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Abstract—Optical wireless communication (OWC) is emerging
as a pivotal technology for next-generation broadcast networks,
with visible light communication (VLC) poised to meet the
escalating demands of advanced radio frequency systems. This
study focuses on enhancing visible light positioning (VLP),
recognized for its precision, simplicity, and cost-effectiveness,
which are essential for accurate indoor localization and respon-
sive location-based services. Central to our approach is the
integration of advanced machine learning (ML) techniques,
which fundamentally transform the accuracy and efficiency of
3D indoor positioning systems. We introduce an advanced VLP
framework where ML is leveraged not merely as an adjunct
but as the primary driver of innovation, significantly refining
the processing of received signal strength (RSS) indicators.
The methodology centers around a system comprising four
light-emitting diodes (LEDs) arranged in a star geometry,
optimized for precise spatial localization. We evaluate three
distinct methodologies: a foundational star-shaped configuration
for baseline position estimation, a repeated unit cell strategy to
extend the four-LED configuration to a larger positioning area,
and a sophisticated implementation employing Nyström kernel
approximation. This integration of Nyström approximation into
our ML framework drastically enhances the system’s predictive
accuracy, achieving an exceptional average relative root mean
square error (aRRMSE) of 2.1 cm in a simulated setup. The
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results demonstrate that ML, especially combined with the
application of the Nyström kernel approximation, significantly
elevates the precision and operational efficiency of traditional
VLP systems, setting new benchmarks for accuracy in indoor
3D positioning technologies and fostering advancements towards
more sophisticated and adaptable communication networks.

Index Terms—Visible light positioning (VLP), visible light
communications, light-emitting-diode (LED) topology, machine
learning (ML), Nyström kernel approximation.

I. INTRODUCTION

THE RAPID development of smart mobile devices, the
Internet of Things (IoT), and artificial intelligence (AI)

has made indoor location-aware services increasingly acces-
sible. IoT-enabled devices and location-based services (LBS)
have numerous applications in the commercial, industrial, and
personal domains. These range from precise indoor naviga-
tion, virtual reality (VR), and augmented reality (AR) to
streamlining production processes and guiding autonomous
vehicles. The increasing demand underscores the crucial need
for swift, dependable, and highly precise indoor wireless
positioning. As outlined in releases 15 and 16 of the Third
Generation Partnership Project (3GPP), forthcoming broad-
casting networks must attain centimeter-level accuracy through
emerging processes, technologies, and spectrum utilization [1].

In the field of outdoor positioning, the global positioning
system (GPS) is established as the predominant technology.
However, despite the accurate outdoor positioning of GPS,
it is not suitable for indoor use cases, as GPS signals have
weak received signal strength (RSS) and cannot penetrate the
building’s walls, as building materials impede the transmis-
sion of radio frequency waves [2], [3]. Additionally, GPS is
unable to deliver equivalent levels of positioning accuracy,
continuity, and reliability in indoor environments due to signal
attenuation and reflection caused by buildings [4]. Therefore,
more reliable systems are needed for indoor environments.
Although various technologies have been proposed for indoor
applications, such as wireless local area networks (WLANs),
ultra-wideband (UWB), Zigbee, and Bluetooth, they are
susceptible to electromagnetic signal interference generated
by other radio frequency wireless devices and also require
additional infrastructure.
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Optical wireless communication (OWC) stands out as a
compelling option for the final meter of wireless connec-
tivity in broadcasting systems. It can function across an
extensive spectrum, ranging from near-infrared to ultraviolet
wavelengths, encompassing the visible light spectrum [5].
Visible light communications (VLC), as subdomain of OWC
emerges as a promising technology in the coming 6G wireless
networks [6]. Visible light positioning (VLP) is a VLC-
based technology that has gained a lot of attention, as it
can provide highly accurate estimation for indoor positioning
systems (IPSs), compared with conventional technologies.
VLP systems provide simultaneous communication and posi-
tioning services using light-emitting diodes (LEDs), which
are power-efficient, cost-effective and have a long lifespan.
Furthermore, VLP systems are immune to electromagnetic
interference and can benefit from the free and unrestricted
visible light portion of the spectrum, providing an accurate
localization prediction.

The integration of VLC and VLP into broadcasting technol-
ogy marks a substantial advancement in the realm of wireless
communication systems. Utilizing the visible light spectrum,
VLC offers enhanced data rates and secure communication
channels, making it ideal for broadcasting applications where
traditional radio frequency channels suffer from congestion
and interference. This technology is applicable across various
sectors, including intelligent transportation systems and indus-
trial communications, where accurate device coordination and
data broadcasting are paramount. By exploiting the visible
light spectrum, VLP not only improves system efficiency but
also enhances the reliability and scalability of broadcasting
networks. Driven by advancements in light-emitting devices
and optical receivers, this technology is poised to revolutionize
broadcasting methodologies by delivering faster and more
secure data transmission capabilities.

Recent studies have highlighted the potential of VLC and
VLP in indoor broadcasting applications. Research indicates
that VLC systems can effectively support wireless data access
and indoor positioning, significantly enhancing the manage-
ment and coordination of broadcasting equipment. Integrated
systems leveraging VLC for data transmission and VLP for
precise positioning offer robust communication solutions in
dynamic environments [7], [8]. Furthermore, the development
of Ethernet-VLC interfaces has expanded the applicability of
VLC in professional broadcasting settings, thereby enhancing
data communication capabilities [9].

In addition, adapting VLC technology for outdoor broad-
casting through the use of streetlight infrastructure has
broadened its scope to outdoor environments, enabling
effective public safety communications and enhancing over-
all broadcasting capabilities [10]. Cooperative systems that
combine VLC and VLP, employing advanced optical identi-
fication techniques, have demonstrated significant promise in
improving both communication and positioning capabilities,
making them highly effective for broadcasting in dynamic
environments [11].

Several VLP-based signal features have been exploited to
accurately estimate the indoor position, such as angle of
arrival (AoA), time of arrival (ToA), time difference of arrival

(TDoA), and RSS. AoA can provide highly accurate estima-
tions but is rather complex as the receiver orientation and/or
structure is essential. ToA and TDoA are computationally
demanding, and to accurately predict position coordinates,
they require strict synchronization between transmitters and
receivers, while their distance in indoor scenarios is usually
small [12].

