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Abstract— A versatile envelope distribution which generalizes
many commonly used models for multipath and shadow fading
is the so-called generalized Gamma (GG) distribution. By con-
sidering the product of N GG random variables (RV)s, novel
expressions for its moments-generating, probability density, and
cumulative distribution functions are obtained in closed form.
These expressions are used to derive a closed-form union upper
bound for the distribution of the sum of GG distributed RVs.
The proposed bound turns out to be an extremely convenient
analytical tool for studying the performance of N -branch equal-
gain combining receivers operating over GG fading channels. For
such receivers, first the moments of the signal-to-noise (SNR) at
the output, including average SNR and amount of fading, are
obtained in closed form. Furthermore, novel union upper bounds
for the outage and the average bit error probability are derived
and evaluated in terms of Meijer’s G-functions. The tightness
of the proposed bounds is verified by performing comparisons
between numerical evaluation and computer simulations results.

Index Terms— Equal-gain combining (EGC), generalized fad-
ing channels, generalized Gamma, Lognormal, Nakagami-m,
outage probability, sum of random variables, Weibull.

I. INTRODUCTION

A GENERAL envelope distribution which includes many
well-known channel models for both multipath as well as

for shadow fading is the so-called generalized Gamma (GG)
distribution. This distribution was introduced by Stacy, back
in 1962, as a generalization of the (two-parameter) Gamma
distribution [1] and it includes the Rayleigh, Nakagami-m,
and Weibull as special cases, while it can also describe the
Lognormal as a limiting case. Interestingly enough, despite
its ability to characterize so many different fading channel
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models, only very recently the topic of performance analysis
of digital receivers over this generalized channel has gained
renewed interest. Particularly, in an early work on this topic
[2], Coulson et al. presented expressions in the form of infinite
series for the average bit error probability (ABEP) of single-
branch receivers operating over a GG fading environment,
with binary phase-shift keying (BPSK) and binary frequency-
shift keying (BFSK) modulations. In another related work [3],
Yacoub introduced the α-μ distribution and gave a physical
justification for the origin of the GG model. More recently,
Aalo et al. presented a closed-form expression for the ABEP
for both coherent and noncoherent/differentially coherent bi-
nary digital modulations [4].

The performance of diversity receivers has been extensively
studied in past for the most important fading channel models,
Rayleigh, Nakagami-m, and Weibull (e.g. see [5]–[8]). How-
ever, a performance study of diversity and specifically equal-
gain combining (EGC) receivers over GG fading channels has
not been presented yet1. The main difficulty in studying EGC
receivers is that the distribution of the sum of fading envelopes
is required. The derivation of this distribution in terms of
tabulated functions is a very difficult task [5]. Concerning this
well-recognized but cumbersome statistical problem, several
approaches aiming at providing possible solutions have been
published in the open technical literature. In possibly one of
the earliest works, Stacy in his original GG paper developed an
infinite series approach for determining the cumulative density
function (cdf) of the sum of GG distributed random variables
(RV)s [1]. Many years later, in an approach independent from
that in [1], Beaulieu derived an infinite series for determining
the cdf of the sum of Rayleigh distributed RVs [10]. Helstrom
has computed the distribution of such a sum using saddle-
point integration for uniformly weighted RVs [11], as well
as for arbitrary weights [12]. Filho and Yacoub in [13] have
derived an approximate probability density function (pdf)
expression for the sum of Nakagami-m RVs. Very recently, Hu
and Beaulieu have presented accurate and simple closed-form
approximations to the cdf and pdf of the sum of independent
and identically distributed (i.i.d.) Rayleigh RVs [14], while

1After our paper has been accepted for publication, we became aware
of another independent from our work contribution [9], which also address
the problem of analyzing the error rate performance of EGC receivers over
generalized Gamma fading channels. However, in [9] the solutions proposed
are presented in integral form, whereas our approach involves closed-forn
bounds.
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Karagiannidis et al. have presented a closed-form union upper
bound for the cdf of the weighted sum of N independent
Rayleigh RVs [15]. All in all, although the problem of finding
the distribution of the sum of fading envelopes has been exten-
sively studied in the past for various distributions, the majority
of the published methods being approximate solutions usually
involving a truncation error. Hence, the derivation of an exact
solution, in terms of tabulated functions, even for the simplest
Rayleigh distribution, when N > 2 and with nonidentical
statistical parameters, still remains an open research problem.

