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Abstract—In this paper, we investigate a sensing-enabled inte-
grated space-air-ground (SAG) data collection network, in which
an unmanned aerial vehicle (UAV) can not only work singly to
sense data from multiple targets but also collaborate with a low-
earth orbit (LEO) satellite to collect communication data from
multiple users. Since the coverage of the UAV is much smaller
than that of the LEO satellite, we first determine the set of usable
users and targets for the UAV by analyzing the signal-to-noise
ratios between the UAV and the users and targets. Based on
this, we pose an optimization problem designed to maximize the
total amount of data collected in the network while satisfying
the constraints of UAV energy consumption, memory capacity,
and minimum amount of sensor data per target. Moreover,
considering that the network consists of three layers and the
UAV has dual functions of communication and sensing, this
problem is solved by jointly optimizing the scheduling of the
users’ data upload scheme, the UAV trajectory, and the allocation
of communication and sensing time. However, the formulated
problem is a mixed integer nonlinear programming (MINLP)
problem, so it is difficult to find the optimal solution. Therefore,
we further design an alternating iterative optimization algorithm
(AIOA) framework to find an appropriate solution. Specifically,
we alternately optimize the UAV trajectory, time allocation
strategy, and data upload schedule in each iteration. Finally,
simulation experiments validate the effectiveness of the AIOA
and its superiority over other benchmarks in terms of the amount
of data collected.

Index Terms—SAG network, UAV trajectory optimization, data
collection, communication and sensing.

I. INTRODUCTION

AS society accelerates its transformation to digitalization
and intelligence, sixth-generation (6G) technology is de-

veloping rapidly. 6G can provide ultra-high speed, low-latency,
and high-reliability communications to meet the requirements
of future 6G applications [1], [2]. Meanwhile, 6G technology
is also facilitating the development of Internet of Things
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(IoT) networks, leading to numerous IoT applications such as
smart environmental monitoring, efficient energy management,
and precision agriculture technologies [3]–[6]. However, most
6G-enabled IoT applications rely heavily on efficient and
reliable data collection and processing capabilities, making
data collection and analysis particularly critical. Although 6G
networks can offer unprecedented communication capabilities,
this challenge still exists in remote and topographically com-
plex areas. To meet this requirement, an integrated Space-Air-
Ground (SAG) network has been proposed as a promising
solution for data collection, with the unique advantage of
being able to integrate satellite and airborne platform systems
[7]–[9]. In particular, in remote areas that are difficult to
cover with traditional communication technologies, the SAG
network shows great potential [10].

Specifically, the integrated SAG network includes satel-
lites, airborne platforms and ground nodes, with satellites
and airborne platforms playing a central role in the SAG
network structure. On the one hand, satellite communications
are provided by geostationary orbit (GEO), medium earth orbit
(MEO) and low earth orbit (LEO) satellites, each of which has
its own specific service characteristics and application scenar-
ios [11], [12]. In particular, GEO satellites are mainly used for
broadcasting and weather monitoring, and MEO satellites are
suitable for navigation services. LEO satellites are particularly
suitable for the realization of SAG networks due to their low
latency and high speed data transmission caused by their low
orbits [13]–[15]. In this field, The StarLink project, recently
built by SpaceX, has been proposed to build a constellation
of a large number of small satellites in LEO to provide
high-speed broadband Internet services to users around the
world. In addition, the authors in [16] investigated downlink
transmission strategies for large-scale multiple-input multiple-
output (MIMO) LEO satellite communications systems. In
addition, the authors in [17] investigated the reliable per-
formance of downlink LEO satellite communication systems
and also investigated UAV-based cooperative transmission to
compensate for the large path loss caused by long transmission
distances.

While LEO satellites provide extensive coverage for global
connectivity, they still have limitations, such as high latency
compared to terrestrial communications. In response, UAVs
are being used as carriers for information acquisition, trans-
mission and processing, complementing and extending LEO
satellite communications. Taking advantage of UAV character-
istics such as lower latency, high mobility, rapid deployment,

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3459079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 23,2024 at 10:14:54 UTC from IEEE Xplore.  Restrictions apply. 



and line-of-sight (LoS) channels, UAVs can serve as relays
to effectively overcome the limitations of LEO satellites and
improve the overall performance of the SAG network. In
particular, UAVs can be rapidly deployed in targeted areas to
provide various transmission services, such as point-to-point
and wide-area data transmission services. When providing
services, UAVs can operate in two communication modes:
“hovering communication” and “flying communication”, de-
pending on whether the UAV is hovering or flying when
providing services. Although UAVs have such advantages and
benefit the SAG network, their limited battery capacity and
high energy consumption should be considered to provide
more sustainable services. To this end, the tradeoff between
UAV energy consumption and information throughput has
been extensively studied in the literature, such as [18], [19].
For example, the researchers in [19] aimed to minimize the
total energy consumption of the UAV while satisfying the
communication throughput requirements of the ground nodes.
Therefore, they formulated and addressed an optimization
problem involving complex considerations of UAV trajectory,
communication time allocation, and mission completion time.

In the recent vision of wireless communications, 6G will
not only provide ultra-high-speed, low-latency, high-reliability
communication services, but also extend to high-precision
sensing services [20]. However, as an important component
of 6G, the SAG network has seen less research in the area of
sensing, although there have been some studies exploring the
use of UAVs in sensing missions [21]–[23]. In particular, a
base station with dual-function radar communication (DFRC)
capability can not only provide communication services, but
also sense the environment, e.g. by collecting information on
the target’s position, speed, and shape, as well as information
on human posture from radar echoes [20], [24]. However, due
to limited resources, how to design DFRC schemes to balance
communication and sensing performance is still a challenge.
In this area, the UAV was designed to alternately transmit
communication signals and sensing signals to achieve DFRC
[25], [26]. In addition, the base station could transmit commu-
nication and sensing signals simultaneously to realize DFRC
[27], [28]. In addition, a dual-function beamforming matrix of
communication and sensing was designed to achieve DFRC
[29]. Although the difference exists in the implementation of
the aforementioned DFRC methods, the common goal of those
is to optimize the efficiency of communication while ensuring
the quality of sensing. Motivated by this, we consider a novel
integrated SAG network, where the UAV can provide both
communication and sensing services during flight.

In this paper, we study a sensing-enabled integrated SAG
data collection network, where the UAV can not only work
singly to sense data from multiple targets but also collaborate
with the LEO satellite to collect communication data from
multiple users. By taking into account that the service coverage
of the UAV is much smaller than that of the LEO satellite, we
first determine the set of serviceable users and targets for the
UAV based on the signal-to-noise ratios (SNRs) between the
UAV and users and targets. From this, we pose an optimization
problem designed to maximize the total amount of data

collected in the network, while simultaneously meet the con-
straints of the UAV energy consumption, memory capacity, and
minimum amount of sensing data per target. Moreover, consid-
ering that the network encompasses three layers and the UAV
has dual functions of communication and sensing, this problem
can be solved by jointly optimizing the scheduling of the
users’ data uploading scheme, UAV trajectory, and allocation
of communication and sensing time. However, the problem is a
mixed integer nonlinear programming (MINLP) problem that
is difficult to solve. To deal with the problem, we propose a
two-stage alternating iterative optimization algorithm (AIOA)
framework to find a proper solution. Specifically, in the first
stage, we employ the successive convex approximation (SCA)
algorithm to optimize the UAV trajectory. In the second stage,
with fixed UAV trajectory, the block coordinate descent (BCD)
technique is utilized to obtain a time allocation strategy and
users’ data upload scheme. Eventually, simulation experiments
validate the effectiveness of the AIOA and its superiority
compared to other benchmarks regarding the amount of data
collected. The main contributions of this paper are as follows:

• We investigate a sensing-enabled integrated SAG data
collection network, in which the UAV can not only work
singly to sense data from multiple targets but also col-
laborate with the LEO satellite to collect communication
data from multiple users.

• We design an optimization problem to maximize the
total amount of data collected in the network, while
simultaneously meet the constraints of UAV. We solve this
problem by jointly optimizing the scheduling of the users’
data uploading scheme, UAV trajectory, and allocation of
communication and sensing time.

• We propose an effective two-stage AIOA framework to
find a proper solution to the formulated problem. Specif-
ically, in the first stage, we employ the SCA algorithm to
optimize the UAV trajectory. Once the UAV trajectory
is determined, the BCD technique is utilized in the
second stage to obtain a strategy of time allocation and
scheduling of users’ data upload scheme.

• We conduct extensive simulation experiments validate the
effectiveness of the AIOA and its superiority compared to
other benchmarks regarding the amount of data collected.

II. SYSTEM MODEL

In this section, we first introduce the network model of SAG
networks, and then describe the data collection in multi-user
multi-target scenarios. After that, we detail the data collections
of communication and sensing.

A. Network Model

As shown in Fig. 1, we consider an integrated SAG data col-
lection network, where the UAV and the LEO satellite are used
to cooperatively collect data from N communication users
(CUs) and M sensing targets. Let C ≜ {c1, · · · , cn, · · · , cN}
and S ≜ {s1, · · · , sm, · · · , sM} denote the sets of CUs and
sensing targets, respectively. In this network, the memory and
energy limited UAV is sent to collect data from user cn and
target sm according to a designed trajectory. Specifically, two
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Fig. 1. Illustration of SAG networks for the collection of
communication data and sensing data.

types of data need to be collected, namely, communication
data and sensing data. For the communication data collection,
the UAV serves as an air base station or relay to assist the LEO
satellite in data collection, i.e. cn can upload its data directly
to the LEO satellite or indirectly through the UAV. For sensing
data collection, the UAV serves as a radar to sense data from
the target sm, such as information about the target’s position,
velocity, and shape, as well as information about the target’s
attitude. Although the UAV shows great flexibility in data
collection, only some users and targets can establish wireless
connections with the UAV for data collection due to limited
service coverage. Let C′ ⊆ C and S ′ ⊆ S denote the subsets of
users and targets of the UAV’s service coverage, respectively.
For users outside the set C′, they can only upload data directly
to the LEO satellite. For targets outside the set S ′, the UAV
will not be able to collect data from them.