RSS-based VLP systems have gained a lot of momentum as
a promising candidate due to their simplicity, high centimeter
accuracy, and low cost [13]. In an RSS-based VLP system, a
photodiode (PD) is used to detect RSS values from various
LEDs. The distance between the transmitter and the receiver
can be obtained by analyzing the amplitudes or powers of
the signals received from the LEDs. When the distance be-
tween transmitters and receivers increase, the measured power
received decreases. Techniques such as trilateration can be
applied for receiver coordinate estimation [14]. In RSS-based
VLP systems, RSS measurements are given with unknown
distances and heights based on channel modeling, making
direct distance estimation particularly challenging for three-
dimensional (3D) systems [15].

In non-ideal VLP scenarios, characterized by real-world
complexities, factors such as interference, noise, fading, obsta-
cles, and other variables disrupt the operating conditions.
Shi et al. have shown that VLC system channel dynamics
are significantly influenced by the non-linear and complex
properties of gallium nitride (GaN) multiple quantum well
(MQW) LEDs [16]. Their study details the substantial non-
linear effects in illumination and data transmission, providing
analytic formulations to evaluate LEDs’ output illumination
intensity and electro-optic signal responses at varying injection
levels. These include carrier concentration derivations and
considerations of leakage and recombination processes. Their
model integrates an equivalent circuit approach, offering a
comprehensive understanding of LED behavior. These insights
reveal the limitations of conventional RSS-based channel
modeling, often impractical for real-world applications due
to their complexity. The developed model, validated with
experimental data, emphasizes the critical interdependen-
cies between the optical and electronic properties of LEDs,
challenging simpler models that overlook such interactions.
Extensive experimental validations within a VLC system
align theoretical predictions with measurements, highlighting
the sensitive dependence of VLC performance on specific
LED properties and questioning the practicality of traditional
approaches. Given that the calibration of RSS-based modeling
is cumbersome in realistic environments, this suggests that
utilizing machine learning ML on top of an RSS dataset might
be an interesting and effective approach.

Given these insights, the combination of RSS data and
machine learning (ML) has become an appealing alternative
in the VLC community, offering accurate positioning esti-
mates [17]. Unlike traditional methods that require detailed
and often infeasible modeling of each LED’s characteristics
under varying operational conditions, ML algorithms can
effectively handle complex and non-linear data. ML is a
data-driven approach that provides accurate and robust results
without the need to conscientiously quantify every parameter
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of the VLP model or to exactly describe the underlying
physical model [18]. This methodology not only simplifies the
implementation but also enhances the adaptability and accu-
racy of localization in dynamic and challenging environments.

A. Motivation and Contributions

Classic LED configurations, such as the triangle [4], square
or rectangle-shaped geometry cannot unambiguously solve the
3D VLP, while a star-shaped configuration is considered a
better alternative for the 3D-position estimation [19]. The main
contribution of this study is the innovative use of ML models
to leverage RSS from carefully arranged LED setups for
accurate 3D localization. This research centers on employing
ML techniques to analyze and enhance the performance of
existing LED configurations without modifying their physical
structure, demonstrating notable enhancements in positioning
precision.

In this work, a VLP system with four LEDs as transmitters
forms a star geometry and a single PD as the receiver is
used to predict the position coordinates of a mobile node.
Three approaches are studied and compared to achieve an
accurate 3D location of the receiver, using RSS values
acquired in an experimental setup. The first approach uses
the conventional star-shaped VLP system, which comprises
four fixed LEDs to estimate the location of the PD, based on
the acquired RSS values. In the second approach, a repeated
unit cells methodology is utilized, by deploying different star
configurations around the fixed LED with the highest mean
RSS value. Thus, in this simulation, virtual transmitters are
simulated in the entire room and corresponding RSS values
can be obtained, offering more inputs to the ML models
than the conventional four-LED configuration, increasing the
positioning accuracy of the approach. In the final approach,
Nyström kernel approximation is applied to the measured RSS
values from the four transmitters (LEDs) to kernelize the
ML regressors, mapping the described problem to a higher-
dimensional kernel space. Thus, using the Nyström kernel
approximation we model the problem using four inputs to
obtain three outputs that are the 3D target coordinates. The
main contributions of this work are listed below:

• Various ML models, namely RF, GBDT, Catboost,
XGBoost, and LGBM, are utilized for comparing the
performance of the 3D positioning system. Different con-
ventional repeated unit cell methodologies are examined
as an approach to formulate a wider vector of input
(pseudo) RSS values.

• Implementation of the Nyström kernel approximation on
the RSS values and comparison with a simple four-fixed
LED star configuration. This approach performs well
even when only a limited amount of training feature data
is available, offering an improvement of up to 54% in
terms of aRRMSE compared to the conventional four-
LED configuration. Thus, Nyström kernel approximation
is suitable for scenarios with a limited set of features, to
provide accurate localization estimation.

• This work provides guidelines on the ill-posed problem
of accurate 3D-position prediction with a limited number

of input features in ML models. ML models, utiliz-
ing Nyström approximation can score accurate results
close to the repeated cells methodology, but with sig-
nificantly shorter computation time. Nyström realization
can enhance the computation time, with respect to
performance, up to 84% for the GBDT learner.

B. Organization of the Paper

The rest of this paper is structured as follows. Section II
looks at related research, Section III outlines the system model,
Section IV examines the methodology and approaches used,
Section V covers machine learning techniques, Section VI
presents the evaluation metrics and results, Section VII
discusses the findings, and Section VIII summarizes the
conclusions and potential future work.

Notation and abbreviations: In this study, lowercase Latin
letters are utilized for scalars, matrices are denoted with bold
capital letters, i.e., U, and vectors with bold lowercase letters,
i.e., x. Table I presents the abbreviations in the study.

II. RELATED WORK

Research into the use of ML techniques for wireless-
based indoor positioning and RSS-based VLP systems has
been extensive. This section lists the exploration work in the
literature that applies and optimizes ML methods for VLP
systems.