In this paper, in an effort to provide a solution to this prob-
lem and within the framework of studying the performance
of EGC receivers over GG fading channels, another approach
is proposed. Since an analytical solution for the distribution
of the sum of RVs is very difficult to derive, the use of
union bounds is proposed. In particular, by deriving a useful
expression for the cdf of the product of N GG RVs and based
on a well-known inequality between arithmetic and geometric
means, closed-form union upper bounds for the cdf of the sum
of GG distributed RVs are obtained. These bounds, which turn
out to be quite tight, are used to analyze the ABEP and outage
performance of N -branch EGC receivers operating over GG
fading channels.

The remainder of the paper is organized as follows. In Sec-
tion II, various statistical characteristics of the GG distribution
are provided, while formulae for the distribution of the product
as well as an upper bound for the cdf of the sum of N
GG fading envelopes are presented. In Section III, various
performance criteria of EGC receivers operating over GG
fading channels are obtained, while in Section IV, numerical
and computer simulation results are presented and compared.
Finally, useful concluding remarks are provided in Section V.

II. STATISTICS OF THE GG DISTRIBUTION

Let us consider N ≥ 1 independent three-parameters’ GG
distributed RVs {R�}N�=1 with pdf given by [1, eq. (1)]

fR�
(r) =

β� r
m� β�−1

(Ω�/m�)
m� Γ (m�)

exp
(
−m�

Ω�
rβ�

)
(1)

where β� > 0 and m� ≥ 1/2 are two parameters related to
the fading severity, Ω� is related to the average fading power
as E 〈R2

�

〉
= (Ω�/m�)

2/β� Γ (m� + 2/β�) /Γ (m�), with E 〈·〉
denoting expectation, and Γ (·) being the Gamma function [16,
eq. (8.310/1)]. The distribution in (1) is very generic2 since
it includes commonly used fading models such as Rayleigh
(for β� = 2 and m� = 1), Nakagami-m (for β� = 2), and
Weibull (for m� = 1) as special cases. Moreover, for the
limiting case of β� → 0 and m� →∞, (1) becomes the well-
known Lognormal pdf. The cdf and the nth-order moment of
R� can be expressed as

FR�
(r) = 1− 1

Γ (m�)
Γ
(
m�,

m�

Ω�
rβ�

)
(2)

and

E 〈Rn� 〉 =
(

Ω�
m�

)n/β� Γ (m� + n/β�)
Γ (m�)

(3)

2As pointed out in [4], the pdf of (1), introduced by Stacy in [1], is different
from the type of generalization for the Gamma distribution presented in [17]
which models the power of Rice-faded envelopes.

respectively, where n is a positive number and Γ (·, ·) is the
upper incomplete Gamma function [16, eq. (8.350/2)].

A. Distribution of the Product of GG Variates

Let us define another RV, Y , as the product of the N GG
distributed RVs R�, i.e.,

Y
�
=

N∏
i=1

Ri (4)

with β�’s belong to rationals.
Theorem 1 (Moments-generating function): The moments-

generating function (mgf) of Y is given by

MY (s) = V Gn,pp,n
[
W sn

∣∣∣In(β�;1−m�)

Δ(n ; 0)

]
(5)

where G [·] is the Meijer’s G-function3 [16, eq. (9.301)],

In(β�; 1 − m�)
�
= Δ(n/β1 ; 1 − m1), Δ(n/β2 ; 1 −

m2), . . . ,Δ(n/βN ; 1 − mN ), and Δ(k;x) is defined as

Δ(k;x)
�
= x/k, (x + 1)/k, . . . , (x + k − 1)/k, with x being

an arbitrary real value and k a positive integer,

V =
√
n
(√

2 π
)N+1−n−p N∏

i=1

(n/βi)
mi−1/2

Γ (mi)
(6a)

and

W =
1
nn

N∏
i=1

(
nΩi
mi βi

)n/βi

. (6b)