In this network, we assume that user cn and target sm
are stationary 1 on the ground while the UAV is flying at
a constant altitude H [30]. Consequently, the positions of the
user cn, the target sm, and the UAV are modeled using the
two-dimensional Cartesian coordinate. Let an = [xn, yn]

T ,
bm = [xm, ym]

T , and q = [xu, yu]
T denote the coordinates

of user cn, target sm, and UAV, respectively. Note that the
positions of all users and targets are known in advance to fa-
cilitate the design of the UAV trajectory. Subsequently, the data
collection in multi-user multi-target scenarios is presented.

B. Data Collection in Multi-user Multi-target Scenarios

We adopt a path discretization approach to model the
UAV’s flight state [19], which requires fewer variables to
represent the flight state compared to the conventional time-
slot division method. As illustrated in Fig. 2, the UAV’s
flight distance is composed of K + 2 waypoints defined as

1In this paper, we assume that users and targets are stationary, simplifying
the system model. Dynamic scenarios may introduce some changes on the
system, such as the mobility management, which involves the localization and
movement prediction of users and targets. In addition, dynamic scenarios may
need real-time optimization for UAVs in the system, posing higher demands
on the problem formulation and algorithmic complexity. On the other hand,
it should be noted that the system optimization in dynamic scenarios may
involve the analysis and optimization in static scenarios of this work, which
can serve as an important reference. In future work, we will investigate such
dynamic scenarios involving unknown trajectories of users and targets.

{
qk = [xu

k , y
u
k ]

T | 0 ≤ k ≤ K + 1, k ∈ Z+

}
, where qk is the

coordinate of the k-th waypoint, and q0 and qK+1 denote the
known initial and final waypoints of UAV, respectively. Among
the K + 2 waypoints, there are K + 1 line segments, and we
use ∆k = qk+1 − qk to denote the k-th segment. Similar to
the conventional time-slot division method, the UAV remains
stationary at segment ∆k, and it should meet the distance
constraint, given by

∥∆k∥ ≤ min {dmax, vmaxtk} , (1)

where ∥·∥ returns the Euclidean distance, dmax represents
the maximum distance in each segment, vmax is the UAV
maximum speed, and tk denotes the duration of segment ∆k.
For each segment, there are up to four schemes for data
collection, which are presented as follows:

• Upload to UAV (UAV scheme): User cn uploads its data
to the UAV, and the data is stored in the UAV.

• Upload to LEO satellite (Direct scheme): User cn directly
uploads its data to the LEO satellite.

• Upload to LEO satellite (Relaying scheme): User cn
uploads its data to the LEO satellite with the help of
the UAV.

• Sensed by UAV (Sensing scheme): The UAV actively
sends perception signals to the sensing target sm and
acquires sensing data from the echoes.

Note that for each segment of the UAV trajectory, time division
multiple access (TDMA) is employed among the N CUs and
M sensing targets. Let βn,k and αm,k denote the time allocated
for the user cn to upload data, and that allocated for the UAV
to sense the target sm at the segment ∆k, respectively. Then,
the time allocation constraint is given by∑

sm∈S
αm,k +

∑
gn∈C

βn,k ≤ tk. (2)

Additionally, in one flight, the UAV trajectory Q is com-
prised of the K + 2 waypoints, given by

Q = [q0, · · · ,qk, · · · ,qK+1] . (3)

At the segment ∆k, the distances from the UAV to user cn
and that to target sm are, respectively, written as

dn,k =

√
∥qk − an∥2 +H2, (4)

dm,k =

√
∥qk − bm∥2 +H2. (5)

Note that the coordinate of segment ∆k is defined as the
coordinate of its initial position. In the next subsection, we
detail the data collections of communication and sensing.

C. Data Collections of Communication and Sensing

Recall that there are up to four data collection schemes on
the network in each segment, with the UAV and LEO satellite
collecting data in TDMA mode, meaning that each user has
only one time slot. For the first three data collection schemes,
each user schedules up to one scheme to upload data. To
simplify the description, we use three binary variables xI

n,k,
xII
n,k, and xIII

n,k to represent these three schemes. For example,
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Fig. 2. Data collection in multi-user multi-target scenarios.

xI
n,k = 1 means that the UAV scheme is used for user cn

to upload data at segment ∆k, or not otherwise. The same
logic applies to the other two schemas. So there is a natural
constraint, given by

xI
n,k + xII

n,k + xIII
n,k ≤ 1,

xj
n,k ∈ {0, 1} , j ∈ {I, II, III} .

(6)

Next, we will discuss in detail the data collection process
through user upload and UAV sensing.

1) Upload to UAV (UAV scheme) with xI
n,k = 1: In this

scheme, the data is uploaded to the UAV by user cn and stored
at the UAV. Then, the amount of data collected is given by

RI
n,k = βn,kBI log2

(
1 +

pn |hn,k|2

σ2

)
, (7)

where BI represents the channel bandwidth of the cn-UAV
link, pn is the transmit power of user cn, σ2 is the variance
of the additive white Gaussian noise (AWGN), and |hn,k|2
represents the instantaneous channel gain between user cn and
the UAV at segment ∆k. According to [31], we model the
wireless channel as a LoS link, and the instantaneous channel
gain is

|hn,k|2 =
N0

d2n,k
, (8)

where N0 = GtGcλ
2

(4π)2
is the reference channel gain per unit

distance for the CU-UAV link, in which Gt and Gc denote
the transmit and receive antenna gains, respectively, and λ
represents the wavelength.

2) Upload to LEO satellite (Direct scheme) with xII
n,k = 1:

In this scheme, user cn directly uploads its data to the LEO
satellite. For this scheme, the achievable upload data rate of
user cn at segment ∆k is obtained as

rII
n,k = BII log2 (1 + f(c1)pn) , (9)

where BII is the channel bandwidth of the cn-LEO satellite
link, and f(c1) represents the fading coefficient under channel
condition c1 [32]. Here, we adopt the three-state condition
model [33], where f(c) equals 1.0, 3.46, and 5.03, correspond-
ing to the bad, medium, and good conditions depending on
the weather, respectively. In this scheme, the amount of data
collected is RII

n,k = βn,kr
II
n,k.

3) Upload to LEO satellite (Relaying scheme) with xIII
n,k =

1: In this scheme, user cn uploads its data to the LEO satellite
with the help of the UAV, where the UAV serves as a half-
duplex decode-and-forward (DF) relay to forward the user’s
data to the LEO satellite. For this scheme, the achievable
upload data rate between user cn and the LEO satellite at
segment ∆k is

rIII
n,k =

1

2
min

(
BI log2

(
1 +

pn |hn,k|2

σ2

)
, ru

)
, (10)

with
ru = BIII log2 (1 + f(c2)pu) , (11)

where ru is the achievable rate of the UAV-LEO satellite link,
BIII and c2 are the corresponding channel bandwidth of the
satellite and channel condition of the UAV-LEO satellite link,
and 1

2 comes from the two-phase data transmission. Although
the upload data rate of this scheme depends on the minimum
upload rate of the two-hop link, in practice, the first-hop link
tends to be worse than the second-hop link in terms of upload
data rate. This often happens as the satellite communication
can utilize the microwave band, which has a wide available
bandwidth, thus BIII is much larger than BI [12], [34]. There-
fore, the upload data rate under this scheme is mainly limited
by the first hop, i.e., rIII

n,k = 1
2BI log2

(
1 +

pn|hn,k|2
σ2

)
, leading

to that the amount of data collected is RIII
n,k = βn,kr

III
n,k.

Comparing UAV scheme and Relaying scheme, we can see
that for this collaborative data collection network, if a user is
within the set C′ and meanwhile the UAV has enough memory
to store the data, then UAV scheme tends to be used for data
collection because the data rate of UAV scheme is about twice
that of Relaying scheme. On the contrary, when the amount of
data stored in the UAV reaches its capacity limit, the Relaying
scheme tends to be used for data collection.

4) Sensed by UAV (Sensing scheme): In this scheme, the
UAV actively sends perception signals to the sensing target and
acquires sensing data from the echoes. In this way, the radar
estimation information rate is used to measure the sensing
performance [24], [27], [28]. According to [24], the amount
of data sensed from target sm at segment ∆k is expressed as

Rs
m,k =

1

2
αm,kBI log2

1 +
2BIµγ

2B2
I σ

2
preps

∣∣∣hs
m,k

∣∣∣2
σ2


δ

µBI

,

(12)
where ps is the UAV sensing power, µ is the radar pulse
duration, γ is a constant determined by the shape of the radar
waveform’s power spectral density, σ2

pre is the variance of the
predicted radar return, and δ is the radar duty factor. Besides,∣∣∣hs

m,k

∣∣∣2 is the channel gain of the radar detection link from
target sm to the UAV at segment ∆k, given by∣∣hs

m,k

∣∣2 =
N1

d4m,k

, (13)

where N1 = GtGrλ
2ϵ

(4π)3
is the reference channel gain per unit

distance of the UAV-target-UAV link similar to (8), in which
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Gr is the UAV radar receiver antenna gain and ϵ is the radar
cross-section [21].