In [20], the authors contrast a traditional triangulation
algorithm that relies on AoA with a data-driven Gaussian
Process (GP) method for estimating 2D positions in visible
light scenarios. In both methodologies, RSS data is gathered
using a quadrant PD receiver equipped with an aperture,
capturing image points from each transmitter on the PD.
Subsequently, the location of the PD is predicted through the
application of a least squares estimator and trigonometry. The
GP-based approach achieves satisfactory positioning accuracy,
with absolute errors of p50 and p95 of 3.62 and 16.65 cm for
the 2D coordinates. In [18], a novel GP approach is proposed
for RSS-based VLP systems. The proposed approach is com-
pared with multi-layer perceptron (MLP) and multilateration
(MLAT) methods on simulated data with random transmitter
tilt and measured data. Both the MLP and GP approaches
achieved higher positioning accuracy than the MLAT approach
when there was a random tilt on the transmitter or a radiation
pattern. GP achieves values of 0.82 cm and 3.12 cm for the
50th and 95th percentiles of error for a standard deviation
σ=2◦ in the simulations and 2.45 cm and 6.11 cm for the
measured data. The limited amount of training data in the
measured use case indicates that the proposed GP can be data-
efficient for RSS-based VLP systems.

Liu et al. [21] introduce a hybrid algorithm incorporating
extreme learning machine (ELM) and density-based spatial
clustering of applications with noise (DBSCAN) for the
estimation of a 2D position of a PD target, using a single LED.
The PD is adjustable and measures angles relative to the LED
projection point in conjunction with the RSS values. Initially,
the random forest (RF) method is employed to categorize
the area of interest into two segments: the corners zone and
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TABLE I
ABBREVIATIONS

the interior zone. In the interior zone, position inference is
accomplished using the horizontal distance from the PD and
angles. For the corner zone, the hybrid approach is applied.
The ELM provides an initial estimate of the target’s position,
and as the rotatable PD is repositioned, the coordinates are
re-estimated. Utilizing DBSCAN, the largest cluster, and its
weight are determined, corresponding to the target’s location,
thereby reducing the positioning errors in the room from
11.97 to 1.94 cm. The proposed scheme demonstrates effi-
cacy in compact spaces; however, its performance in larger
rooms raises concerns due to potentially heightened processing
latency, presenting significant challenges for real-time VLP
systems. Moreover, the illumination intensity emitted by a
single LED may prove inadequate for precise position esti-
mation. In [22] an extreme learning machine (ELM) approach
achieves an average 3D positioning error of 2.11 cm and

3.65 cm for simulation and real measured data case scenarios,
while demanding ms-order average calculation times.

The authors in [23] propose a novel hybrid model by
connecting k-nearest neighbors (kNN) and RF algorithms for
VLP systems to determine the 2D coordinates of a PD receiver.
The kNN method is employed to increase the RSS features,
and the most significant ones are selected as inputs for the
RF to mitigate complexity and computational expenses. The
proposed approach attains an average positioning accuracy of
2 cm, surpassing other widely used kNN methods by fivefold.
Notably, the authors achieve remarkable positioning precision,
particularly away from the room center where prominent
multipath reflections occur. This accomplishment considers
various factors such as ambient light, thermal noise, and shot
noise, along with the heightened reflection rate. In [24], the
authors propose a hybrid approach for accurate 2D indoor
positioning applications, based on RSS measurements. The
proposed method consists of a maximum received signal
strength recognition (MRR) technique and weighted optimum
kNN (WOkNN) algorithm, by combining the optimum kNN
(OkNN) and weighted kNN (WkNN). In this novel approach,
the MRR is used to reduce computational time and the WkNN
optimizes the positioning accuracy of the method. MRR led
to a 42% to 52% reduction in computational time, depending
on the number of k-neighbors, while WOkNN outperforms all
conventional kNN-based approaches with a mean positioning
error of 0.8 cm in the 2D VLP system.

Bakar et al. [2] propose a WkNN algorithm for
two-dimensional (2D) localization estimation based on a dense
RSS fingerprint dataset. The authors propose a custom board
to drive four LED luminaries and obtain the RSS values at the
receiver. During the experimental setup and data collection,
at each location, the RSS at each PD for each of the four
luminaries was measured, resulting in 16 RSS values. The
positioning error could be reduced by using the Manhattan
or Matusita distance metrics, leading to a median error of
4.74 mm for the 2D coordinates.

In [6], a second-order linear regressor and a kernel ridge
regressor are proposed, utilizing a repeated unit cell methodol-
ogy, where carrier frequencies f1, f2, f3 are repeatedly deployed
and reused to cover the entire positioning area of the lab-
oratory. The linear regressor achieves a positioning error of
3.74 cm and 3.64 cm in the horizontal and vertical axes,
while for the kernel ridge regressor, the errors are 2 and
2.23 cm respectively. To enhance the positioning accuracy
of the proposed learners, a sigmoid function data prepro-
cessing method is applied and studied. The introduction of
the proposed preprocessing method reduces the positioning
accuracy for the linear approach by 27.8% and 22% for
horizontal and verτ ical axes, and for the ridge approach by 2%
and 3.1% respectively. In [25], the authors propose a second-
order regression ML and a polynomial trilateral ML learner
to predict the 2D positioning in a VLP system using three
LEDs. The VLP systems used a repeated cell approach to
cover the positioning area, and the ML models are suitable for
such relatively static environments. Both approaches provide a
satisfactory positioning accuracy for use cases without optical
background noise, with the positioning error within 4 cm when
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TABLE II
PERFORMANCE COMPARISON OF VARIOUS 3D VLP SYSTEMS WITH COMPUTATIONAL COMPLEXITY AND REFERENCES

using the second-order regression ML and within 5 cm for the
polynomial trilateral approach.

In [12], a wkNN approach is investigated to estimate the
2D location of a PD receiver using sparse fingerprints. The
model is trained using an artificial dataset constructed based
on a modified path-loss model. The path-loss exponent, which
affects the attenuation of signals in wireless communication,
is considered as a variable in this study. The optimal cali-
bration of the path-loss exponent is achieved through bicubic
interpolation, which helps fine-tune the model’s performance.

