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Abstract—Satellite-ground twin networks are considered a
promising network structure, which can relieve network con-
gestion and provide pervasive intelligent services. Since massive
terrestrial users are not willing to share mobile data, it is
necessary to design a novel security authentication method. In
this paper, we consider a two-layer Stackelberg game model and
propose a deep federated meta reinforcement learning (LST-
DFMRL) framework based on Lyapunov stability theory to
orchestrate the cycle frequency, channel assignment and block
size. Simulation results confirm that the proposed LST-DFMRL
framework outperforms existing baseline methods in terms of
server profits, network throughput and security authentication
overhead.

Index Terms—Satellite-ground twin networks, in-orbit compu-
tation, security authentication, deep federated meta reinforce-
ment learning.

I. INTRODUCTION

TRADITIONAL terrestrial cellular networks [1] suffer from
major challenges, such as severe network congestion,

huge construction costs and small coverage area, which further
affect the quality of service (QoS) for the sixth generation (6G)
wireless networks. Fortunately, satellite-ground integrated twin
networks (SGTN) can provide global coverage for terrestrial
users, where digital twin can shorten the gap between physical
unities and digital world. Specifically, Luo et al. [2] proposed
a novel edge server scheduling algorithm to achieve a tradeoff
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between construction cost and network capacity. Cao et al.
[3] maximized the network throughput via considering the
ground-space and ground-air-space communication links for
two task types. Guo et al. [4] introduced a comprehensive
survey about computation offloading and privacy security in
the SGTN network.

Nevertheless, the aforementioned works do not jointly con-
sider related price profits and total throughput for satellite
servers and terrestrial users. Moreover, when users offload
tasks to remote servers, they may suffer channel interference
from proximal areas. Hence, Lu et al. [5] proposed an adaptive
edge association method to achieve digital placement and
migration. Despite the improvement of the learning efficiency
in digital twin systems, the lack of mutual trust among users
affects the improvement of QoS. Thus, blockchain consensus
protocols can be widely applied to ensure security authenti-
cation. Specifically, Qiu et al. [6] proposed a collective Q-
learning mechanism to validate the proof of work in a cloud-
edge-end network architecture. Wang et al. [7] designed a
native edge intelligence framework to reduce the average sys-
tem overhead while optimizing communication, computation
and caching resources. Furthermore, Qu et al. [8] presented a
blockchain-aided cognitive computation structure and handled
the data island problem via a federated learning technique.

However, the aforementioned works only used a single
learning mode and cannot quickly adapt to a small batch of
samples. Hence, inspired by the above-mentioned challenges,
we establish an SGTN network scenario to achieve task
scheduling, reduce channel interference and improve security
authentication functions in a dynamic network environment.
The main contributions are as follows.

• First, we propose a two-layer Stackelberg game model
to maximize network throughput and cloud server prof-
its. Integrated with in-orbit computation and blockchain
technology, it not only helps the network adapt to time-
varying random tasks and dynamic satellite orbit loca-
tions, but also strengthens privacy authentication through
transaction verification mechanisms. Furthermore, it de-
couples the long-term task queue and single-slot compu-
tation offloading variables.

• Next, a Lyapunov stability theory based deep federated
meta reinforcement learning (LST-DFMRL) framework
is proposed to optimize the local CPU cycle frequency,
assign the optimal channel for each user to mitigate inter-
ference and choose the block size to perform transaction
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Fig. 1: The established SGTN network scenario.
verification. Specifically, the LST transformation is used
to decompose the long-term task queues into single slot.
The proposed DFMRL policy can achieve task schedul-
ing, resource management, interference suppression and
privacy protection.

• Finally, extensive simulation results show that the pro-
posed LST-DFMRL framework outperforms existing
baselines in terms of network throughput, cloud server
profits and privacy overhead, which validates the efficacy
and progressiveness of the LST-DFMRL framework.

The structure of this paper is shown as follows. Section II
introduces the related SGTN network model. The correspond-
ing LST-DFMRL algorithm is presented in Section III. Section
IV conducts extensive simulation results. Finally, we conclude
this paper in Section V.

II. SYSTEM MODEL

A. SGTN Network Model
We show the SGTN network scenario in Fig. 1, which

consists of a two-layer network structure, i.e., low earth orbit
satellite (LEO) networks and terrestrial networks. Specifically,
the LEO network includes massive satellites, whose groups
are represented as M = {1, 2, ...,m, ...,M}. Furthermore, the
terrestrial network is composed of many macro base stations
(MBS), whose sets are denoted as N = {1, 2, ..., n, ..., N}.
Meanwhile, for each MBS n, it overlays L = {1, 2, ..., l, ..., L}
users and these users can map their data from physical unities
to the digital world via the digital twin technology.