III. PROBLEM FORMULATION

In this section, we elaborate on the optimization problem,
along with relevant constraints, aimed at maximizing the total
amount of data collected.

A. Constraint Analysis

First, we detail the previously mentioned subsets C′ and S ′

based on the received SNR. Whether a user or target belongs
to the C′ or S ′ subset depends on whether the corresponding
received signal-to-noise ratio satisfies a predefined threshold.
Mathematically, the received communication SNR Φc

n,k, from
the user cn ∈ C′ to the UAV at segment ∆k, should satisfy

Φc
n,k =

pn |hn,k|2

σ2
≥ Φc

th, (14)

where Φc
th is the predetermined communication SNR thresh-

old. Equivalently, (14) can be expressed as

∥qk − an∥2 ≤ N0pn
Φc

thσ
2
−H2. (15)

Thus, at segment ∆k, subset C′ can be given by

C′
k =

{
gn ∈ C | ∥qk − an∥2 ≤ N0pn

Φc
thσ

2
−H2

}
. (16)

To facilitate the description of all segments, we denote the
above relationship as a binary variable cn,k, given by

cn,k =

{
1, If ∥qk − an∥2 ≤ N0pn

Φc
thσ

2 −H2

0, Else
(17)

where cn,k = 1 indicates that user cn can upload its data by
the assistance of the UAV at segment ∆k, while cn,k = 0
indicates that the UAV cannot serve user cn. In sight of the
above, (6) can be rewritten as{

xI
n,k + xII

n,k + xIII
n,k = 1, If cn,k = 1

xI
n,k = 0, xII

n,k = 1, xIII
n,k = 0, Else

xj
n,k ∈ {0, 1} , j ∈ {I, II, III} .

(18)

Similar to (14), the sensing SNR Φs
m,k, from the UAV to

target sm ∈ S ′ and back to the UAV at segment ∆k, should
satisfy

Φs
m,k =

N2

∣∣∣hs
m,k

∣∣∣2
σ2

≥ Φs
th, (19)

with
N2 = 2BIµγ

2B2
I σ

2
preps, (20)

where Φs
th is the predetermined sensing SNR threshold. And

(19) is equivalent to

∥qk − bm∥2 ≤

√
N2N1

Φs
thσ

2
−H2, (21)

and thus, the subset S ′
k is given by

S ′
k =

{
sm ∈ S | ∥qk − bm∥2 ≤

√
N2N1

Φs
thσ

2
−H2

}
. (22)

Similar to (17), we use a binary variable sm,k to represent the
above relationship of all segments, given by

sm,k =

{
1, If ∥qk − bm∥2 ≤

√
N2N1ps

Φs
thσ

2 −H2

0, Else
(23)

where sm,k = 1 indicates that the UAV is able to sense data
from sm at segment ∆k, or fails otherwise.

Second, in order to ensure fairness among users, i.e., each
user should achieve a minimum upload data amount Qn,
denoted as (24), which is at the top of the next page. Moreover,
in practice, the radar estimation information rate is normally
lower than the upload data rate [24]. To ensure that a sufficient
amount of data sensed is collected, the amount of data sensed
per target needs to satisfy a constraint, which is given by

K∑
k=0

sm,kR
s
m,k ≥ Qs

m, (25)

where Qs
m is the minimum sensing data amount per target.

Besides, there is a time limit for the whole data collection
process. In other words, there is a maximum flight time
limit for the UAV. Specifically, the UAV’s prolonged flight
not only depletes the energy it carries, leading to loss of
control and safety accidents, but also increases the temperature
of the UAV’s fuselage, affecting the functioning of its key
components, and in turn reducing flight stability. Thus, the
time limit is given by

K∑
k=0

tk ≤ Tth, (26)

where Tth is the duration of data collection.
In particular, we should emphasize the limitations of the

UAV in terms of power consumption and energy consumption
and storage capacity. On the one hand, due to the finite battery
capacity in practice, UAVs are not capable of continuous flight.
Specifically, the energy consumption of UAVs mainly comes
from three aspects: flight, communication, and sensing, of
which flight is the largest contributor. Therefore, the other two
aspects of energy consumption can be ignored [21], and the
constraint on the total energy consumption of the UAV should
follow the mathematical form given by

K∑
k=0

tkp
f
k ≤ Eth, (27)

where Eth is the threshold of the UAV energy consumption.
pfk indicates the propulsion power for flight during segment
∆k [19], given by

pfk = P0

(
1 +

3v2k
U2

tip

)
+ Ps

(√
1 +

v4k
4v40

− v2k
2v20

)1/2

+
1

2
d0ϖ0s0A0v

3
k,

(28)
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K∑
k=0

(
cn,k

(
xI
n,kR

I
n,k + xII

n,kR
II
n,k + xIII

n,kR
III
n,k

)
+ (1− cn,k)R

II
n,k

)
≥ Qn. (24)

where vk ≜ |qk+1−qk|
tk

represents the UAV speed at segment
∆k. Notations P0 and Utip denote the blade profile power
of hovering status and tip speed of the UAV rotor blade,
respectively. Moreover, Ps and v0 represent the blade induced
power and mean rotor induced velocity in UAV hovering sta-
tus, respectively. Additionally, d0, s0, ϖ0, and A0 correspond
to the fuselage drag ratio, rotor robustness, air density, and
rotor disk area, respectively. On the other hand, it should
be confirmed that the total amount of data uploaded by the
users (when xI

n,k = 1) and sensed from the targets will not
exceed the memory capacity of the UAV. This can be done by
satisfying the constraint, given by

Qu =

K∑
k=0

(
N∑

n=1

cn,kx
I
n,kR

I
n,k +

M∑
m=1

sm,kR
s
m,k

)
≤ Qth

u ,

(29)
where Qth

u is the threshold of the UAV memory capacity.
The initial and final positions in a UAV flight trajectory
are assumed to be known and are denoted by qI and qF ,
respectively, given by

q0 = qI , qK+1 = qF . (30)

Overall, all constraints in the collaborative SAG data col-
lection network have been described, and the main notations
are summarized in Table I for readability.

B. Problem Formulation

We aim to maximize the total amount of data collected in
the SAG data collection network, denoted by Qsys as follows,

Qsys =

K∑
k=0

N∑
n=1

cn,k
(
xI
n,kR

I
n,k + xII

n,kR
II
n,k + xIII

n,kR
III
n,k

)
︸ ︷︷ ︸

Q1

+

K∑
k=0

N∑
n=1

(1− cn,k)R
II
n,k︸ ︷︷ ︸

Q2

+

K∑
k=0

M∑
m=1

sm,kR
s
m,k︸ ︷︷ ︸

Q3

.

(31)
Note that Qsys consists three parts. The first part Q1 represents
the total amount of data uploaded from users within the set
C′, the second part Q2 represents the total amount of data
uploaded from users out of set C′, and the third part Q3

represents the total amount of data sensed by the UAV.
Based on the previous analysis, we design a system opti-

mization problem with the objective of maximizing the amount
of data collected [35]–[37]. This involves optimizing the

TABLE I: Main Notations Summary

Notation Definition
C, S Set of communication users and sensing

targets
C′, S′ Set of users and targets within UAV service

coverage
N , M Number of communication users and sens-

ing targets
cn, sm n-th communication user and m-th sensing

target
∆k k-th segment
an, bm, qk Coordinate of user cn, target sm, and the

UAV at segment ∆k

H UAV flight altitude
K + 2 Number of waypoints
dmax Maximum distance of each segment
vmax UAV maximum speed
tk Duration of segment ∆k

βn,k , αm,k Time allocated variables
Q UAV trajectory
dn,k , dm,k Distance from the UAV to user cn and that

to target sm at segment ∆k

xI
n,k , xII

n,k , xIII
n,k Scheme scheduling variables

RI
n,k , RII

n,k , RIII
n,k Amount of data collected from cn at seg-

ment ∆k with different scheduling
BI, BII, BIII Channel bandwidth
pn, ps, pu Transmit power
hn,k , hs

m,k Channel parameter of the UAV-cn link and
the UAV-sm link

σ2 Noise power
N0, N1 Reference channel gain per unit distance for

the CU-UAV link and UAV-target-UAV link
f(c) Fading coefficient of satellite link under

channel condition c
Φc

th, Φs
th Predetermined communication and sensing

SNR threshold
cn,k , sm,k Indicator variable about sets C′ and S′

Qn, Qs
m, Minimum upload data amount per user and

minimum sensing data amount per target
Qth

u , Qsys UAV memory capacity and the total amount
of data collected

Tth, Eth Duration of data collection and threshold of
the UAV energy consumption

qI , qF Initial and final positions in the UAV flight
trajectory

UAV trajectory, time allocation and data upload scheduling,
formulated by

P0 : max
V

Qsys

s.t. (1), (2), (17), (18), (23),

(24), (25), (26), (27), (29), (30),

(32)

where V =
{
qk, tk, cn,k, sm,k, αm,k, βn,k, x

I
n,k, x

II
n,k, x

III
n,k

}
is the set of the optimization variables, in which 0 ≤ k ≤
K + 1, cn ∈ C, and sm ∈ S.

After observing the optimization problem P0, we notice that
there is coupling among the variables, resulting in a non-
convex problem. In addition, the optimization of the UAV
trajectory increases the complexity of the problem, and the
inclusion of discrete variables further complicates the analysis.
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As a result of these factors, the P0 problem evolves into
a MINLP problem. Several approaches have been proposed
to solve such problems, the most recent of which is the
deep reinforcement learning (DRL) algorithm [38]. However,
although the DRL algorithm shows unrivaled potential in
handling such problems, the algorithm has several challenges
in both the design phase and the training phase. Specifically, in
the design phase of the algorithm, it faces complicated design
problems regarding the huge state space and action space,
while the sparse reward design problem is also a challenge.
In addition, the design of the UAV trajectory also becomes a
hurdle. In the training phase of the algorithm, it also will meet
the problems of high training cost and unstable training [39].
Therefore, we develop an AIOA based on the BCD technique
to solve the optimization problem P0, which will be detailed
in the next section.