Taking advantage of the wkNN approach with the fabricated
RSS fingerprints, the study demonstrates an average position-
ing accuracy of 1.92 cm. This indicates the effectiveness of the
wkNN method in accurately estimating the 2D location of the
PD receiver in the given context. In [26], the authors explore
and compare various ML methods for 3D indoor localization
of a PD receiver. ML methods considered in the study include
decision trees (DTs), support vector machines (SVMs), and
neural networks (NNs). The localization is based on RSS
fingerprints and the angles of a steerable laser source. All ML
models in the study utilize RSS values, source angles, and
the corresponding positions obtained from predetermined ref-
erence points to estimate the receiver’s position. In particular,
incorporating angles as input into the ML models leads to a
reduction in the localization error. Among the ML methods
evaluated, the DT model demonstrated the best performance,
surpassing SVM and NNs. The DT model achieved an average
positioning accuracy of 3.8 cm, indicating its effectiveness
in accurately estimating the receiver’s position in the indoor
environment.

As illustrated in the performance comparison in Table II,
the integration of the Nyström kernel approximation with
the XGBoost algorithm significantly enhances computational

efficiency without compromising accuracy. This melding of
methodologies underpins an effective ML strategy crucial for
innovations in 3D VLP systems.

The computational complexities are influenced by several
key parameters:

• k denotes the number of trees in the XGBoost model,
which significantly impacts the complexity and efficacy
of the ensemble learning.

• n represents the number of samples in the dataset, a
critical factor for algorithm scalability.

• d refers to the number of features in each sample,
affecting the models’ dimensionality and computational
demands.

• T indicates the total number of trees in Random Forest
models, essential for the robustness of ensemble methods.

• v represents the number of variables or features consid-
ered at each split in decision tree methods, crucial for
precision in the decision-making process.

These variables are pivotal in defining the computational
demands of each algorithm, showcasing how adaptability to
data volume and feature complexity is crucial. A thorough
understanding of these parameters is indispensable for fine-
tuning the algorithms to ensure an optimal balance between
accuracy and computational efficiency in 3D VLP applications.
This advanced ML approach highlights a promising direction
for both theoretical advancements and practical applications
in the field.

III. SYSTEM FORMULATION

In the study, we consider the same configuration of a VLP
system as in [13]. This configuration comprises four LEDs
with a Lambertian radiation pattern with m = 1 set in a
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starlike pattern within a room that measures 5×5 m and has a
height of 3 m. Our assessment centers on the accuracy of 3D
VLP by gauging the positioning error. This error is defined as
the distance between the real position of the receiver and its
calculated position using an untilted photodiode (PD)-based
receiver with an active area of AR = 13mm2. This receiver is
positioned on a uniform grid spaced 10 centimeters apart on
the floor of the 5-meter by 5-meter space.

The white LEDs, identified as LEDi, (i = 1..4), are located
at the coordinates xS = (xS,i, yS,i, zS,i). These LEDs employ
intensity modulation to emit separable beacon signals with
distinct frequencies. Each LED sends out a signal that, upon
reaching the point of interest, carries a received radiant
power denoted PR,i. A positioning method uses the received
signal strength (RSS) values connected with the LED beacon
emissions to estimate the position of the receiver, called x̂.

The VLP algorithm based on MLAT (Multilateration) func-
tions in two main steps. First, it converts the set of PR,i values
into a set of distances di between LEDi and PD, achieved
by inverting the VLP channel model previously introduced
in [13]. Following this, the estimated position x̂ is determined
by minimizing the least-squares error of the linearized system
that links the distance set di to the LED coordinates xS,
according to previous research.

In this sophisticated positioning system, the meticulous
construction of the spatial environment and simultaneous
collection of RSS measurements and positional data are critical
initial steps. The refined distance estimates and RSS values,
as processed through MLAT, serve as a sophisticated input
for advanced ML models. These algorithms are meticulously
engineered to dissect and comprehend intricate correlations
within the RSS data. In executing this analysis, they refine
the preliminary position estimates, substantially elevating
the precision of the positioning system. This advancement
illustrates the convergence of classical geometric positioning
methods with modern ML techniques, thereby establish-
ing a new benchmark for accuracy in indoor positioning
systems. An interested reader could refer to [13] for further
details.

IV. METHODOLOGY

In this work, three different methodologies are presented
to predict The simulation environment for RSS measure-
ment is constructed based on real-world data obtained from
experiments conducted in the VLP lab at Ghent University,
Belgium, as described in Section III and depicted in Fig. 1.
These empirical measurements provided crucial parameters
and configurations, ensuring that the simulations accurately
mirror practical conditions. The data utilized for the ML
models are simulated, generated from this realistic simulation
environment, resulting in a comprehensive dataset consisting
of 75,000 simulated position measurements to ensure robust-
ness and accuracy in our analysis.”

The four LEDs and the PD receiver are considered to be
untilted and oriented horizontally and an overview of the
visible light channel model is presented in Fig. 2. The PD is
considered to be located in the xy-plane as presented in Fig. 2.

Fig. 1. VLP lab.

This does not affect the generality of the approaches for the
3D positioning of the PD receiver.

In this study, several ML models are explored to analyze 3D
position estimation within an indoor VLP system, considering
various topology approaches. ML techniques are increasingly
preferred over traditional methods due to their enhanced
adaptability, superior capability in managing complex interac-
tions, and robustness to noise and interference. Conventional
methods often necessitate explicit environmental modeling and
face challenges with non-linear interactions. In contrast, ML
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Fig. 2. Overview of the visible light channel model [13].

approaches can dynamically learn and adapt to environmental
changes and intricate variable interactions, making them par-
ticularly suitable for the unpredictable conditions encountered
in indoor VLP systems. Empirical evidence indicates that
ML algorithms markedly enhance positioning accuracy and
robustness in environments characterized by high noise levels,
which are typical in indoor scenarios [17], [18].

