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Abstract—Continuous and unobtrusive monitoring of
daily human activities in homes can potentially improve the
quality of life and prolong independent living for the elderly
and people with chronic diseases by recognizing normal
daily activities and detecting gradual changes in their con-
ditions. However, existing human activity recognition (HAR)
solutions employ wearable and video-based sensors, which
either require dedicated devices to be carried by the user or
raise privacy concerns. Radar sensors enable non-intrusive
long-term monitoring, while they can exploit existing com-
munication systems, e.g., Wi-Fi, as illuminators of oppor-
tunity. This survey provides an overview of passive radar
system architectures, signal processing techniques, fea-
ture extraction, and machine learning’s role in HAR ap-
plications. Moreover, it points out challenges in wireless
human activity sensing research like robustness, privacy,
and multiple user activity sensing and suggests possible
future directions, including the coexistence of sensing and
communications and the construction of open datasets.

Index Terms—Activity recognition, assisted living,
e-health, passive radar, wireless sensing.

Impact Statement—Take-Home Message Passive radar,
integrated with advanced signal processing and machine
learning techniques, provides a contactless, non-intrusive
tool for human activity recognition, offering the potential
for improved quality of life.

I. INTRODUCTION

THE population of individuals aged 65 years or older has
been steadily increasing worldwide [1]. The rapidly aging
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population is pushing toward novel human-centric healthcare
models known as assisted living that leverage modern tech-
nologies to continuously monitor patients’ health status in their
homes. This approach can improve the quality of life of elderly
people and those suffering from chronic diseases including
Parkinson’s, dementia, epilepsy, and multiple sclerosis, extend
independent living, and minimize disruptions to daily routine.
Moreover, assisted living technologies enable timely identifica-
tion of deteriorating health conditions, promoting a “proactive
care” approach rather than responding to serious medical inci-
dents once they have occurred [1], [2].

To monitor the well-being of vulnerable people, several
sensing technologies, including wearable sensors, vision- and
sound-based sensors, and pyroelectric infrared (PIR) sensors,
have been proposed. However, these technologies require ded-
icated devices to be carried by the user with potential issues
of discomfort and compliance, raise privacy concerns due to
the recording of plain images of the monitored subject, or can
be easily impacted by environmental conditions [1], [3]. Re-
cently, radar sensing has been considered a suitable technology
for assisted living thanks to its contactless and non-intrusive
monitoring capabilities. Furthermore, radars are not restricted
to unobstructed line-of-sights to the monitored subject and can
leverage existing communication systems, such as Wi-Fi, as
illuminators of opportunity in passive radar sensing approaches.
Radar applications in healthcare include monitoring of vital
signs, such as respiration and heartbeat, analysis of gait patterns,
classification of activities, and detection of critical events, such
as falls [1].

Related literature on human sensing examines both active
and passive radars. Active radars employ dedicated transmitters
and high-bandwidth waveforms optimized for radar detection.
However, they require access to the available radio frequency
(RF) spectrum, increasing the possibility of interference with
existing systems [1]. In contrast, passive radars exploit signals
from third-party transmitters, resulting in lower power consump-
tion and lower hardware costs while avoiding the need for spec-
trum allocation. Nonetheless, passive radars lack control over
transmitted signals, which are typically optimized for efficient
data transmission rather than radar detection performance [1],
[4], [5]. Moreover, variations in wireless signal characteristics,
such as bandwidth, signal strength, and data rate, negatively
affect detection accuracy [6], while the limited bandwidth poses
challenges for indoor monitoring [7].
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Fig. 1. Procedure for human activity recognition with passive radar.

In passive operation, the radar sensing system correlates the
signal received directly from a third-party transmitter with the
echoes reflected from the subject to extract information on their
movements [1]. Human motion will alter the channel parame-
ters in terms of frequency shift, propagation paths, and signal
attenuation [7] and lead to different patterns within the received
signal that can be used for wireless sensing applications. The
overall system for passive radar-based sensing consists of five
fundamental steps, as shown in Fig. 1.