IV. PROPOSED METHOD

In this section, we first utilize the BCD technique to
decompose the problem P0, resulting into two subproblems.
Next, we analyze each subproblem individually, and based on
these analyses, we proceed to design the AIOA framework to
solve the problem P0.

A. Problem Decomposition

In this subsection, we decompose the original problem P0
by using the BCD technique into two subproblems P1 and P2,
given by

P1 : max
V1

Qsys

s.t. (1), (2), (17), (18), (23), (24),

(25), (26), (27), (29), (30),

(33)

where V1 = {tk,qk, cn,k, sm,k}, and

P2 : max
V2

Qsys

s.t. (2), (18), (24), (25), (29),
(34)

where V2 =
{
αm,k, βn,k, x

I
n,k, x

II
n,k, x

III
n,k

}
. Note that sub-

problem P1 focuses on optimizing the UAV trajectory with a
given V2 and obtains a V1. Then, the subproblem P2 focuses
on optimizing the data upload scheduling scheme and time
allocation strategy with a given V1 and obtains a V2. By
alternately iterating these two subproblems, we can efficiently
find a proper solution to the problem P0.

Next, we detail the solution process for P1 and P2.

B. Solutions

1) Solving P1: In P1, we observe that the variables cn,k and
sm,k are not only binary but also coupled with qk, while the
objective function and constraints in (24), (25), (27), and (29)
are non-convex, making it very difficult to solve. To address
P1, we first employ the big-M method to reconstruct the non-
convex parts [40], and then solve the non-convex constraints
by the SCA algorithm.

We start to solve P1 with restructuring the constraints in
(17) and (23). Specifically, to use big-M method with the

constraints in (17) and (23), we introduce two slack variables
ξ1,n,k and ξ2,m,k, such that

ξ1,n,k ≥ ∥qk − an∥2 , ξ2,m,k ≥ ∥qk − bm∥2 , (35)

and the constraints in (17) and (23) are converted to

cn,k =

{
1, If ξ1,n,k ≤ N0pn

Φc
thσ

2 −H2

0, Else
(36)

and

sm,k =

{
1, If ξ2,m,k ≤

√
N2N1

Φs
thσ

2 −H2

0. Else
(37)

Then, according to the big-M method, the constraints in (36)
and (37) can be rewritten as

ξ1,n,k −M(1− cn,k) ≤ N3 < ξ1,n,k +Mcn,k,

ξ2,m,k −M(1− sm,k) ≤ N4 < ξ2,m,k +Msm,k,

cn,k ∈ {0, 1}, sm,k ∈ {0, 1},
(38)

where

N3 =
N0pn
Φc

thσ
2
−H2, N4 =

√
N1N2

Φs
thσ

2
−H2, (39)

and M is a sufficiently large constant.
Second, based on the converted constraints in (35) and (38),

we can restructure and handle the non-convex functions in
P1. Specifically, for the non-convex UAV capacity constraint
in (29), we introduce another two slack variables ξ3,n,k and
ξ4,m,k, such that

ξ3,n,k ≥ xI
n,kR

I
n,k

= xI
n,kβn,kB1 log2

1 +
pnN0

σ2
(
∥qk − an∥2 +H2

)
 ,

(40)

and

ξ4,m,k ≥ Rs
m,k

= αm,k
δ

2µ
log2

1 +
N2N1

σ2
(
∥qk − bm∥2 +H2

)2
 .

(41)

Then, the constraint in (29) can be rewritten as
K∑

k=0

(
N∑

n=1

cn,kξ3,n,k +

M∑
m=1

sm,kξ4,m,k

)
≤ Qth

u . (42)

By employing the big-M method, (42) can be rewritten as

K∑
k=0

(
N∑

n=1

ξ5,n,k +

M∑
m=1

ξ6,m,k

)
≤ Qth

u ,

ξ3,n,k −M (1− cn,k) ≤ ξ5,n,k ≤ ξ3,n,k +M (1− cn,k) ,

ξ4,m,k −M (1− sm,k) ≤ ξ6,m,k ≤ ξ4,m,k +M (1− sm,k) ,

−Mcn,k ≤ ξ5,n,k ≤ Mcn,k,

−Msm,k ≤ ξ6,m,k ≤ Msm,k,
(43)

where ξ5,n,k and ξ6,m,k are auxiliary variables. However, the
constraint in (29) is still non-convex due to newly introduced
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constraints in (40) and (41). To handle this issue, we introduce
slack variables ξ7,n,k and ξ8,m,k to (40) and (41), such that

ξ7,n,k ≤ ∥qk − an∥2 +H2, (44)

ξ8,m,k ≤
(
∥qk − bm∥2 +H2

)2
, (45)

and the constraints in (40) and (41) can be rewritten as

ξ3,n,k ≥ xI
n,kβn,kB1 log2

(
1 +

pnN0

σ2ξ7,n,k

)
, (46)

ξ4,m,k ≥ αm,k
δ

2µ
log2

(
1 +

N2N1

σ2ξ8,m,k

)
. (47)

It is not difficult to find that the constraint in (29) has been
decoupled and the constraints except (44) and (45) are convex.
While, in the non-convex constraints (44) and (45), the right-
hand-side (RHS) of each constraint is a convex function with
respect to qk, and the global concave lower bound of the RHS
can be obtained based on any given localized point qi

k in the
i-th iteration by the SCA algorithm. Specifically, by using the
fact that first-order Taylor expansion is a global lower bound
of a convex function, the lower bounds of the RHS of (44)
and (45) can be denoted as

∥qk − an∥2 +H2 ≥
∥∥qi

k − an
∥∥2 +

2
(
qi
k − an

)T (
qk − qi

k

)
+H2 ≥ ξ7,n,k,

(48)

and(
∥qk − bm∥2 +H2

)2
≥
(∥∥qi

k − bm

∥∥2 +H2
)2

+

4
(∥∥qi

k − bm

∥∥2 +H2
) (

qi
k − bm

)T (
qk − qi

k

)
≥ ξ8,m,k.

(49)
For the non-convex constraints in (24) and (25) and non-

concave objective function, we use the same method men-
tioned above. Specifically, we introduce slack variables, such
as

τ1,n,k ≤ xI
n,kR

I
n,k + xII

n,kR
II
n,k + xIII

n,kR
III
n,k

=

(
xI
n,k +

1

2
xIII
n,k

)
βn,kB1×

log2

1 +
pnN0

σ2
(
∥qk − an∥2 +H2

)


+ xII
n,kR

II
n,k ≜ Rn,k,

(50)

and
τ2,m,k ≤ Rs

m,k

=
1

2
αm,k

δ

µ
log2

1 +
N2N1

σ2
(
∥qk − bm∥2 +H2

)2
 .

(51)
With the above manipulations, the non-convex constraints in
(24) and (25), and non-concave objective function of problem
P1 can be rewritten as

K∑
k=0

(
cn,kτ1,n,k + (1− cn,k)R

II
n,k

)
≥ Qn, (52)

K∑
k=0

sm,kτ2,m,k ≥ Qs
m, (53)

and

K∑
k=0

N∑
n=1

(
cn,kτ1,n,k + (1− cn,k)R

II
n,k

)
+

K∑
k=0

M∑
m=1

sm,kτ2,m,k ≜ Q⌣
sys.

(54)

Similar to (42), we can rewrite (52), (53) and Q̂sys by the
big-M method as


K∑

k=0

τ3,n,k ≥ Qn,

τ1,n,k −M (1− cn,k) ≤ τ3,n,k ≤ τ1,n,k +M (1− cn,k) ,

RII
n,k −Mcn,k ≤ τ3,n,k ≤ RII

n,k +Mcn,k,
(55)


K∑

k=0

τ4,m,k ≥ Qs
m,

τ2,m,k −M (1− sm,k) ≤ τ4,m,k ≤ τ2,m,k +M (1− sm,k) ,

−Msm,k ≤ τ4,m,k ≤ Msm,k,
(56)

and

K∑
k=0

N∑
n=1

τ3,n,k +

K∑
k=0

M∑
m=1

τ4,m,k ≜ Qlb
sys, (57)

where τ3,n,k and τ4,m,k are auxiliary variables. Although
we have achieved the decoupling of variables by reconstruct-
ing (24), (25) and the objective function through the big-M
method, the newly introduced constraints in (50) and (51) are
still non-convex. We adopt the SCA algorithm to address this
issue. Specifically, similar to (48) and (49), the lower bounds
are obtained by using the first-order Taylor expansion [19],
and then (50) and (51) can be rewritten as

Rn,k ≥
(
xI
n,k +

1

2
xIII
n,k

)
βn,kBI×(

N5 −N6

(
∥qk − an∥2 −

∥∥qi
k − an

∥∥2))
+ xII

n,kR
II
n,k ≥ τ1,n,k,

(58)

and

Rs
m,k ≥ αm,k

δ

2µ
×(

N7 −N8

(
∥qk − bn∥2 −

∥∥qi
k − bn

∥∥2)) ≥ τ2,m,k,

(59)
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where

N5 = log2

(
1 +

pnN0/σ
2∥∥qi

k − an
∥∥2 +H2

)
,

N6 =
pnN0/σ

2/
(∥∥qi

k − an
∥∥2 +H2

)2
ln 2

(
1 + pnN0/σ2

∥qi
k−an∥2

+H2

) ,

N7 = log2

1 +
N2N1/σ

2(∥∥qi
k − bn

∥∥2 +H2
)2
 ,

N8 =
2N2N1/σ

2/
(
ln 2

(∥∥qi
k − bn

∥∥2 +H2
))

(
N2N1/σ2 +

(∥∥qi
k − bn

∥∥2 +H2
)2) .