The deployment of the ML models, such as random for-
est (RF), gradient boosted decision trees (GBDTs), extreme
gradient boosting (XGBoost), light gradient boosting machine
(LGBM), and categorical boosting (CatBoost), in VLP systems
is strongly substantiated by their established efficacy in indoor
positioning scenarios. RF is particularly esteemed for its
robustness and precision in environments characterized by
significant noise levels, making it highly effective for decipher-
ing intricate data patterns [27]. GBDT algorithms, including
XGBoost and LGBM, are adept at managing extensive datasets
and modeling complex, non-linear relationships, thus ensuring
high accuracy and computational efficiency [28]. CatBoost
is distinguished for its proficiency in handling categorical
data and its mechanisms to prevent overfitting, which can
substantially enhance the precision of VLP systems [29].
The selection of these particular ML methods is based on
their demonstrated effectiveness in addressing the distinctive
challenges posed by VLP systems. These challenges include
managing complex, non-linear interactions among multiple
variables and achieving high-precision positioning in dynamic
indoor environments.

A. Standard Star Configuration Approach

The first approach includes a standard 4-LED star VLP
configuration, with the overview of the configuration depicted
in Fig. 2. The four LEDs are considered to have known
coordinates and be oriented horizontally while formulating
a star-shaped configuration. The PD is considered to be
located in the xy-plane and is considered to be untitled.
The RSS measurements obtained from the PD receiver at all
measurement points of interest are utilized for the ML models
to estimate the 3D position of the receiver.

B. Repeated Cells Approach

In this approach, the standard star configuration of the four
fixed LEDs is considered, and the whole positioning area will
be covered by repeated unit cells for RSS augmentation. Based
on the RSS measurement obtained from the PD receiver at
all measurement points, the LED with the highest mean RSS
values is fixed at a certain point xi, yi. Around this fixed LED
four different star-shaped architectures are constructed, and at
the same points of interest at the receiver, RSS measurements
from all LEDs of all topologies are obtained. The set of
four carrier frequencies (f1, f2, f3, and f4) employed within the
star unit arrangement is used systematically throughout the
positioning area, with the RF carrier frequencies being recy-
cled and reused. Each LED possesses an individual identifier
that is transformed through frequency up-conversion. Because
distinct LEDs possess unique identifiers, it becomes possible
to determine the position of each unit cell.

The repeated cells approach has been widely used in
various problems for localization and positioning in VLC
systems [2], [6], [18], [25], achieving satisfactory results
in terms of average positioning error. The rationale of the
repeated cells methodology is depicted in Fig. 3, where the
fixed LED is presented as the black star, and each different
star configuration is formulated around that LED. For the
repeated cells approach, more cells are gradually added around
the centered fixed LED, utilizing 4, 7, 10, and 13 LEDs that
formulate 1, 2, 3, and 4 star-shaped topologies to obtain the
RSS measurements.

C. Kernel Approximations

1) Kernel Methods: Kernel methods are highly effective
learning techniques. They work by mapping data points into
a feature space that can be high-dimensional or even infinite-
dimensional. In this feature space, they find an optimal
hyperplane with strong generalization capabilities. However, a
drawback of kernel methods is their computationally intensive
nature. The computational cost grows at least quadratically
with the number of training examples due to the need to
calculate the kernel matrix. Although approaches such as low-
rank decomposition, or incomplete Cholesky decomposition,
have been used to mitigate this computational challenge, the
calculation of the kernel matrix remains necessary in these
cases.

One popular strategy to avoid computing the kernel matrix
is to simplify a kernel learning task into a linear prediction
problem. This method revolves around forming a vectorized
representation of the data, which provides an approximation of
the kernel-based similarity between any two data points [30].

ML methodologies work better when the feature vector is
large compared to the target vector [31]. In our problem’s
setup, four features (RSS values) exist for three outputs (3D
coordinates). To overcome the challenges that arise from this
framework, kernel approximation was utilized.

The kernel approximation refers to the transformation that
finds a feature mapping to a higher-dimensional space [32].
Mathematically, one tries to find a feature mapping
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Fig. 3. Repeated cells topology.

φ : RN → R
M,N < M

such that

k(v,u) ≈ φ(v)T · φ(u) (1)

where k(v,u) is the kernel or the Gram matrix, which is the
Hermitian matrix of inner products between vectors in an inner
product space.

2) Nyström Kernel Eigenfunction Approximation Theory:
The Nyström method is the most well-known technique for
generating approximate vector representations. When these
approaches are used, the computational burden associated with
calculating the kernel matrix can be alleviated, making the
learning process more efficient [30].

In the context of kernel machine theory, the covariance
levels k(v,u) can be linked to an expansion in a feature
space of dimension N, which surpasses the dimensionality
of the input space v. Here, u represents a vector vari-
able in the feature space. This relationship is expressed
as [33]:

k(v,u) =
N∑

i=1

μiψi(v)ψi(u) (2)

where N ≤ ∞, μi ≥ 0 represent the eigenvalues, and ψi

represent the eigenfunctions of the operator, with a kernel
k(v,u), so that:

∫
k(v,u)ψi(v)p(v)dv = μiψi(u) (3)

Here, p(v) represents the probability of the input vector v.
The eigenfunctions exhibit p-orthogonality, and can be

described as follows:
∫
ψi(v)ψj(v)p(v)dv = δij (4)

where δij is the Kronecker delta. To approximate the eigen-
function equation with an i-th sample {x1, x2, . . . , xw}, where
w represents the number of samples or data points used in
the approximation process, from p(x), the integral over p(x)
is replaced by an empirical average, leading to:

1

w

w∑

k=1

k(u, vk)ψi(vk) ≈ μiψi(u) (5)

The p-orthogonality of the eigenfunctions results in the
empirical constraint defined as:

1

w

w∑

k=1

ψi(vk)ψj(vk) ≈ δij (6)

and based on this equation, the matrix eigenproblem can be
expressed as:

G
w
C

w = C
w
D

w (7)

Here, G
w is the w × w Gram matrix with elements K =

K(vi, vj) for i, j = 1, . . . , q, Cw is the orthonormal column,
and D

w is the diagonal matrix of entries μ1
w ≥ μ2

w ≥
· · · ≥ μq

w ≥ 0. Given the aforementioned equations 6, 7, the
following approximations can be derived:

ψi(u) ≈ √
wC

w
j,i

μi ≈ μi
w

w
(8)

Equations 6, 8 can be utilized to derive the Nyström
approximation, which characterizes the projection of a new
point v into the i-th eigenvector within the feature space:

ψi(v) ≈
√

w

μi
w

w∑

k=1

k(v,uk)C
w =

√
w

μi
w

kvφi
w (9)
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Fig. 4. Flow graphs: (a) 4-star configuration, (b) Repeated cells configuration,
(c) Nyström kernel approximation.

where k(v,uk) is the vector and φi
w the i-th column of

C
w [33].
In our problem’s setup, the RSS values from the four

LEDs are treated as the input space v. Nyström approximation
transforms the input values to a higher dimensional space,
based on the projection of the eigenvector in the feature space.
The flow graphs of the proposed approaches are depicted in
Fig. 4.

Fig. 5. Random Forest flowchart.

V. ML TECHNIQUES AND METRICS

We have extensively explored several ML models in the
context of wireless indoor positioning and the VLP con-
figurations that we provide. In subsequent subsections, a
detailed description of the sequential attributes of each ML
method used in every approach is provided, which is based on
RSS measurements for the VLP system. Utilizing the single
four-LED topology, the repeated cell configuration, and the
Nyström method, RSS values are obtained and used as inputs
to every ML model.

A. Machine Learning Methods Description

1) Random Forest (RF): The Random Forest (RF) algo-
rithm is an ensemble learning method that can be used for
both classification and regression problems, such as VLP.
Its operation entails creating numerous decision trees that
utilize varying subsets of the dataset. The final prediction
is determined by majority voting or averaging the results
of these trees. Using this approach, RF improves the accu-
racy of the predictions and provides a means of controlling
overfitting [34], [35]. The RF flow chart is depicted in Fig. 5

2) Gradient Boosted Decision Trees (GBDT): Gradient
boosting decision trees (GBDT) is an ensemble method
that combines several individual decision trees through a
gradient boosting technique. It employs a boost method
by aggregating predictions from multiple trees [28]. GBDT
iteratively constructs new decision trees, following the gra-
dient descent direction of the loss function from the prior
decision tree model. It adjusts the errors introduced by the
previously trained trees and trains new decision trees to
capture the residual between the true value and the current
prediction [28], [36]. GBDT has demonstrated satisfactory
accuracy and efficiency in various applications and can be
represented as a combination of multiple decision trees:

G(x) = G0 + W1T1(x)+ W2T2(x)+ . . .+ WMTM(x) (10)

where Wi represents the weight, G0 is the initial value, and Ti

represents the decision tree constructed in the i-th iteration.
3) Categorical Boosting (CatBoost): CatBoost is an

advanced and high performance ML method that extends the
GBDT approach. It utilizes binary symmetric or oblivious
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Algorithm 1 CatBoost Pseudo-Code
Require: Model, {(featurei, targeti)}n, α, Loss, {σi}s, Mode

1: Calculate gradients gradients using Loss and Model on
target values

2: Select a random value r between 1 and s
3: if Mode is Plain then
4: Initialize G as gradients(i)r for i = 1..n
5: else if Mode is Ordered then
6: Initialize G as gradients(i)r − σ

(i)
r−1 for i = 1..n

7: end if
8: Create an empty decision tree tree
9: for each step of top-down procedure do

10: for each candidate split do
11: Add the split to the tree structure
12: if Mode is Plain then
13: Compute �(i) as the average of gradients(p)r for

instances p within the same leaf as instance i, for
i = 1..n

14: else if Mode is Ordered then
15: Compute �(i) as the average of gradients(p)r −σ (p)r−1

for instances p within the same leaf as instance i,
for i = 1..n

16: end if
17: end for
18: end for

decision trees as weak learners to create a highly accurate
model. The arrangement of feature points is randomized
to produce various permutations, thus guaranteeing diversity
among the combined input points, effectively preventing over-
fitting. An important enhancement in the CatBoost algorithm
is its ability to automatically convert categorical features
into numerical representations. Categorical features consist of
distinct values or categories that are typically not directly
comparable. In legacy preprocessing stages, categorical fea-
tures are converted into numerical features by replacing them
with numerical values [37]. The CatBoost approach process is
analyzed in Algorithm 1.

4) Extreme Gradient Boosting (XGBoost): XGBoost is a
scalable ML system that utilizes an ensemble approach with
trees or linear classifiers. It combines multiple weak classifiers
to create a more efficient and accurate model. XGBoost
improves accuracy by optimizing the structured loss function
through a second-order Taylor expansion. It also adjusts the
weights of the training samples and utilizes the weights of
the leaf nodes and the depth of the tree to effectively manage
and reduce complexity. The popularity of XGBoost comes
from its high accuracy, fast computation speed, and robustness
in handling noisy data [38]. The objective function can be
described as follows [37]:

F(x) =
N∑

j=1

⎡

⎣

⎛

⎝
∑

j∈Lj

gj

⎞

⎠oj + 1

2

⎛

⎝
∑

j∈Ij

hj + α

⎞

⎠o2
j

⎤

⎦+ βN (11)

where Ij the leaf samples in node i, Lj denotes the set of
samples belonging to the j-th leaf node, β is the complexity

parameter, N the number of tree leaves, α the penalty param-
eter, oj the leaf nodes output, and gj, hj the first and second
derivatives of the loss function.

5) Light Gradient Boosting (LGBM): LGBM is a
histogram-based ensemble decision tree algorithm that
improves model efficiency, decreases execution time, and
conserves memory resources on a machine. It uses a leaf-wise
splitting approach to build the tree vertically, alongside a
histogram-based technique to identify optimal split parameters
and minimize standard deviations [39]. Unlike conventional
tree growth, LGBM chooses the leaf with the greatest
growth loss, allowing for a more efficient and effective tree
construction process. This approach results in the development
of a final tree model that achieves superior performance.
The objective function minimization process in LGBM
utilizes the second-order approximation, allowing for rapid
optimization of the objective function. This approximation
method facilitates efficient and effective optimization, resulting
in rapid convergence toward the optimal solution [39].