This paper aims to provide an overview of human activity
recognition (HAR) with passive radar sensors by summarizing
the main techniques reported in the literature from four perspec-
tives: data collection, signal processing, feature extraction, and
machine learning. Current surveys discuss passive radar within
RF sensing techniques, leaving both theoretical and practical
aspects of passive radar-based HAR unaddressed. The core
contribution of this survey is as follows:

1) It demonstrates the potential of passive radar for HAR
and the signal processing, feature extraction, and machine
learning techniques that can be employed for sensing.

2) It also highlights different research challenges associated
with this technology and suggests possible future research
directions.

The paper is organized as follows: In Section II, the
radar system architecture and available datasets are presented.
Section III summarizes signal processing techniques, and Sec-
tion IV covers feature extraction methodologies. Machine learn-
ing and deep learning algorithms for HAR are reviewed in
Section V. Section VI outlines some outstanding challenges and
future directions, with final conclusions drawn in Section VII.

II. DATA COLLECTION

A. System Overview

A typical passive radar system consists of two channels: the
reference channel captures the transmitted signal of opportunity,
whereas the signal reflected from the target is collected by the
surveillance channel [8]. The reference channel is connected
to a high-directional antenna steered toward the transmitter of
opportunity to avoid multipath and effectively recover the trans-
mitted signal [9], and the surveillance antenna points toward
the monitored area, as illustrated in Fig. 2. It is expected that

Fig. 2. Typical layout for in-home passive radar sensing. Components
include a transmitter of opportunity, e.g., a Wi-Fi access point, a refer-
ence antenna, and a surveillance antenna connected to relevant chan-
nels. Both surveillance and reference antennas capture signals from the
third-party transmitter, with the surveillance signal containing an added
Doppler shift due to human movement.

the signal reflected from the target will be masked by the direct
signal, as described in Section III. When a digital transmitter
is exploited, the original transmitted signal can be recovered
directly from the surveillance channel, thus avoiding the use of
a reference receiver, and resulting in a significant reduction in
system complexity [4]. Moreover, the surveillance receiver can
be multi-channel to increase spatial information [7], [9].

Most of the radar prototypes reported in the literature are built
on software defined radio (SDR) platforms. Wi-Fi access points
are commonly used as opportunistic transmitters due to their
wide availability in residential environments. However, Wi-Fi
signals are highly dependent on network usage, and variations
in the data rate during the idle state adversely affect HAR accu-
racy [10]. Energy harvesting (EH) transmitters are considered
as an alternative option for passive sensing since they emit
constant signals with significantly higher power. In [6], Wi-Fi
signals were utilized for occupancy detection (coarse sensing),
while EH signals enabled fine-grained activity recognition. Both
techniques provide narrow-bandwidth signals, resulting in insuf-
ficient range resolution for indoor detection.

Fig. 3 depicts the main subsystems of an experimental passive
radar prototype designed for HAR applications, including signal
processing, feature extraction, and classification modules. Data
sampling and signal processing are performed in real-time, while
feature extraction and classification are implemented offline.
In [11], [12], a pipeline processing flow was proposed for opti-
mizing data throughput in real-time operations. The radar data
processing flow is divided into sub-flows, which are allocated to
separate threads. For optimal performance, approximately equal
processing times for each subroutine should be preserved.

B. Applications and Datasets

Experiments for passive radar sensing systems are typically
carried out with real-time data obtained in controlled environ-
ments. The number of participants ranges from 1 to 6, and the
types of activities evaluated in each study are typically less than
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Fig. 3. Block diagram of an experimental passive radar system for
evaluating the performance of human activity recognition algorithms.
Passive radar prototypes for data collection are typically built on software
defined radio platforms. Signal processing, including noise reduction
and Doppler information extraction, is performed in real time, while fea-
ture extraction and activity classification are implemented in the offline
phase.