(60)

Therefore, the variables in the constraints (24), (25), (29)
and objective function have been decoupled, and the derived
non-convex constraints have been solved by the SCA algo-
rithm. However, the problem P1 remains intractable because of
the existence of the UAV energy constraint in (27). Fortunately,
an effective solution to this problem has been proposed in [19].
Specifically, a relaxed upper bound has been used in the second
term of (27), such as

Gk ≥ tk

(√
1 +

v4k
4v40

− v2k
2v20

)1/2

=

√√√√√
t4k +

∥qk+1 − qk∥4

4v40
− ∥qk+1 − qk∥2

2v20
,

(61)

where Gk is a slack variable, and the constraint in (27) is
rewritten as

K∑
k=0

P0tk

(
1 +

3v2k
U2

tip

)
+ PsGk +

1

2
d0ϖ0s0A0tkv

3
k ≤ Eth.

(62)
While, (61) is equivalent to

G2
k +

∥qk+1 − qk∥2

v20
≥ t4k

G2
k

. (63)

For the non-convex constraint in (63), the left-hand-side (LHS)
is a convex function with respect to Gk and qk, and RHS is
a convex function with respect to tk and Gk. Thus, the global
lower bound of the LHS in (63) can be given by the first-order
Taylor expansion, which is

G2
k +

∥qk+1 − qk∥2

v20
≥
(
Gi

k

)2
+ 2Gi

k

(
Gk −Gi

k

)
+

1

v20

(
2
(
qi
k+1 − qi

k

)T
(qk+1 − qk)−

∥∥qi
k+1 − qi

k

∥∥2)
≥ t4k

G2
k

,

(64)
where Gi

k is the given localized point in the i-th iteration.

Algorithm 1: The proposed UAV trajectory optimiza-
tion algorithm.

1 Input V2;
2 Initialize iterative number i = 0, convergence

accuracy θ1, and objective value Qi
sys = 0;

3 Initialize UAV trajectory {qk} as
{
qi
k

}
;

4 Initialize {Gk} as
{
Gi

k

}
;

5 repeat
6 i = i+ 1;
7 Solve the problem P1-1 with the given V2,{

qi−1
k

}
, and

{
Gi−1

k

}
, and denote partial solutions

as {q∗
k} and {G∗

k};
8 Compute Qlb

sys as Qlb,i
sys ;

9 Let
{
qi
k

}
= {q∗

k} and
{
Gi

k

}
= {G∗

k};
10 until

∣∣Qlb,i
sys −Qlb,i−1

sys

∣∣ /Qlb,i
sys ≤ θ1;

11 return
{
tk,q

i
k, cn,k, sm,k

}

In the end, problem P1 can be rewritten as follows,

P1-1 : max
V1−1

Qlb
sys

s.t. (1), (2), (18), (26), (30), (35), (38),

(43), (46)− (49), (55)− (59), (62), (64),

(65)

where V1−1 = {tk,qk, cn,k, sm,k, ξ1 − ξ8, τ1 − τ4, Gk}.
Overall, problem P1 has been transformed from a MINLP

problem to a mixed-integer convex optimization problem P1-1
with binary variables cn,k and sm,k. Fortunately, P1-1 can be
transformed into a convex optimization problem by traditional
branch-and-bound or variable relaxation method, and then
solved by a convex optimization solver such as MOSEK.
Based on this, we propose a UAV trajectory optimization algo-
rithm as shown in Algorithm 1, where Gk can be initialized by
making the left and right hand sides of (61) equal according to
the given qk and tk. The above procedure is performed during
each iteration until convergence.

2) Solving P2: Although problem P2 is a mixed integer
programming problem involving binary variables xI

n,k, xII
n,k,

and xIII
n,k, we can solve it by relaxing the integer variables

to continuous real variables from 0 to 1. Thus, (18) can be
converted to{

xI
n,k + xII

n,k + xIII
n,k = 1, If cn,k = 1

xI
n,k = 0, xII

n,k = 1, xIII
n,k = 0, Else

xj
n,k ∈ [0, 1] , j ∈ {I, II, III} .

(66)

Note that this relaxation removes the integer optimization, thus
making the problem more tractable [41].

Then, P2 can be relaxed as follows:

P̃2 : max
V2

Qsys

s.t. (2), (24), (25), (29), (66).
(67)

However, P̃2 is still non-convex because of the high coupling
among the variables. To solve this problem, we also use the
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Algorithm 2: The proposed algorithm for P2.

1 Input V1;
2 Initialize convergence accuracy θ2, V4, Q1

sys and Q2
sys;

3 repeat
4 Solve the problem P2-1 with the given V1 and V4,

and obtain V3;
5 Compute Qsys as Q1

sys;
6 Solve the problem P2-2 with the given V1 and V3,

and obtain V4;
7 Compute Qsys as Q2

sys;
8 until

∣∣Q2
sys −Q1

sys

∣∣ /Q2
sys ≤ θ2;

9 return
{
αm,k, βn,k, x

I
n,k, x

II
n,k, x

III
n,k

}

Algorithm 3: The proposed BCD based AIOA frame-
work.

1 Initialize V2, iterative number I = 0, and maximum
number of iterations Imax;

2 while I < Imax do
3 Solve the problem P1-1 with the given V2 by

Algorithm 1;
4 Solve the problem P̃2 with the given V1 by

Algorithm 2;
5 I = I + 1;
6 end
7 return V1 , V2

BCD technique for P̃2. Specifically, the problem P̃2 can be
decomposed into the subproblems P2-1 and P2-2, given by

P2-1 : max
V3

Qsys

s.t. (24), (29), (66),
(68)

where V3 =
{
xI
n,k, x

II
n,k, x

III
n,k

}
, and

P2-2 : max
V4

Qsys

s.t. (2), (24), (25), (29),
(69)

where V4 = {αm,k, βn,k}. The problems P2-1 and P2-2 are
linear optimization problems with respect to the corresponding
variables, which can be solved easily by means of several con-
vex tools, such as CVX. By alternately solving the problems
P2-1 and P2-2, we can obtain a time allocation strategy and
a data upload scheduling scheme. The details are shown in
Algorithm 2.

C. Design of AIOA based on BCD technique

Now, we present the AIOA framework to solve the problem
P0 with the objective of obtaining a locally optimal solution
for V . The specific steps of the framework are detailed in
Algorithm 3. Specifically, in step 3 of the Algorithm 3, we
solve P1-1 with the given V2 in each iteration while updating
the local points, until the algorithm converges to finally return
V1. Similarly, in step 4 of algorithm 3, we aim to solve P2
with the given V1, in which we solve P2-1 and P2-2 alternately

until the algorithm converges and V2 is finally obtained. It is
worth noting that the convergence of AIOA can be guaranteed
by varying the initial points, and its convergence analysis is
similar to the work in [42]–[44]. Additionally, unlike existing
methods, our proposed AIOA framework deals with compli-
cated nonconvex optimization problems mainly through AO
and SCA. This approach leads to an optimized solution in
each subproblem, eventually yielding an appropriate solution
to the original problem, which is often applicable to problems
with a well-defined structure.

The computational complexity of Algorithm 3 can be an-
alyzed as follows. As Algorithm 3 is composed of Algo-
rithms 1 and 2, we first analyze the computational complex-
ity of Algorithms 1 and 2. For Algorithm 1, its computa-
tional complexity is O

(
J1 ((K + 2) (7 (M +N) + 3))

3.5
)

,
where (K + 2) (7 (M +N) + 3) represents the number
of variables and J1 is the number of iterations re-
quired [43]. For Algorithm 2, its computational com-
plexity mainly lies in steps 4 and 6. Specifically,
the complexity of step 4 is O

(
(3 (K + 2)N)

3.5
)

, and

the complexity of step 6 is O
(
((K + 2) (M +N))

3.5
)

.
Thus, the computational complexity of Algorithm 2 is
O
(
J2

(
(3 (K + 2)N)

3.5
+ ((K + 2) (M +N))

3.5
))

, where
J2 denotes the number of iterations required for convergence
in Algorithm 2 [43]. In summary, the computational complex-
ity of Algorithm 3 can be given by

O

(
Imax

(
J1 ((K + 2) (7 (M +N) + 3))

3.5
+ J2

(
(3N(K + 2))3.5

+ ((K + 2)(M +N))3.5

)))
. (70)

V. SIMULATION RESULTS AND DISCUSSIONS

A. Parameter Settings

This part presents some general simulation parameter set-
tings. If not specified, the number of communication users
and sensing targets are both set to two, where the locations
of users are [20, 80]T m and [80, 80]T m, while the locations
of targets are [40, 30]T m and [60, 30]T m. The UAV’s initial
and final locations are qI = [0, 50]T m and qF = [100, 50]T

m. The UAV flight altitude H is 100 m, and its maximum
speed is 30 m/s. Moreover, the wireless bandwidth BI and BII
are set to 1 MHz and 10 MHz, while the transmit power at
each user is set to 0.1 W, with the noise variance σ2 set to
−110 dBm. The channel gain per unit distance for the CU-
UAV and UAV-target-UAV links is −60 dB. In further, for the
parameters related to the radar estimation information rate in
(12), we follow the settings in [27], where the UAV sensing
power ps is 10 W. Meanwhile, for the parameters related to the
UAV propulsion power in (28), we follow the settings in [19].
Furthermore, the minimum amount of upload data per user
Qn is 10 Mbits, while the minimum amount of sensing data
per target Qs

m is 10 Kbits. The UAV memory capacity Qth
u is

100 Mbits, the duration of data collection Tth is 30 s, and the
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(a) Convergence of the proposed algorithm
1 in the AIOA’s last iteration.
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(b) Convergence of the proposed algorithm
2 in the AIOA’s last iteration.
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Fig. 3. Convergence of AIOA and internal algorithms under different settings.