Next, as multiple terrestrial users are not willing to share
privacy data in task offloading, we utilize the blockchain tech-
nology and federated learning method to achieve parameters
aggregation and transaction verification, a detailed process is
presented in Section IV.
B. Local Twin Model

In this subsection, we divide the Stackelberg game process
into follower and leader stages. First, each terrestrial user aims
to maximize the network throughput while minimizing privacy
protection overhead. The local twin model is introduced as
follows.

In each time slot t, each user l in MBS n receives the
task Bt

n,l, and we assume the second order is limited, i.e.,

E
(
[Bt

n,l]
2
)

= c < ∞, where c is obtained via interacting

with historic information. Hence, the local processed number
of bits is calculated as

Dt1
n,l =

fn,l
Φ

τ, (1)

where fn,l is the local CPU cycle frequency of each digital
twin, Φ is the required number of CPU cycles while processing
one bit task and τ is the duration among two time slots.
C. Task Scheduling Model

When each user offloads the task to remote servers, the
time-varying random tasks, dynamic satellite orbit location-
s and corresponding channel interference among terrestrial
users degrade the performance of computation offloading and
security authentication. Furthermore, for the MBS n, the
communication loss between the user l and the LEO m is
represented as

St
n,l = 20 log

(
4πfc

√
x2
n,l,m + y2n,l,m/c

)
+ pLoS

n,l,mαLoS
n,l,m

+
(
1− pLoS

n,l,m

)
αNLoS
n,l,m ,

(2)
where fc and c represent the carrier frequency and the speed
of light, respectively. Moreover, xn,l,m and yn,l,m denote the
horizontal distance and vertical distance between the terrestrial
user l and LEO m. Next, αLoS

n,l,m and αNLoS
n,l,m represent the

additional path loss imposed on line of sight (LoS) and
non line of sight (NLoS), respectively. Furthermore, the LoS
propagation probability is denoted as

pLoS
n,l,m =

1

1 + a1 exp
{
−a2

[
arctan

(
yn,l,m/xn,l.m

)
− a1

]} ,
(3)

where a1 and a2 are corresponding system parameters ob-
tained via interacting with dynamic network environments.
Furthermore, when massive terrestrial users transmit tasks to
remote servers, more channel interference is caused. Assum-
ing that the access scheme is orthogonal frequency division
multiple access, the channel interference for the user l in the
MBS n is denoted as

In,l,r =

N∑
z=1,z ̸=n

L∑
l=1

λn,l,rPn,l,r

∣∣∣∣10−St
n,l
10

∣∣∣∣
2

, (4)

where λn,l,r denotes that the channel r is allocated to the user
l. Meanwhile, Pn,l,r is the transmission power and the total
information transmission rate in the task scheduling mode is
represented as

Rt
n,l,r = Bt

n,l,r log

1 +

bn,l,rPn,l,r

∣∣∣∣∣10−St
n,l

10

∣∣∣∣∣
2

σ2 + In,l,r

 , (5)

where Bn,l,r is the allocated channel bandwidth for the user
n and bn,l,r represents the user l chooses the channel r as the
offloaded server. Moreover, σ2 is corresponding channel noise
power and the total processed number of bits is calculated as

Dt2
n,l = Rt

n,l,rτ. (6)
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D. Security Authentication Model
Since many terrestrial users are not willing to share data,

the blockchain technology can be used to protect data pri-
vacy. Specifically, each block unit records these transaction
information and they can be verified via corresponding users.
Moreover, the security authentication model can be divided
into three parts, i.e., parameters aggregation, transmission and
verification overhead. The detailed process is presented below.