6. Daily living activities, including walking, jumping, sitting
down in a chair, and picking up an object, hand gestures (such
as waving), and critical events (like falls) are considered. It is
envisioned that these simple actions can be combined to detect
macro-activities, such as food preparation or getting dressed,
and identify anomalies in the usual routine associated with
worsening health conditions [1].

To the best of the authors’ knowledge, only one dataset for
passive radar-based HAR is available. The OPERAnet dataset
includes passive Wi-Fi radar (PWR) Doppler spectrograms
along with data from Wi-Fi channel state information (CSI),
ultra-wideband, and Kinect systems. The dataset was created
with the intention of evaluating multimodal data fusion networks
for HAR using data from synchronized RF and vision-based
sensors [13].

To address the issue of limited available data, the authors
of [14] developed SimHumalator, a PWR simulator for gener-
ating micro-Doppler spectrograms for daily activities by inte-
grating animation data from motion capture systems with IEEE
802.11 compliant Wi-Fi transmissions. The proposed simulator,
though, does not model environmental factors such as noise,
multipath, occlusions, and propagation loss, resulting in “clean”
spectrograms. In [15], they used generative adversarial networks
(GANs) to add noise to the simulated spectrograms.

III. SIGNAL PROCESSING

Passive radar receives two types of signals: a reference signal
Sref(t) and a surveillance signal Ssur(t). The signals are pro-
cessed to extract range and Doppler information, discriminate
moving targets from unwanted stationary returns in the presence

of a strong direct signal component, and recognize the monitored
subject’s activity.

A. Range-Doppler Correlation

Range and Doppler information are derived by using Cross
Ambiguity Function (CAF) processing [10], given as

CAF(τ, fd) =
∫ T

0

Ssur(t)S
∗
ref(t− τ)ej2πfdtdt, (1)

where τ , fd, T , and ∗ denote the delay, Doppler shift, integration
time, and conjugate operation, respectively. The parameters τ
and fd provide an estimate of the range and Doppler shift of
detected targets. The evaluation of CAF for a passive radar
represents one of the most computationally expensive operations
due to the long integration time required to achieve high Doppler
resolution. An efficient implementation of CAF is obtained by
performing the fast Fourier transform (FFT) of cross-correlated
reference and surveillance signals [10], [12]. The computational
complexity can be further reduced by using suboptimal algo-
rithms for real-time processing. The batch processing method
operates by dividing the signals into isometric segments and
applying CAF in each batch [11], [12], [35].

In passive operation, Doppler resolution is inversely propor-
tional to integration time as Δf = 1/T , allowing for potential
resolution adjustment to detect activities. Range resolution is
defined as ΔR = c/2B. Due to the limited bandwidth of the
reviewed wireless signals (20 MHz for Wi-Fi), range resolution
is limited to 7.5 m, which is insufficient for in-home monitor-
ing [7], thus Doppler information is typically used. A Doppler
spectrogram is generated based on a group of range-Doppler
plots by selecting the range column containing the maximum
Doppler shift [22]. Examples of Doppler spectrograms obtained
through a passive Wi-Fi radar for a human performing common
activities such as walking, sitting, and standing are presented in
Fig. 4.

Experimental results [10], [36] revealed that the low frame
rates during Wi-Fi idle status negatively impact the generated
Doppler signatures and potentially affect HAR accuracy. To
address this issue, a modified CAF was proposed in [10], [31].
Their idea involves extracting the beacon signal before the
application of CAF to ensure that only useful data is processed.
Moreover, [34] presented an algorithm utilizing ESPRIT for
estimating range and velocity, while [32] introduced an iterative
adaptive algorithm for Doppler resolution enhancement.