TABLE II: Main Parameter Settings
Parameters Value
UAV flight altitude H 100 m
UAV maximum speed vmax 30 m/s
Wireless bandwidth BI and BII 1 MHz, 10 MHz
Transmit power at users 0.1 W
Noise variance σ2 −110 dBm
Average channel gain N0 and N1 −60 dB
UAV sensing power ps 10 W
Minimum amount of upload data per user Qn 10 Mbits
Minimum amount of sensing data per target Qs

m 10 Kbits
UAV memory capacity Qth

u 100 Mbits
Duration of data collection Tth 30 s
Energy consumption threshold Eth 10 kJ

energy consumption threshold Eth is 10 kJ, respectively. In the
end, the carrier frequency of the CU-UAV link and UAV-target-
UAV link is C-band with 5 GHz, while the carrier frequency of
CU-LEO satellite link and UAV-LEO satellite link is Ka-band
with 35 GHz. For convenience, the main parameter settings
are summarized in Table II.

B. Simulation Results

In this subsection, we verify the effectiveness of the pro-
posed AIOA using two criteria regarding UAV coverage.
In addition, we provide several data collection schemes for
comparison. For convenience, we use the following notations
to denote the schemes:

• AIOA-I: The proposed AIOA framework with a wider
UAV coverage optimizes the UAV trajectory, time allo-
cation, and scheduling of data uploading, where

√
N3 =√

N4 = 65 m.
• AIOA-II: The proposed AIOA framework with a narrow

UAV coverage optimizes the UAV trajectory, time allo-
cation, and scheduling of data uploading, where

√
N3 =√

N4 = 35 m.
• All-LEO: All communication data are uploaded either

directly to the LEO satellite (Direct scheme) or with the
help of the UAV to the LEO satellite (Relaying scheme).
In this scheme, except for variable xI

n,k, all the other
variables are optimized.

• SF: The UAV flies straight from the initial position qI

to the final position qF at a constant speed, where the
data uploading schedule is random and the time allocation
strategy is optimized in this scheme.

• Non-UAV: In this scheme, we aim to present the effect
of satellite communication in our considered scenario.
Therefore, in this competing scheme, users share the time
resource to upload communication data, and the sensing
mission is ignored.

Note that the coverage of the UAV in the All-LEO and SF is
the same as that of AIOA-I. These competing schemes are the
simplified versions of our proposed AIOA with lower com-
plexity, which can provide some insights for the performance
of our scheme. Besides, two initial trajectories are considered,

• Initial trajectory 1: This initial trajectory represents that{
q0
k

}K+1

k=0
is a simple straight-line path from qI to qF

• Initial trajectory 2: This initial trajectory is a complex M-
shaped trajectory that starts from qI and passes through
the points [20, 80]T m, [50, 30]T m and [80, 80]T m in
sequence, finally reaching qF .

Fig. 3 shows the convergence of our proposed AIOA frame-
work and the internal Algorithms 1 and 2. From Fig. 3, we
can observe that the AIOA and Algorithms 1, 2 all converge
in just a few iterations, which proves the fast convergence rate
and effectiveness. Moreover, in Fig. 3(c), “initial trajectory 1”
performs better than “initial trajectory 2” in the case of AIOA-
I, which highlights the importance of choosing a suitable initial
solution. Thus, if not specified, we then default to “initial
trajectory 1”. In further, AIOA-I performs better than AIOA-
II. Specifically, after several iterations, AIOA-I can collect
about 90 Mbits of data, compared to AIOA-II, which can only
collect about 60 Mbits, about 50% improvement in the amount
collected by AIOA-I. This is because the UAV can collect data
at a wider range.

Figs. 4 and 5 show the UAV trajectories and the correspond-
ing speed changes. We can observe through these figures that
the UAV generally flies at its highest speed toward the users
and targets. This strategy is chosen not only to obtain better
channel conditions but also because, in the AIOA-II, the UAV
should be close to the user and the target to help the users
collect data and sense the targets. Particularly, it is evident
from Figs. 4(a), 5(a), 4(b), and 5(b) that “Initial Trajectory 2”
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Fig. 4. UAV trajectories under different settings.
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(b) UAV speed variation of AIOA-I with
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Fig. 5. UAV speed under different settings.

is characterized by a longer duration of flight as opposed to
hovering over either the users or the targets. Consequently, this
results in “Initial Trajectory 2” collecting less data compared
to “Initial Trajectory 1” for a given threshold Tth. Moreover,
while the trajectories in Figs. 4(a) and 4(c) appear deceptively
similar, but notable differences emerge when examining the
speed variations in Figs. 5(a) and 5(c). Specifically, Fig. 5(a)
illustrates four hover points, i.e., moments when the speed is 0,
contrasted with six such points in Fig. 5(c). This discrepancy
is attributable to the limited service coverage of the UAV in
AIOA-II, necessitating a balance in positioning between the
users and targets for optimal data upload and target sensing,
thereby maximizing Qsys. However, such positions often entail
suboptimal channel conditions compared to closer proximity
to either the users or targets, which leads to AIOA-II collecting
less data than AIOA-I.

Fig. 6 shows the impact of the UAV maximum speed vmax
on Qsys, where the speed ranges from 10 m/s to 30 m/s.
Observing Fig. 6, it is evident that increasing the UAV’s
maximum speed vmax enhances Qsys in all schemes except
for the SF and Non-UAV schemes. This improvement occurs
because a higher maximum speed allows the UAV to quickly
approach users and targets, meeting the conditions of subsets
C′ and S ′, and gaining better channel gains. Moreover, the
AIOA-I consistently outperforms AIOA-II. Specifically, as the
UAV maximum speed increases, Qsys of the AIOA-I increases
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Fig. 6. Total amount of data collected versus vmax.

roughly from 81 Mbits to 90 Mbits. In comparison, Qsys of the
AIOA-II only increases roughly from 57 Mbits to 60 Mbits.
This is because, in the former, the UAV collects data farther
from the users and targets. In addition, the proposed schemes,
AIOA-I and AIOA-II outperform other data collection schemes
by at least 38%, proving superior performance.

Fig. 7 shows the relationship between Qsys and duration
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Fig. 7. Total amount of data collected versus Tth, where vmax
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T
th

=30 s T
th

=40 s

10

20

30

40

50

60

70

80

90

100

A
m

ou
n

t 
of

 d
at

a 
co

ll
ec

te
d

 w
it

h
 d

if
fe

re
n

t 
sc

h
em

e 
(M

b
it

s) UAV scheme
Direct scheme
Relaying scheme
Sensing scheme

0

0.02

0.04

0.06

0.08

0.02

0.04

0.06

Fig. 8. Data collection of our proposed AIOA-II under various
data upload schemes and durations.

Tth for different schemes, where Tth ranges from 30 s to 40
s and vmax is 15 m/s. Observing Fig. 7, we can see that with
the increasing Tth, Qsys with all schemes shows an increasing
trend. In particular, the growth rates of Qsys in the proposed
schemes slow down when Qsys reaches about 100 Mbits. Due
to the fact that the UAV plays a core data collection role in
the SAG network, and when Qsys reaches the upper limit of
100 Mbits of UAV capacity, the UAV’s role is limited, ulti-
mately resulting in a slowdown in the growing trend of Qsys.
Moreover, the proposed schemes outperform other schemes
for various Tth. Specifically, when Tth = 40 s, the Qsys of
All-LEO, SF, and Non-UAV schemes are approximately 92
Mbits, 100 Mbits, and 30 Mbits, respectively. In comparison,
the Qsys of AIOA-I and AIOA-II are 138 Mbits and 129 Mbits,
respectively, showing the effectiveness of the AIOA scheme.

Fig. 8 illustrates the data collection capabilities of our
proposed AIOA-II under various data upload schemes and
durations Tth, where Tth = {30, 40} s. To facilitate ob-
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Fig. 9. Total amount of data collected versus Qth
u , where vmax

is 15 m/s.

servation, the Direct scheme in Fig. 8 combines the data
uploaded both inside and outside the set C′, with the amount
of data within C′ being zero. At the duration of Tth = 30
s, the UAV scheme collects data approximately 56 Mbits, the
Direct scheme collects about 4 Mbits, the Relaying scheme
gathers 0 Mbits, and the Sensing scheme accumulates 20
Kbits. When the duration increases to Tth = 40 s, the amount
of data collected by the UAV scheme rises to roughly 100
Mbits of UAV capacity, the Direct scheme collects about
6 Mbits, the Relaying scheme gathers 24 Mbits, while the
Sensing scheme remains at 20 Kbits. From these numerical
comparisons, we observe that within this sensing-assisted SAG
integrated network, the UAV scheme is the first choice for
data upload, followed by the Relaying scheme, and finally the
Direct scheme.