The parameters aggregation overhead is denoted as

C1 =
|wl|

FMBS
, (7)

where wl is related network model parameters for the user
l and FMBS is the CPU cycle frequency of each MBS.
Subsequently, the transmission overhead is represented as

C2 = χlog2N
|wl|/rup , (8)

where χ is the model transmission factor and rup is the uplink
transmission rate. Next, the verification overhead is denoted as

C3 = χlog2NL
Sbc

rdown
+max

(
Sbc/fn,l

)
, (9)

where Sbc is the block size and rdown is the download rate for
each user l. Finally, the total security authentication overhead
is represented as

Ctotal = C1 + C2 + C3. (10)

E. Problem Formulation
We formulate the Stackelberg game process as satellite cloud
server and terrestrial users model and the corresponding ser-
vice profits are denoted as

P1 : max
φn,l

N∑
n=1

L∑
l=1

φn,lfn,l − gfn,l (11)

s.t. φn,l ≥ 0, (12)

where φn,l indicates the cloud servers’ price and g is the
unit electronic energy consumption. After obtaining the cloud
server pricing policy, the total processed number of bits is
represented as

U1 = lim
T→∞

1

T

T∑
t=1

btn,lD
t1
n,l +

(
1− btn,l

)
Dt2

n,l. (13)

Moreover, the loss of security authentication and computation
resources is calculated as

U2 = Ctotal + φn,lfn,l. (14)

Hence, the total profits for users are denoted as

P2 : max
{fn,l,b

t
n,l

,bn,l,r,Sbc}
{U1 − U2} (15)

s.t.
fn,l

Φ
≤ Qt

n,l, (16)

In,l,r ≤ Imax, (17)

btn,l ∈ {0, 1}, (18)

lim
T→∝

1

T

T∑
t=1

E[Qt
n,l] <∝, (19)

Smin ≤ Sbc ≤ Smax, (20)

where (16) indicates that the task bits cannot exceed the task
queue Qt

n,l, we will introduce the task queue in the next
section. In (17) and (18), Imax and btn,l are the maximum
channel interference and the task scheduling decision vector,
respectively. Finally, (19) and (20) represent that task queue
and block size are limited.

III. LST-DFMRL ALGORITHM

In this section, we propose an LST-DFMRL algorithm to
resolve the computation offloading and security authentication
in the two-stage Stackelberg game model. However, P2 implies
that the variables coupling between long-term task queue
and short-term computation offloading lead to an intractable
resolving process. Hence, we first introduce Lyapunov based
problem transformation to transfer the long-term multiple time
slots to the single time slot subproblem. The task queue for
each time slot can be denoted as Qt

n,l.

A. Lyapunov Problem Transformation
Based on Lyapunov stability theory [9], the corresponding
Lyapunonv function and Lyapunov drift function are denoted
as

L
(
Q⃗ (t)

)
=

1

2

(
Qt

n,l

)2
, (21)

∆
(
Q⃗ (t)

)
= E

{
L
(
Q⃗ (t+ 1)

)
− L

(
Q⃗ (t)

)
|Q⃗(t)

}
, (22)

where Qt
n,l is the task queue. Then, the virtual task queue is

denoted as

Qt+1
n,l = max

{
Qt

n,l −D
t1/t2
n,l +Bt

n,l, 0
}
, (23)

where D
t1/t2
n,l = btn,lD

t1
n,l+

(
1− btn,l

)
Dt2

n,l. Furthermore, we
derive the task queue via taking squares from both sides(

Qt+1
n,l

)2
=

(
Qt

n,l

)2
+ 2Qt

n,l

(
Bt

n,l −D
t1/t2
n,l

)
+

(
Bt

n,l −D
t1/t2
n,l

)2
.

(24)

Next, the formulation (24) is derived as

0.5
(
Qt+1

n,l

)2

− 0.5
(
Qt

n,l

)2
= Qt

n,l

(
Bt

n,l −D
t1/t2
n,l

)
+ 0.5

(
At

n,l −D
t1/t2
n,l

)2

,

(25)

Subsequently, the Lyapunov drift function is represented as

△ (Q⃗(t)) = E
{
L(Q⃗(t+ 1))− L(Q⃗(t))

}
(26)

= 0.5
(
Bt

n,l −D
t1/t2
n,l

)2
+Qt

n,l

(
Bt

n,l −D
t1/t2
n,l

)
≤ X +Qt

n,l

(
Bt

n,l −D
t1/t2
n,l

)
,

where

0.5
(
Bt

n,l −D
t1/t2
n,l

)2
≤ 0.5

(
Bt

n,l

)2
+

(
D

t1/t2
n,l

)2
(27)

≤ 0.5c+
(
D

t1/t2/max
n,l

)2
= X.

D
t1/t2/max
n,l is the maximum of D

t1/t2
n,l , and it denotes the

maximum number of task scheduling. Meanwhile, the drift-
plus-penalty function is represented as

Ld = ∆
(
Q⃗ (t)

)
− V E {U1 − U2} , (28)
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Fig. 2: The proposed two-layer LST-DFMRL framework.
where V is the corresponding Lyapunov control parameter.

