
Both the video caching and task offloading decisions are made
by the DRL-based resource allocation algorithm, which is dep-
loyed at the OpenEAI server and the cloud server for the Ope-
nEAI/PlugEAI system and the CloudAI system, respectively.

OpenEAI Server

UE1

UE2

UE3

CFs

Infrastructure

AIFs

VIM

MANO

Docker

Applications

5GC Cloud Server

Switch

OVS Switch

gNB

USRP B210

Fig. 2: Test network
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Fig. 3 plots both the response time and training time of
traffic identification against the data volume for the proposed
OpenEAI system, the CloudAI system, and the PlugEAI
system. For the CloudAI system, the response time is the
time interval between the edge server receiving the application
request from the user and the cloud server requesting the
original data for training the AI model. As for the OpenEAI
system, since the training data does not have to be transferred
to the cloud server, the response time is the time between
the MANO level receiving the application request and the
AIF(s) required for successfully activating the application. The
response time of the PlugEAI system is the time between the
edge server receiving the application request and requesting
the original data. The response times of both the OpenEAI and
PlugEAI systems are shorter than that of the CloudAI system,
and the training times of both the OpenEAI and PlugEAI
systems are longer than that of the CloudAI system. This is
because the AI model in CloudAI is trained on the cloud server
using powerful computing resources, and the model training
can be completed in a short period of time. By contrast, the AI
model training of both the OpenEAI and PlugEAI takes longer
time due to the limited computing resources of the edge server.
We also note that both the training time and the response time
of the PlugEAI system are longer compared to those of the
OpenEAI system. This is because the AIFs in the OpenEAI
system can operate in parallel, and the tasks of the MTF and
MVF can be promptly executed without waiting for the data
collection or preprocessing to be completed by the DCF and
DPF, respectively. However, model training and response in the
PlugEAI system associated with packaged functional modules
can only be executed once the data collection or preprocessing
is complete.
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Fig. 3: Response time and training time for traffic identification

Fig. 4 depicts the accuracy and transmission overhead
of traffic identification versus the number of requests. The
accuracy is quantified by the proportion of services that are
correctly classified [15]. It can be observed that the accuracy of
the OpenEAI system approaches that of the CloudAI system,
when the number of requests is below 1000. When the number
of requests further increases, the OpenEAI system’s accuracy
becomes slightly higher than that of the CloudAI system. This

is because in the CloudAI system, a considerable amount of
data is transmitted to the cloud server, when the number of re-
quests is high, while long-distance transmission makes the data
susceptible to errors. The accuracy of the OpenEAI system is
higher than that of the PlugEAI system, because the indepen-
dent AIFs in the OpenEAI system can be flexibly orchestrated.
More specifically, the OpenEAI system is capable of adjusting
the allocations of communication and computing resources
among the AIFs according to their respective workloads. This
adaptability allows the OpenEAI system to achieve a higher
level of accuracy. The transmission overhead is evaluated
in terms of the data rate (Mbps) required for training data
transmission. Fig. 4 shows that the OpenEAI system imposes
a reduced transmission overhead in comparison to the CloudAI
system, yet this is higher than that of the PlugEAI system and
the Non-AI scheme.
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Fig. 4: Accuracy and transmission overhead for traffic identification

Fig. 5 depicts the throughput and service delay of the DRL-
based resource allocation for edge video caching as a function
of video size. It can be observed that both the throughput
and service delay achieved by OpenEAI are nearly identical
to those achieved by PlugEAI. Both OpenEAI and PlugEAI
achieve higher throughput and lower service delay than the
CloudAI and Non-AI schemes. This is due to the fact that
the AI algorithm deployed in the OpenEAI system is situated
in closer proximity of the users, and the video cached on
the OpenEAI server can be updated at a higher flexibility in
accordance with the specific requirements of the users.