Fig. 9 shows the impact of memory capacity of the UAV
Qth

u on the total collected data Qsys, where Qth
u varies from 10

Mbits to 100 Mbits and vmax is 15 m/s. We can observe from
Fig. 9 that except for the All-LEO and Non-UAV schemes,
Qsys first increases and then stabilizes with the increase of
Qth

u . The reason is that when Qth
u is small, the UAV memory

capacity dominates the effect on Qsys, and increasing Qth
u

can significantly increase Qsys. However, when Qth
u is large,

the memory capacity constraint is negligible. Therefore, the
performance gain of increasing Qth

u on Qsys becomes marginal.
Moreover, the proposed AIOA outperforms other schemes
with the increasing Qth

u , which shows the effectiveness of
the proposed AIOA. Besides, from Fig. 9, we perceive an
interesting phenomenon that the Qsys of the AIOA-II scheme
is first lower and then higher than that of All-LEO when Qth

u

increases. This is due to the performance of the AIOA-II is
limited by the service range, under a lower memory capacity
Qth

u . However, with a higher memory capacity Qth
u , AIOA-

II can take full advantage of these sufficient UAV memory
resources to collect data, while the All-LEO scheme fails.

Fig. 10 shows the impact of Qs
m on several aforementioned

schemes’ Qsys, where Qs
m ranges from 5 Kbits to 10 Kbits
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Fig. 10. Total amount of data collected versus Qs
m, where vmax
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and vmax is 15 m/s. It can be observed from Fig. 10 that, as
Qs

m increases, Qsys of all schemes shows a declining trend,
except the Non-UAV scheme. This can be attributed to the
fact that the radar estimation information rate is significantly
lower than the upload data rate. As a result, the UAV needs to
allocate more time resource to sense the targets. When Tth is
maintained at a constant value, the extended sensing duration
results in a decrease of Qsys. In particular, within the proposed
schemes, there is an observable acceleration in the decrease
rate of Qsys when Qs

m exceeds 8 Kbits, at which point Qsys
reaches the UAV memory capacity. This trend indicates that
beyond the limitation of the UAV memory capacity, increasing
demand for sensing amounts exerts a more pronounced impact
on Qsys. In addition, under different Qs

m settings, the proposed
schemes are better than the competing schemes, proving their
effectiveness on data collection.

VI. CONCLUSION

In this paper, we considered a sensing-enabled integrated
SAG data collection network in which the UAV could not
only work alone to sense data from multiple targets, but also
collaborate with the LEO satellite to collect communication
data from multiple users. For this system, we first posed the
optimization problem designed to maximize the total amount
of data collected in the network while satisfying the constraints
of UAV energy consumption, storage capacity, and minimum
amount of sensor data per target. What’s more, considering
that the network included three layers and the UAV had dual
functions of communication and sensing, this problem could
be solved by jointly optimizing the scheduling of the users’
data upload scheme, the UAV trajectory, and the allocation
of communication and sensing time. We further designed
the AIOA framework to find a feasible solution. Specifically,
we alternately optimized the UAV trajectory, time allocation
strategy, and data upload schedule in each iteration. Finally,
simulation experiments validated the effectiveness of AIOA
and its superiority over other benchmarks. In particular, the

experimental results also showed that the AIOA was superior
to the linear trajectories of the UAV in terms of the amount
of data collected.

REFERENCES

[1] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards
6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2, pp.
334–366, 2021.

[2] S. Tang, Q. Yang, L. Fan, X. Lei, A. Nallanathan, and G. K. Kara-
giannidis, “Contrastive learning based semantic communications,” IEEE
Trans. Commun., pp. 1–12, 2024.

[3] H. Hu, K. Xiong, G. Qu, Q. Ni, P. Fan, and K. B. Letaief, “AoI-minimal
trajectory planning and data collection in UAV-assisted wireless powered
iot networks,” IEEE Internet Things J., vol. 8, no. 2, pp. 1211–1223,
2021.

[4] L. Liu, K. Xiong, J. Cao, Y. Lu, P. Fan, and K. B. Letaief, “Average AoI
minimization in UAV-assisted data collection with RF wireless power
transfer: A deep reinforcement learning scheme,” IEEE Internet Things
J., vol. 9, no. 7, pp. 5216–5228, 2022.

[5] Y. Liu, K. Xiong, Y. Lu, Q. Ni, P. Fan, and K. B. Letaief, “UAV-aided
wireless power transfer and data collection in Rician fading,” IEEE J.
Sel. Areas Commun., vol. 39, no. 10, pp. 3097–3113, 2021.

[6] L. Zhang, Y. Wu, L. Chen, L. Fan, and A. Nallanathan, “Scoring
aided federated learning on long-tailed data for wireless IoMT based
healthcare system,” IEEE J. Biomed. Health Informatics, vol. 28, no. 6,
pp. 3341–3348, 2024.

[7] L. Qu, G. Xu, Z. Zeng, N. Zhang, and Q. Zhang, “UAV-assisted RF/FSO
relay system for space-air-ground integrated network: A performance
analysis,” IEEE Trans. Wirel. Commun., vol. 21, no. 8, pp. 6211–6225,
2022.

[8] N. Cheng, H. Jingchao, Y. Zhisheng, Z. Conghao, W. Huaqing, L. Feng,
Z. Haibo, and S. Xuemin, “6G service-oriented space-air-ground inte-
grated network: A survey,” Chinese J. Aeronaut., vol. 35, no. 9, pp.
1–18, 2022.

[9] J. Sheng, X. Cai, Q. Li, C. Wu, B. Ai, Y. Wang, M. Kadoch, and P. Yu,
“Space-air-ground integrated network development and applications in
high-speed railways: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 8, pp. 10 066–10 085, 2022.

[10] D. Liu, J. Zhang, J. Cui, S. X. Ng, R. G. Maunder, and L. Hanzo,
“Deep learning aided routing for space-air-ground integrated networks
relying on real satellite, flight, and shipping data,” IEEE Wirel. Commun.,
vol. 29, no. 2, pp. 177–184, 2022.

[11] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO
satellite communications: Architectures and key technologies,” IEEE
Wirel. Commun., vol. 26, no. 2, pp. 55–61, 2019.

[12] N. Dao, Q. Pham, N. H. Tu, T. T. Thanh, V. N. Q. Bao, D. S. Lakew, and
S. Cho, “Survey on aerial radio access networks: Toward a comprehen-
sive 6G access infrastructure,” IEEE Commun. Surv. Tutorials, vol. 23,
no. 2, pp. 1193–1225, 2021.

[13] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M.
Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff,
J. Querol, L. Lei, T. X. Vu, and G. Goussetis, “Satellite communications
in the new space era: A survey and future challenges,” IEEE Commun.
Surv. Tutorials, vol. 23, no. 1, pp. 70–109, 2021.

[14] R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodrı́guez-
Osorio, F. Pinto, and S. C. Burleigh, “Survey of inter-satellite com-
munication for small satellite systems: Physical layer to network layer
view,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2442–2473,
2016.

[15] R. Samy, H. Yang, T. Rakia, and M. Alouini, “Space-air-ground FSO
networks for high-throughput satellite communications,” IEEE Commun.
Mag., vol. 61, no. 3, pp. 82–87, 2023.

[16] L. You, K. Li, J. Wang, X. Gao, X. Xia, and B. E. Ottersten, “Massive
MIMO transmission for LEO satellite communications,” IEEE J. Sel.
Areas Commun., vol. 38, no. 8, pp. 1851–1865, 2020.

[17] J. Shi, J. Hu, Y. Yue, X. Xue, W. Liang, and Z. Li, “Outage probability
for OTFS based downlink LEO satellite communication,” IEEE Trans.
Veh. Technol., vol. 71, no. 3, pp. 3355–3360, 2022.

[18] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. Wirel. Commun., vol. 16, no. 6,
pp. 3747–3760, 2017.

[19] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing UAV,” IEEE Trans. Wirel. Commun.,
vol. 18, no. 4, pp. 2329–2345, 2019.

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3459079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 23,2024 at 10:14:54 UTC from IEEE Xplore.  Restrictions apply. 



[20] F. Liu, L. Zheng, Y. Cui, C. Masouros, A. P. Petropulu, H. D. Griffiths,
and Y. C. Eldar, “Seventy years of radar and communications: The road
from separation to integration,” IEEE Signal Process. Mag., vol. 40,
no. 5, pp. 106–121, 2023.

[21] X. Jing, F. Liu, C. Masouros, and Y. Zeng, “ISAC from the sky: UAV
trajectory design for joint communication and target localization,” CoRR,
vol. abs/2207.02904, 2022.

[22] J. Wu, W. Yuan, and L. Bai, “On the interplay between sensing and
communications for UAV trajectory design,” IEEE Internet Things J.,
vol. 10, no. 23, pp. 20 383–20 395, 2023.

[23] K. Meng, Q. Wu, J. Xu, W. Chen, Z. Feng, R. Schober, and A. L.
Swindlehurst, “UAV-enabled integrated sensing and communication:
Opportunities and challenges,” IEEE Wirel. Commun., vol. 31, no. 2,
pp. 97–104, 2024.

[24] A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds
on performance of radar and communications co-existence,” IEEE Trans.
Signal Process., vol. 64, no. 2, pp. 464–474, 2015.

[25] Y. Liu, S. Liu, X. Liu, Z. Liu, and T. S. Durrani, “Sensing fairness-based
energy efficiency optimization for UAV enabled integrated sensing and
communication,” IEEE Wirel. Commun. Lett., vol. 12, no. 10, pp. 1702–
1706, 2023.

[26] O. Rezaei, M. M. Naghsh, S. M. Karbasi, and M. M. Nayebi, “Re-
source allocation for UAV-enabled integrated sensing and communica-
tion (ISAC) via multi-objective optimization,” in ICASSP 2023, Rhodes
Island, Greece, June 4-10, 2023.