Hence, through transforming the drift-plus-penalty function
(28), the original problem P2 is transformed into

P2
′
: max

{∀l}
Qt

n,lD
t1/t2
n,l + V E(U1 − U2). (29)

B. DFMRL Implmentation
As depicted in Fig. 2, we propose a two-layer DFMRL

framework to resolve local twin, task scheduling, and security
authentication model. Moreover, each user can adapt to time-
varying random tasks (Bt

n,l), dynamic satellite orbit locations
(xn,l,m, yn,l,m), and optimize the CPU cycle frequency fn,l,
channel selection bn,l,r, task scheduling unit btn,l and block
size Sbc. Subsequently, each leader can determine the cloud
server price and unit energy consumption in terms of each
user’s scheduling decisions. The detailed DFMRL process is
shown as follows.

(1) Meta Learning Adaptation Mechanism: The goal of meta
learning is to learn a small batch of samples to speed up the
convergence rate. We assume that these old tasks and new tasks
for meta training and testing are subject to distribution p (Γ).
Specifically, meta learning can update corresponding network
weight parameters, which is represented as

min
θ

E
[
L
(
Etest

Γ , θ
′
)]

(30)

s.t. θ
′
= ∇L

(
Etrain

Γ , θ
)
, (31)

where Etrain
Γ and Etest

Γ denote the training tasks and test-
ing tasks from the distribution p (Γ), respectively. Moreover,
L
(
Etest

Γ , θ
′
)

indicates the testing set loss function for new
tasks. Thus, we can separate the meta learning algorithm to
two modules, i.e., inner loop training samples and outer testing
samples. Specifically, the inner training samples can be utilized
to update network parameters θ

′
, and then θ

′
can adapt to

testing tasks.
(2) DFMRL Process: We utilize the proposed actor-critic

network structure to optimize the task scheduling, resource
allocation and block size. For multiple terrestrial users l, there
are time-varying random tasks Bt

n,l, dynamic satellite orbit
locations (xn,l,m, yn,l,m). Thus, the specific state, action, and
reward function are denoted as follows.

State Space: Each user l in MBS n outputs the local state
Sn,l =

(
Bt

n,l, xn,l,m, yn,l,m

)
, and these state information can-

not exchange with each other due to strict privacy protection.
Action Space: According to Fig. 2, each actor network

selects the CPU cycle frequency fn,l, task scheduling de-
cision btn,l, channel selection bn,l,r and block size Sbc.
Thus, the action space for each user is denoted as An,l =

(
fn,l, b

t
n,l, bn,l,r, Sbc

)
.

Reward Function: The instant reward function is represented
as

Rn,l =

N∑
n=1

L∑
l=1

Qt
n,lD

t1/t2
n,l + V E (U1 − U2), (32)

MDP Transformation: For the SGTN network scenario, it is
hard to find a fixed transformation policy to represent network
states. Hence, we denote the set f =

{
S

′

n,l|Sn,l, An,l, Rn,l

}
to represent MDP transformation process.

Similar to multiple terrestrial users, the state space for
satellite cloud servers is represented as Ss = {fn,l, g}.
Subsequently, after receiving the state space, each actor
neural network from satellite server outputs action space
As = {φn,l}. Moreover, the corresponding reward function

is Rs =
N∑

n=1

L∑
l=1

φn,lfn,l − gfn,l. Once the neural network

reaches convergence, it can obtain the optimal reward function.
Finally, the MDP transformation process is represented as
Υ =

{
Ss

′
|Ss, As, Rs

}
.

C. Security Authentication
After each actor network generates task scheduling decision,

channel selection and CPU cycle frequency, we need to
evaluate the action values. Nevertheless, the state informa-
tion exchange among multiple users increases the risk of
privacy disclosure. Specifically, all terrestrial users receive
the global network model W (t) from the satellite cloud
server, and then they update local network model Wn,l (t),
which is illustrated as In,l (t) = W (t) − Wn,l (t). After
that, the satellite cloud server receives the global model and
calculates it as W (t+ 1) = W (t) + ηI (t), where η is
the federated aggregation rate and I (t) is represented as

I (t) =
|Bt

n,l|+|Gt
n,l|

|Btotal|+|Gtotal|In,l (t), where Bt
n,l and Btotal are

corresponding task sets of each user and total task sets of
all users, respectively. Accordingly, Lt

n,l and Ltotal are the
corresponding distance from LEO to each terrestrial user and
the sum of distance for all terrestrial users.