B. Direct Signal Cancellation

The strong direct signal between the surveillance antenna and
the transmitter of opportunity causes significant interference in
passive radar systems, as it masks the desired target’s echo,
degrading the system’s detection sensitivity. Direct signal in-
terference (DSI) along with the signal reflected from stationary
objects creates an unwanted peak of high energy in the zero-
Doppler bin of the CAF surface. To suppress this interference,
most of the studies employ the CLEAN algorithm proposed
in [24]. The principle is to iteratively subtract the scaled and
phase-corrected self-ambiguity surface CAFself(τ, fd) of the



SAVVIDOU et al.: PASSIVE RADAR SENSING FOR HUMAN ACTIVITY RECOGNITION: A SURVEY 703

TABLE I
SUMMARY OF AVAILABLE DATASETS AND SIMULATION SOFTWARE

TABLE II
SUMMARY OF SIGNAL PROCESSING TECHNIQUES

Fig. 4. Examples of PWR Doppler spectrograms from the OPERAnet dataset [13] for a volunteer performing the following activities: (a) walking,
(b) sitting on a chair, standing from a chair, walking, lying down, standing from the floor, lying down, standing from the floor, and then walking. Only
a 60-second segment of the recordings is considered.

reference signal from the original CAF surface. The cleaned
CAF surface CAFk(τ̂ , f̂d) at the k-th iteration can be written
as [10]

CAFk(τ̂ , f̂d) = CAFk−1(τ, fd)− akCAFself(τ − Tk, fd),
(2)

where ak and Tk are the amplitude and phase shift of the max-
imum peak of the k-th CAF surface amongst the zero-Doppler
line.

In [4], the extensive cancellation algorithm (ECA) was used to
remove DSI. ECA operates by subtracting from the surveillance
signal properly scaled and delayed replicas of the reference
signal; however, this approach has high computational load since
it is applied in the signal domain rather than the CAF surface.
It should be noted that batch processing is applicable to both
CLEAN and ECA.

C. Post-Processing

After CAF processing and DSI cancellation, the remaining
signals contain noise and comprise both motion and non-motion
segments. To reduce the noise levels, a constant false-alarm rate
(CFAR) algorithm, which is widely used in active radar detection
systems, has been employed in several studies [6], [7], [10],
[12], [16], [24], [31]. The authors of [18] used an empirically
determined threshold of the Doppler power to remove any “bad
time index” (i.e., errors caused in the correlation process due to
irregular Wi-Fi transmissions) from the Doppler spectrogram.

Precise segmentation, i.e., identifying the start and end times-
tamps for each action inside the received signal sequence, is
significant for accurate feature extraction and activity recogni-
tion. The detection of active and inactive intervals is mainly
based on thresholds. The works [19], [20] used the weighted
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TABLE III
SUMMARY OF FEATURES EXTRACTION METHODS

standard deviation to detect the start and end points of motion
patterns in the micro-Doppler spectrogram, while the authors
in [21], [22], [23] implemented a low-complexity motion in-
dicator based on Doppler power to discriminate active and
static periods. In [21], the motion indicator was used as a
cognitive mechanism, allowing the system to adapt to multiple
motion levels with different Doppler resolutions. Moreover,
Kruse et al. [37] proposed a segmentation method based on
Renyi entropy. Segmentation of sequences into single-activity
segments is achieved by detecting rapid changes in the entropy
of micro-Doppler spectrograms.

IV. FEATURE EXTRACTION

Feature extraction is a core step in HAR, because it affects the
robustness and accuracy of recognition. It involves identifying a
subspace of the original feature space that retains significant in-
formation while reducing dimensionality to minimize classifier
complexity. Several studies [6], [7], [15], [16], [17], [20], [26],
[27], [28], [29], [38] utilized Doppler spectrograms directly in
the subsequent classification, while others extract features from
the Doppler signatures. Physical features provide physically
meaningful information about the Doppler spectrogram (e.g.,
the duration of an activity or the bandwidth of the Doppler
peak), allowing for interpretation of the results. However, they
often lack diversity, which degrades classification performance.
Dimensionality reduction techniques, such as principal compo-
nent analysis (PCA) and singular value decomposition (SVD),
have been used in radar-based activity recognition applications
to remove redundant information [19], [20], [21], [23], [25].
In [21], [23], SVD was shown to provide better performance
than PCA and physical features.