The LGBM method was developed based on XGBoost using
N additive functions to forecast the output. In the context
of a provided input dataset featuring N data instances, the
anticipated output of the i-th instance is represented as:

ȳi = φ(xi) =
N∑

j=1

fj(xi), fj ∈ G (12)

xi is the data instance, G denotes the function space encom-
passing the regression trees, and each fk represents an
individual and separate regression tree. The algorithm aims to
minimize the objective function, which can be described as:

O =
∑

i

L(ȳi, yi)+
∑

j


(fk) (13)

L is the loss function, yi is the target value; and 
(fk) the
regularization term.

B. Metrics

To evaluate the performance of the ML algorithms used
for position estimation, various error metrics can be used.
These metrics quantify the disparity between the predicted
positioning values and the corresponding values in the test
set data. Since the models in question employ multiple output
regression techniques, suitable performance metrics encom-
pass the relative root mean square error (RRMSE) and the
average relative root mean square error (aRRMSE). These
metrics are defined as follows:

RRMSEi =
√√√√
(∑q

k=1

(
zk − ẑk

)2
∑q

k=1(zk − z̄k)
2

)
(14)

aRRMSE = 1

s

s∑

i=1

RRMSEi (15)

where q represents the number of input records in the test
set, zk represents the actual measured data, ẑ represents the
predicted values for the k-th data record, z̄k represents the
average of the actual values for the target variable and s
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represents the number of output variables and RRMSEi is the
RRMSE at each of the output variables (in our case i = 3 for
the axes x, y, z). These metrics provide additional information
when dealing with multiple-output regression models.

C. Optuna

Optuna is an advanced hyperparameter optimization (HPO)
framework that features a define-by-run API. It offers dynamic
parameter search space construction through efficient search
and pruning strategies [40]. In this study, the Tree-structured
Parzen Estimator (TPE) algorithm is used, a single-objective
Bayesian optimization method. TPE is utilized to explore and
find optimal combinations of hyperparameters to minimize the
RRMSE. TPE employs a tree-structured approach to model
the hyperparameter distribution and efficiently explore the
search space based on observed trial results. The algorithm
achieves this by repeatedly evaluating the objective function
with different parameter values [41].

The optimization process can be described as follows [40]:
• Identify the optimization direction, parameter type, per-

missible range, and maximum count of iterations.
• Choose a population of individuals evenly distributed

throughout the specified range of parameter values.
• Terminate unpromising individuals based on predefined

trimming conditions using a trimmer.
• Evaluate the objective function for the remaining individ-

uals in the population.
• Iterate through the previously outlined steps until the

designated maximum iteration count is achieved.
• Output the best solution and the corresponding value of

the function.
Optuna is gaining recognition due to its ability to provide an

optimal combination of hyperparameters at a relatively lower
computational cost compared to other optimization methods
such as random grid search and grid search cv [40].

VI. EXPERIMENTS AND RESULTS

The primary objective of this study is to accurately predict
the 3D position of the PD receiver. To achieve this, various
ML algorithms were compared, namely GBDT, Catboost,
XGBoost, RF and LGBM, and the best-performing model,
namely XGBoost, was selected. A dataset of 75, 000 position
measurements was prepared, each measurement consisting
of the receiver’s x, y, and z coordinates and RSS values
from the LEDs arranged in a star formulation, in a room
with dimensions 5 m × 5 m × 3 m. The RSS measurements
of the approaches are obtained in a simulation environment
constructed based on experiments conducted within a VLP
lab at Ghent University, Belgium. As in [13], the LED
plane is equipped with four BXRE-35E2000-C-731 chip-on-
board (COB) LEDs, controlled by LTM8005 Demo Boards to
implement the square wave-based frequency-division multiple
access (FDMA) scheme. The modulation frequencies, denoted
as fc,i = 2(i−1) × f0 (where i ranges from 1 to 4), are
dictated through Wi-Fi using the Adafruit Feather M0 WIFI
w/ATWINC1500. Here, f0 is set to 1 kHz to avoid induc-
ing flicker. The receiver plane is equipped with a Thorlabs

PDA36A24 PD receiver, with a trans-impedance gain set to
1.51 × 105V/A). Data are preprocessed utilizing a scaler to
enhance the performance of the ML models. The complete
preprocessed dataset of 3D positions and RSS values was
randomly split into two separate datasets: the training dataset,
which comprised 80% of the total data, and the testing
data set, which represented the remaining 20%. The test set
was used to evaluate and validate the performance of each
learner.

A. Data-Preprocessing

To preprocess the data and improve positioning accuracy, a
min-max scaler was applied to the pipeline of the ML models
under test. Min-Max normalization is a linear transformation
applied to the original data. In this process, minimal and
maximal boundaries are set for the values, and the entire
dataset is rescaled to fit within the range. The threshold value
for Min-Max normalization typically ranges from zero to one.
Scaled data Ascaled can be expressed as:

Ascaled = A − min(A)

max(A)− min(A)
(16)

One benefit of using the Min-Max scaler is that it enables
us to standardize features within the same range, even if they
initially have vastly different values. This ensures that all
information is retained, as the relative distance ratios between
the data points are preserved. For algorithms that depend on
measuring the distance between points, this scaling method
allows the inclusion of features with small and large values
without losing their significance [42].

B. Numerical Results

A quantitative evaluation of five well-established ML pre-
dictors, namely RF, GBDT, CatBoost, XGBoost, and LGBM,
is conducted. To optimize the hyperparameters of each ML
model, the Optuna framework is utilized. Three different
methodologies are presented for a star-shaped configuration
consisting of four fixed LEDs, aiming to obtain accurate indoor
VLP estimation:

• A simple star-shaped configuration consisting of four
fixed LEDs.

• The conventional repeated unit cells methodology, to
formulate a wider vector of input (pseudo) RSS values,
with three approaches being conducted. The number of
LEDs (thus the input RSS values) gradually increases,
with seven, ten, and thirteen RSS values being explored
as input to the ML models.