When each user transmits network weight parameters to
LEO, detailed transaction security authentication is shown as
follows. For instance, each user stores the task information to
block units. Next, each user broadcasts transaction information
to other users and transmits them to the satellite server.
Subsequently, the LEO server packages them to block Sbc.
Accordingly, each user will download block Sbc from LEO
servers, whose transaction process is verified via delegated
stakes proof protocols [5]. Once the transaction verification is
achieved via other users, the reward coins are returned back
to the initial users. If there is fraud or tamper behavior in
the transaction process, the mechanism closes corresponding
transaction.

IV. SIMULATION RESULTS

A. Simulation Parameters
By refering [10], we consider that N = 4, L = 12 and

M = 4. The distribution of random tasks Bt
n,l is uniformly

distributed at (15, 30) MB, the required number of CPU
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Fig. 3: The simulation results in terms of cloud servers profits, network throughput and security authentication overhead.

cycle for processing one bit task is uniformly distributed at
(2500, 3500) cycle/bit and the blockchain throughput is 100
transactions per second. Meanwhile, the horizontal distance
xn,l,m and vertical distance yn,l,m are uniformly distributed at
(1000, 1800) KM and (500, 1500) KM. Accordingly, the light
speed c and carrier frequency fc are represented as 3 ∗ 108

m/s and 0.3 ∗ 109 HZ. Furthermore, αLoS
n,l,m and αNLoS

n,l,m are
uniformly subject to (0, 1) and (15, 25). Finally, the noise
power σ is defined as 10−13 W.
B. Performance Analysis

We compare the proposed LST-DFMRL algorithm with
some advanced benchmarks, such as multi-agent-based ran-
dom task scheduling (MAB_RST), multi-agent-based greedy
algorithm (MAB_GA) and multi-agent-based channel selec-
tion (MAB_CS). Meanwhile, we demonstrate the performance
gains in terms of satellite cloud servers’ gains, network
throughput and security authentication overhead.

As shown in Fig. 3(a), we explore the impact of unit
electronic energy consumption on satellite servers profits.
Obviously, as the number of terrestrial users increases, the
satellite server obtains higher service profits. When the number
of users is 30, the cloud servers’ profits have approximately
38% performance gains compared with “Users=25". However,
when the unit energy consumption increases, the profits of
satellite servers decrease. This is because it consumes more
energy while serving terrestrial users. Hence, it is essential to
balance the satellite servers profits and unit energy consump-
tion to guarantee QoS for more terrestrial users.

As shown in Fig. 3(b), when the transmission bandwidth is
28 MHZ, the proposed LST_DFMRL algorithm has approxi-
mately 4%, 6.6% and 10.1% performance gains compared with
MAB_CS, MAB_GA and MAB_RST. This is because it can
not only better adapt to dynamic network environments, but
also achieve better task scheduling and resource orchestration
for each terrestrial user. However, the transmission bandwidth
is limited in practical scenarios, so the LST-DFMRL algorithm
can also accelerate the training process via meta learning
methods.

Finally, as shown in Fig. 3(c), when the MBS computa-
tion capability is 6 ∗ 109, the LST_DFMRL algorithm has
approximately 42% and 52% performance gains compared
with MAB_CS, MAB_GA. Furthermore, as MAB-GA and
MAB-CS algorithms only greedily choose the CPU cycle
frequency and assign a wireless channel for each terrestrial
user, which cannot fulfil the optimal resource orchestration
mechanism. Hence, the proposed LST-DFMRL algorithm can

achieve lower privacy overhead, because it can upload model
parameters to remote satellite servers instead of local tasks,
and the block-chain-based authentication protocols strengthen
the transaction security.

V. CONCLUSIONS

In this paper, we propose a two-layer Stackelberg game
model to maximize the network throughput and LEO server
profits while minimizing the security authentication over-
head. Furthermore, the proposed LST-DFMRL algorithm can
not only adapt to dynamic network environments, but also
resolves variables coupling for long-term task queues and
short-term resource orchestration. Meanwhile, a block-chain-
based authentication protocols strengthen the transaction secu-
rity. Finally, extensive simulation results corroborate that the
proposed LST-DFMRL algorithm has superior performance
gain in terms of cloud servers profits, network throughput
and security authentication overhead compared with some
advanced benchmarks.
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