The authors of [25] proposed discrete cosine transform (DCT)
and entropy-based methods for feature extraction from local
areas of pre-processed Doppler spectrograms. Entropy-based
analysis exploits different entropy values arising from color
intensity variations to quantify the different Doppler patterns
of activities. Through the suggested patching strategy, areas
of micro-Doppler spectrograms containing slight variations or
insignificant information are excluded from the analysis while
retaining the significant locally extracted features. For both
methods, the optimum patching strategy is determined based
on Dunn’s index.

Recently, machine learning-based methods have been used for
automatic feature extraction from Doppler signatures. The work
in [23] employed hidden Markov models (HMM) to generate
log-likelihood values as a measure of similarity between Doppler
sequences. This approach eliminates the need for a predefined

sliding window, which is a limitation of traditional feature
extraction methods. Although the log-likelihood values can be
used to directly measure the similarity between activities, the
authors chose to use them as features. In [25], convolutional
autoencoder (CAE) and convolutional variational autoencoder
(CVAE) networks were used to extract features from Doppler
radar data. The latter achieved great accuracy, but the high com-
putational time needed for it prohibits real-time implementation.

V. MACHINE LEARNING

Several machine learning (ML) and deep learning (DL) tech-
niques have been presented for human presence detection and
activity recognition. Multiple algorithms for a specific task
are often used and compared to identify the best-performing
algorithm. Models’ performance is typically assessed by met-
rics such as accuracy, sensitivity, specificity, or computational
complexity. However, it is not possible to compare the results of
different studies due to the diversity of datasets used.

Supervised learning techniques, including support vector
machine (SVM) and sparse representation classifier (SRC), have
been explored for HAR using conventional, sliding-window
extracted features from Doppler spectrograms [18], [19], [20],
[21]. The authors of [21] also evaluated the performance of
the SVM classifier in an inter-subject scenario. Classification
accuracy was slightly below 80%, suggesting that activities for
a new user can be recognized based on existing data. However,
activity recognition based on annotated data is challenging in
real-world situations where the subject performs a wide range
of activities.

The potential of using unsupervised learning techniques to
improve recognition accuracy in the absence of labeled data has
been investigated by a research group. In [22], an HMM was
utilized to recognize five daily activities. The HMM structure
includes the activity types as hidden states and the physical
features extracted from Doppler spectrograms as observation
states. In [23], [25], unsupervised clustering was performed with
the K-means and K-medoids algorithms. Since an unsupervised
learning framework was adopted, the authors of [25] applied
four metrics’Elbow, Silhouette, Davies-Bouldin, and Dunn’s
index’to automatically detect the number of classes.

Deep learning techniques, including convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), have been
explored. DL approaches extract high-level features automati-
cally but require more training data. In [6], [7], [10], [13], [15],
[16], [17], [20], [26], [27], [28], CNN architectures were evalu-
ated for tasks involving activity recognition and people counting
using spectrograms as input data. In [6], the long short-term
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TABLE IV
SUMMARY OF MACHINE LEARNING AND DEEP LEARNING TECHNIQUES

memory (LSTM) network was used to detect occupancy from
Doppler data, leveraging the network’s ability to capture data
temporal correlation.

Transfer learning (TL) can be utilized to reduce training time
and improve a DL model’s performance. TL works by using pre-
trained weights in the first layer and fine-tuning the subsequent
layers. The authors of [20] proposed a deep transfer network
based on the AlexNet architecture, pretrained on ImageNet
and fine-tuned for micro-Doppler classification. In [28], the
network was trained on Wi-Fi data transmission measurements
and subsequently fine-tuned on micro-Doppler spectrograms
from probe response signals. Tran et al. [29] applied TL using
the VGGish model trained on audio and compared its accuracy
with TL using the VGG-16 model trained on images. Their
method demonstrated higher accuracy compared to image-to-
image knowledge transfer.