[27] N. Huang, T. Wang, Y. Wu, Q. Wu, and T. Q. S. Quek, “Integrated
sensing and communication assisted mobile edge computing: An energy-
efficient design via intelligent reflecting surface,” IEEE Wirel. Commun.
Lett., vol. 11, no. 10, pp. 2085–2089, 2022.

[28] Q. Qi, X. Chen, C. Zhong, and Z. Zhang, “Integrated sensing, com-
putation and communication in B5G cellular Internet of Things,” IEEE
Trans. Wirel. Commun., vol. 20, no. 1, pp. 332–344, 2021.

[29] N. Su, F. Liu, and C. Masouros, “Sensing-assisted eavesdropper esti-
mation: An ISAC breakthrough in physical layer security,” IEEE Trans.
Wirel. Commun., 2023.

[30] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: opportunities and challenges,” IEEE Commun.
Mag., vol. 54, no. 5, pp. 36–42, 2016.

[31] X. Lin, V. Yajnanarayana, S. D. Muruganathan, S. Gao, H. Asplund,
H. Maattanen, M. Bergström, S. Euler, and Y. E. Wang, “The sky is
not the limit: LTE for unmanned aerial vehicles,” IEEE Commun. Mag.,
vol. 56, no. 4, pp. 204–210, 2018.

[32] H. Huang, S. Guo, W. Liang, K. Wang, and A. Y. Zomaya, “Green
data-collection from GEO-distributed IoT networks through low-earth-
orbit satellites,” IEEE Trans. Green Commun. Netw., vol. 3, no. 3, pp.
806–816, 2019.

[33] J. Choi and V. Chan, “Predicting and adapting satellite channels with
weather-induced impairments,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 38, no. 3, pp. 779–790, 2002.

[34] I. Del Portillo, B. G. Cameron, and E. F. Crawley, “A technical
comparison of three low earth orbit satellite constellation systems to
provide global broadband,” Acta astronautica, vol. 159, pp. 123–135,
2019.

[35] T. Ma, H. Zhou, B. Qian, N. Cheng, X. Shen, X. Chen, and B. Bai,
“UAV-LEO integrated backbone: A ubiquitous data collection approach
for B5G internet of remote things networks,” IEEE J. Sel. Areas
Commun., vol. 39, no. 11, pp. 3491–3505, 2021.

[36] Q. Qi, X. Chen, C. Zhong, and C. Y. Z. Zhang, “Deep learning-based
design of uplink integrated sensing and communication,” IEEE Trans.
Wirel. Commun., 2024.

[37] J. Zhang, J. Xu, W. Lu, N. Zhao, X. Wang, and D. Niyato, “Secure trans-
mission for irs-aided uav-isac networks,” IEEE Trans. Wirel. Commun.,
2024.

[38] Y. Wu, S. Tang, L. Zhang, L. Fan, X. Lei, and X. Chen, “Resilient
machine learning-based semantic-aware MEC networks for sustainable
next-G consumer electronics,” IEEE Trans. Consumer Electron., vol. 70,
no. 1, pp. 2188–2199, 2024.

[39] R. Ding, F. Gao, and X. S. Shen, “3D UAV trajectory design and
frequency band allocation for energy-efficient and fair communication:
A deep reinforcement learning approach,” IEEE Trans. Wirel. Commun.,
vol. 19, no. 12, pp. 7796–7809, 2020.

[40] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[41] Q. Li, L. Shi, Z. Zhang, and G. Zheng, “Resource allocation in UAV-
enabled wireless-powered MEC networks with hybrid passive and active
communications,” IEEE Internet Things J., vol. 10, no. 3, pp. 2574–
2588, 2023.

[42] Q. Qi, X. Chen, and C. Yuen, “Joint offloading selection and resource
allocation for integrated localization and computing in edge-intelligent
networks,” IEEE Trans. Vehic. Tech., pp. 1–15, 2024.

[43] G. Zhang, Q. Wu, M. Cui, and R. Zhang, “Securing UAV commu-
nications via joint trajectory and power control,” IEEE Trans. Wirel.
Commun., vol. 18, no. 2, pp. 1376–1389, 2019.

[44] K. Meng, Q. Wu, S. Ma, W. Chen, K. Wang, and J. Li, “Throughput
maximization for UAV-enabled integrated periodic sensing and commu-
nication,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 671–687,
2023.

Xiangdong Zheng received the B.E. degree in 2022
and he is currently pursuing the master degree,
with the School of Computer Science and Cy-
ber Engineering, Guangzhou University, Guangzhou,
China. His current research interests include Mobile
Edge Computing, Wireless Power Transfer, Inte-
grated Sensing and Communication, and Unmanned
Aerial Vehicle Communication.

Yuxin Wu received the bachelor degree in Software
Engineering from Northeastern university in 2018.
He is currently pursuing the master degree with the
school of Electronic and Information Engineering,
Guangzhou University. His current research interests
focus on mobile edge computing, integrated sensing
and communication, and semantic communication.

Lisheng Fan received the bachelor and master de-
grees from Fudan University and Tsinghua Univer-
sity, China, in 2002 and 2005, respectively, both
from the Department of Electronic Engineering. He
received the Ph.D degree from the Department of
Communications and Integrated Systems of Tokyo
Institute of Technology, Japan, in 2008. He is now a
Professor with GuangZhou University. His research
interests span in the areas of wireless communi-
cations, artificial intelligence, intelligent communi-
cation, edge computing and system performance

evaluation. Lisheng Fan has published many papers in international journals
such as IEEE Transactions on Wireless Communications, IEEE Transactions
on Communications, IEEE Transactions on Information Theory, as well as
papers in conferences such as IEEE ICC, IEEE Globecom, and IEEE WCNC.
He now serves as an Editor for IEEE Transactions on Vehicular Technology.

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3459079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 23,2024 at 10:14:54 UTC from IEEE Xplore.  Restrictions apply. 



Xianfu Lei is currently a Professor with the School
of Information Science and Technology at Southwest
Jiaotong University (SWJTU). He received the Ph.D.
degree from SWJTU in 2012. From 2012 to 2014, he
worked as a Research Fellow in the Department of
Electrical and Computer Engineering at Utah State
University. His research interests are in the fields
of communication theory and wireless networks.
He has published nearly 150 technical papers in
scientific journals and international conferences. He
was a recipient of the IEEE Vehicular Technology

Society Best Magazine Paper Award in 2023. He is serving as an executive
editor for IEEE Communications Letters and an editor for IEEE Transactions
on Communications, IEEE Communications Magazine, and IEEE Wireless
Communications Letters. He was an area/senior editor for IEEE Communi-
cations Letters from 2019 to 2023. He also served as symposium/track and
workshop chairs for major IEEE conferences.

Rose Qingyang Hu (Fellow, IEEE) received the
B.S. degree from the University of Science and
Technology of China, the M.S. degree from New
York University, and the Ph.D. degree from the
University of Kansas. Besides a decade academia
experience, she has more than 10 years of R&D
experience with Nortel, Blackberry, and Intel as
a Technical Manager, a Senior Wireless System
Architect, and a Senior Research Scientist, actively
participating in industrial 4G technology develop-
ment, standardization, system level simulation, and

performance evaluation. She is a Professor with the Electrical and Computer
Engineering Department and Associate Dean for research of College of
Engineering at Utah State University. She also directs Communications Net-
work Innovation Lab at Utah State University. Her current research interests
include next-generation wireless system design, Internet of Things, Cyber
Physical system, Mobile Edge Computing, V2X communications, AI/ML
in wireless networks. She is currently serving on the editorial boards of
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, and IEEE WIRE-
LESS COMMUNICATIONS. She also served as the TPC Co-Chair for the
IEEE ICC 2018. She is an IEEE Communications Society Distinguished
Lecturer Class 2015-2018, IEEE Vehicular Technology Society Distinguished
Lecturer Class 2020-2022, and a recipient of prestigious Best Paper Awards
from the IEEE GLOBECOM 2012, the IEEE ICC 2015, the IEEE VTC Spring
and the IEEE ICC 2016. She is member of Phi Kappa Phi Honor Society.

George K. Karagiannidis (Fellow, IEEE) is cur-
rently Professor in the Electrical & Computer En-
gineering Dept. of Aristotle University of Thes-
saloniki, Greece and Head of Wireless Communi-
cations & Information Processing (WCIP) Group.
He is also Faculty Fellow in the Cyber Security
Systems and Applied AI Research Center, Lebanese
American University. His research interests are in
the areas of Wireless Communications Systems and
Networks, Signal processing, Optical Wireless Com-
munications, Wireless Power Transfer and Applica-

tions and Communications & Signal Processing for Biomedical Engineering.
Dr. Karagiannidis was in the past Editor in several IEEE journals and from
2012 to 2015 he was the Editor-in Chief of IEEE Communications Letters.
From September 2018 to June 2022 he served as Associate Editor-in Chief of
IEEE Open Journal of Communications Society. Currently, he is the Editorin-
Chief of IEEE Transactions on Communications. Recently, he received three
prestigious awards: The 2021 IEEE ComSoc RCC Technical Recognition
Award, the 2018 IEEE ComSoc SPCE Technical Recognition Award and the
2022 Humboldt Research Award from Alexander von Humboldt Foundation.
Dr. Karagiannidis is one of the highly-cited authors across all areas of
Electrical Engineering, recognized from Clarivate Analytics as Highly-Cited
Researcher in the nine consecutive years 2015-2023.

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3459079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on September 23,2024 at 10:14:54 UTC from IEEE Xplore.  Restrictions apply. 