Fig. 6 depicts the energy consumption and total completion
time of the DRL-based resource allocation for task offload-
ing versus the number of devices. The DRL-based resource
allocation algorithm determines whether each task should be
processed locally or offloaded to a server. Furthermore, the
system is capable of allocating the requisite communication
and computing resources in accordance with the user’s service
requirements. It can be observed that OpenEAI exhibits a
comparable energy consumption and completion time to those
of PlugEAI. Moreover, both OpenEAI and PlugEAI exhibit
lower energy consumption and shorter completion times than
CloudAI and Non-AI. This is due to the deployment of a DRL-
based resource allocation algorithm at the edge server, which
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Fig. 5: Throughput and service delay for DRL-based resource allo-
cation in edge video caching scenario

enables more timely offloading decisions.
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Fig. 6: Energy consumption and total completion time for DRL-based
resource allocation in task offloading scenario

V. CHALLENGES

The rapid development of AI may be exploited by in-
troducing a native AI plane into MEC, which endows the
edge network with the capability of self-optimization for
accommodating the various users’ service requirements and
emerging NG applications based on the open-source archi-
tecture of Fig. 1 by harnessing AI plane decoupling and
reconfiguration. However, there are still substantial challenges
facing the intelligent open-source edge networks.

A. Improving the AIFs in Open-Source Networks

The proposed OpenEAI decouples the AI services into mul-
tiple AIFs, which significantly improves the flexibility and cus-
tomization of the edge network. The native AI plane of the
open-source architecture would be decoupled into more netw-
ork function entities having fine granularity. For example, the
scalability of the OpenEAI system can be improved by a ‘self-
reception’ function, which automatically perceives the changes
of network status and adaptively adjusts the runtime environ-
ment configuration, resource allocation and AIF activation.

B. Adaptability to Compound Scenarios

Moving on from 5G networks that focus on enhanced Mo-
bile Broadband (eMBB), URLLC and massive Machine Type
Communication (mMTC) services, NG open-source networks
will face more challenging service requirements. For example,
extended reality relies on a sophisticated amalgam of eMBB
and URLLC services, and a smart city harnesses a combination
of eMBB and mMTC services. Therefore, it is necessary
for future intelligent edge networks to be flexible enough to
support such challenging scenarios.

C. Long-term/Short-term Instantiation

The dynamic nature of edge AI service requirements is re-
flected by the variation of application requests on a long-term
time-scale and by the data volume variation on a short-term
time-scale. To improve the resource utilization, the instanti-
ation process may be implemented on the basic of different
time granularity. For example, the required AIFs are activated
according to the type of application on a long-term time-scale,
while the communication, storage and computing resources are
allocated according to the tele-traffic on a short-term time-
scale. In addition to the long-term/short-term, multiple spatial
and resource granularity may also be used for the OpenEAI.

D. Collaboration of Cloud-edge-terminal AI

The edge server in the OpenEAI system can cooperate with
the cloud server that possesses powerful computing capability
and the terminal devices that have access to data sources for
meeting the requirements of different AI applications. For
example, the AI applications requiring computation-intensive
training may be processed by the cloud server, while the
AI applications requiring fast response may be processed by
the edge server, and some AI applications with high security
or privacy requirements may be processed by the terminal
devices. However, the cooperation of cloud-edge-terminal AI
to meet the distinct requirements of emerging AI applications
while minimizing the transmission overhead is still an open
challenge requiring further research.

E. Adaptability to Large Scale Networks

With the continuous emergence of new AI applications char-
acterized by the massive amount of data conveyed by the NG
networks (such as large language models), both the scales of
the neural networks and the numbers of parameters are increas-
ing exponentially, which imposes excessive computational bur-
den. Hence, it is challenging to arrange for the future intelli-
gent edge networks to be compatible with the large scale neu-
ral networks for AI model training and AI model validation.

VI. CONCLUSIONS

The OpenEAI concept has been proposed. To our best
knowledge, it is first time to consider AI at the initial design
of the edge network and to introduce a native AI plane into
the OpenMEC system. Then, with the aid of network function
virtualization, the AIFs and the resources have been decoupled
from each other. Next, by using template and instantiation, the
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disaggregated AIFs and resources were reassembled according
to the specific types of service requirements. Our proposed
OpenEAI system has been investigated in a small-scale test
network for two typical use cases. Finally, a suite promising
future research directions have been highlighted.
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