Recently, multimodal and multi-sensor fusion methods have
been studied for HAR. Sensor fusion enables the joint ex-
ploitation of information acquired through diverse sensors to
better describe human actions and enhance recognition accu-
racy. [7] presented a probability-level fusion technique using
CSI and PWR spectrograms, while [13] introduced a sensor
fusion network by concatenating data from RF and vision-based
sensors. In [38], a transformer-based model was implemented
that can fuse multiple image-based features to recognize six
daily activities using the same dataset. [5] presented a sensor
fusion method based on the interacting multiple model (IMM)
algorithm using PWR and Wi-Fi emission-based measurements.
Moreover, the authors of [14], [15], [17] presented data augmen-
tation schemes using synthetic Doppler signatures to address
the problem of insufficient training data. Experimental results
revealed that this approach can improve classification perfor-
mance when dealing with limited or unbalanced experimental
data.

VI. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Although passive radar sensing has been attracting interest
for healthcare applications, several challenges require further
exploration.

� While the reviewed applications exhibit sufficient accu-
racy, they have been tested in controlled laboratory en-
vironments. Therefore, it is necessary to evaluate these
algorithms in real-world settings with different clutter
and multipath phenomena, sensor placements, and diverse
end-users. This approach ensures that classification algo-
rithms can generalize well to unseen conditions.

� Most studies classify activities using recordings of isolated
activities with predetermined duration and clear transi-
tions. However, this approach does not reflect human
motion patterns, which are continuous, diverse, and unin-
terrupted. To address this, classification techniques should
transition from analyzing separate movements to analyz-
ing continuous streams. Initial findings in continuous HAR
with active radar are documented in [39].

� Passive radar-based HAR in multi-user environments
presents significant challenges, as radars receive a mixture
of motion patterns in crowded sensing areas. Therefore,
separation techniques are required to isolate independent
motion signatures from the combined signal. Recent re-
search on active radar systems demonstrated that blind
source separation and direction of arrival estimation tech-
niques could support multi-subject sensing [40].

� Passive radar technology also raises serious privacy con-
cerns as its non-intrusive nature implies that people may
be unaware of the existence of wireless sensing. Hence,
security strategies should be included in the passive radar
system design.

� Existing PWR systems often modify the sender’s data rate
for improved performance. In realistic scenarios, a joint
communication and radar sensing framework should be
developed so that the same wireless signals are utilized for
information transmission and radar detection operations.

� DL is increasingly used in radar for automatic feature
extraction and classification, but it demands significant
computational resources, posing challenges for edge de-
vice deployment. Moreover, the complexity of DL mod-
els makes it hard to comprehend classification decisions.
Explainable artificial intelligence techniques, which have
been used in fields like medical imaging [41], will allow
interpretability of the results.

� Another issue is the lack of comprehensive open datasets
for the benchmarking of different approaches for passive
radar-based HAR. Since most of the studies evaluate al-
gorithms’ performance using their dataset, systems highly
depend on the data collection procedures, which hinders
comparison between studies.

VII. CONCLUSION

This survey provided an overview of passive radar system
architectures, signal processing methods, feature extraction,
and machine learning-based activity recognition. The findings
from various studies suggest that passive radar shows significant
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promise for assisted living applications. Future research should
address several challenges, including multi-subject sensing,
continuous activity recognition, efficient DL approaches,
advanced radar configurations for enhanced performance
and privacy, and the integrated use of wireless signals for
communication and sensing.

SUPPLEMENTARY MATERIALS

The supplementary materials offer a thorough summary of
the techniques outlined in the reviewed papers.
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