• The Nyström kernel approximation method with a chi-
squared kernel being utilized to transform the input four
RSS values of the standard star configuration, into a
higher-dimensional space, to estimate the 3D position of
the PD receiver. The proposed Nyström approximation
constructs the higher-dimensional space map with a
number of 40 features as transformed representations of
the original RSS values and these can be used as input
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TABLE III
4 LEDS APPROACH

TABLE IV
NYSTRM KERNEL APPROXIMATION METHOD APPROACH

features for the models, while the kernel is a commonly
used chi-squared function, that can be expressed as:

K(X,Y) = exp

(
−γ

n∑

i=1

(xi − yi)
2

xi + yi

)
(17)

where K(X,Y) is the chi-squared kernel value between vectors
X,Y, γ is a positive constant that controls the kernel’s shape,
n is the number of elements in the vectors X and Y , while xi

and yi are the corresponding elements in the vector.
The ML models are examined and evaluated for the different

approaches in the VLP system under study, based on various
error metrics. The training procedure utilizes the performance
and capabilities of an NVIDIA RTX 3080 GPU.

The models for the first methodology are fine-tuned using
the Optuna framework, based on the four RSS input values,
and the hyperparameters remain the same for the Nyström
approximation in order to highlight the great accuracy
performance it provides. For the repeated cells methodology,
as the input RSS values are increased, the hyper-parameters
are selected based on the Optuna framework in every case.

The results are shown in Tables III,IV,V for a single
topology, repeated cells, and Nyström kernel approximation
method for the different ML models, based on the aRRMSE
and the computation time for the training of each model.
Fig. 6 represents the error and comparison for the best learner,
namely XGboost, for each of the methods utilized to train the
ML models.

VII. DISCUSSION

Significant research efforts have focused on overcoming the
challenges of localization and positioning in VLC systems,
through the application of AI and especially ML methods. In
this study, three distinct approaches are introduced for a star-
shaped arrangement consisting of four fixed LEDs, to achieve
precise estimation in an indoor VLP system.

When utilizing the conventional repeated unit cells method-
ology, the ML methods outperform, as expected, the simple

Fig. 6. XGBoost comparison performance: (a) aRRMSE, (b) Time.

star-shaped configuration consisting of four fixed LEDs. The
accuracy is enhanced as the number of LEDs (inputs to the
ML models) increases, up to 53%, at the cost of computation
time, as there is an increase of up to 10 times.

The Nyström kernel approximation method can achieve
better results than repeated cell methodologies with seven
and ten LEDs, and similar results with the more complex
13 input LED methodology, with a shorter computation time,
as observed in Tables III and IV. This methodology can
address the ill-posed task of precise 3D-position prediction
using a restricted set of input features within the ML models,
without the need to use more than four input RSS values,
thus reducing the computation time and complexity. To see
if the suggested Nyström kernel approximation method works
in other situations, Fig. 7 shows how well the method works
for XGBoost (in terms of aRRMSE) as the training data set
grows. The aRRMSe of the Nyström method is significantly
reduced compared to the conventional four-LED approach, for
small training samples. We notice that the Nyström method
achieves at least 2cm lower aRRMSE for all possible training
sizes, showcasing its superior performance, even for smaller
training datasets.

The temporal metrics pertinent to our experimental results
primarily reflect offline processing periods necessary for the
training of ML algorithms and initial data preprocessing. These
foundational stages are crucial for the precise calibration and
systematic configuration of the system prior to its deployment.
In contrast, online processing periods, which are essential for
applications requiring immediate system responses such as
navigational systems or real-time monitoring, are characterized
by the latency from data capture to positional computation in
operational environments. While the scope of this study did
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TABLE V
REPEATED CELLS APPROACH

Fig. 7. XGBoost comparative performance vs training dataset size with (blue
line) and without (red line) Nyström approximation.

not encompass these online processing metrics, they remain
critical for assessing the practical effectiveness and real-world
applicability of the system in dynamic environments.

Both the conventional repeated cell methodology and the
Nyström methodology for all ML models provide aRRMSE
values below 10 cm, which is a satisfactory result for a multi-
output problem [43].

The findings of our work suggest that Nyström kernel
approximation method combined with ML approaches can
offer highly accurate 3D localization prediction in an indoor
VLP system with much lower computation time and complex-
ity than conventional methods. Repeated cells methodology
can also provide accurate results when utilizing ML methods
in exchange for a longer processing period. All approaches,
however, can offer highly accurate 3D position estimations
with respect to computation complexity and time.

However, our work has certain limitations. First, a lot of
data pre-processing is required to create the database of the
RSS values for each scenario. Furthermore, deep learning
(DL) models are not included in this comparative study,
but complicated DL and ML models could offer increased
accuracy in 3D position estimation. Additionally, each ML
model needs to be fine-tuned for different RSS inputs and
topologies, increasing the computation cost and time for
this comparative study. Finally, the reported processing times
pertain solely to offline model training and data preprocessing,
excluding online processing crucial for real-time applications.
Subsequent studies are required to explore these metrics to
rigorously evaluate the system’s real-world performance.

VIII. CONCLUSION

In this work, various ML models are studied for the 3D
position estimation in an indoor VLP system for different
topology structures. Conventional repeated cells and Nyström

kernel approximation methods are used and compared to
achieve positioning accuracy below 8 cm for all ML models,
and smaller than 2 cm for the most accurate learner, namely
XGBoost. Both approaches can offer highly accurate 3D
location predictions, with respect to computation time.

Nyström kernel approximation achieves similar estimation
results compared to the more complex repeated cells method-
ology with more LED inputs. Thus, our approach provides
a solution to the challenging task of precise 3D position
prediction using a restricted set of input characteristics for
the ML models. The future work of this study includes
utilizing more complex ML and deep learning (DL) models.
Furthermore, we plan to apply other kernel approximations
such as Nyström expectation-maximization (EM) or Random
Fourier Features (RFF), and analyzing larger indoor spaces
for position estimation. Additionally, as part of future work,
exploration of input approximation and ML models can be
carried out for the estimation of both the 3D position and the
tilt angles of the PD receiver.
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