Moreover, n and p are two positive integers defined as

n
�
=

N∏
i=1

ki (6c)

and

p
�
= n

N∑
i=1

1
βi

(6d)

under the constraint that

l� =
1
β�

�∏
i=1

ki (6e)

is a positive integer, with k� and l� being also positive integers.
Proof: The proof is given in the Appendix.

The values for k� and l� can be found as follows: Depending
upon the value β1 taken in (6e), k1 and l1 are two minimum
positive integers such that l1 = k1/β1 holds (e.g. for β1 = 3.6,
k1 = 18 and l1 = 5). Similarly, k� and l� are two minimum
positive integers such that (6e) holds. Note that for identical
and integer order fading parameters (5) significantly simplifies.

3Note that G [·] can be expressed in terms of more familiar generalized hy-
pergeometric functions pFq (·; ·; ·) [16, eq. (9.14/1)] using the transformation
presented in [16, eq. (9.303)], with p and q being positive integers. In addition,
both G [·] and pFq (·; ·; ·) are included as built-in functions in most of the
popular mathematical software packages such as MapleTMor MathematicaTM .
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Thus, for β� = β ∀�, with β ∈ N being integer, then n = β,
p = N , and l� = 1, and hence, (5) reduces to

MY (s) =
√
β
(√

2 π
)1−β∏N

i=1 Γ (mi)

×Gβ,NN,β
[(

s

β

)β N∏
i=1

Ωi
mi

∣∣∣1−m1, 1−m2,..., 1−mN

Δ(β ; 0)

]
(7)

which for m� = 1 and N = 1 reduces to a known result [7,
eq. (5)].

Lemma 1 (Probability density function): The pdf of Y is
given by

fY (y) =
√
nV

(√
2 π
)n−1

y
G 0,p
p,0

[
Wnn

yn

∣∣∣In(β�;1−m�)

−

]
. (8)

Proof: Applying the inverse Laplace transform L−1 (·; ·)
[16, Sec. 17.11] in (5), the pdf of Y [16, Sec. 17.11]

fY (y) = L−1 {MY (s); y} (9)

can be obtained in closed form using [18, eq. (21)] as in (8).

Lemma 2 (Cumulative distribution function): The cdf of Y
is given by

FY (y) =
V
(√

2 π
)n−1

√
n

Gp , 1
1 , p+1

[
yn

W nn

∣∣∣ 1

In(β�;m�), 0

]
. (10)

Proof: Since the cdf of Y is given by

FY (y) =
∫ y

0

fY (x) dx (11)

by using (8) and [18, eq. (26)], (10) can be easily obtained.

Note that for m� = 1 and β� = 2 ∀�, (10) can be reduced
to [15, eq. (19)].

B. Distribution of the Sum of GG Variates

Let us define S to be the sum of N GG RVs, i.e.,

S
�
=

N∑
i=1

Ri. (12)

Theorem 2 (A cdf bound of the sum of GG RVs): The cdf
of S is upper bounded as

FS(y) ≤ FY
[( y
N

)N]
. (13)

Proof: Using the well-known inequality for the arith-
metic and geometric means [16, Sec. 11.116]

AN ≥ GN (14)

with

AN �= 1
N

N∑
i=1

Ri (15)

and

GN �=
N∏
i=1

R
1/N
i (16)

being the arithmetic and geometric means, respectively, S can
be lower bounded as

S ≥ N
N∏
i=1

R
1/N
i . (17)

Using (4), (10), and (17), it can be easily seen that the cdf of
S can be upper bounded as in (13).

It is interesting to note that the problem of obtaining an
upper bound for the cdf of S with nonidentically distributed
RVs (Ω�: average powers) may be equivalently stated as
finding an upper bound for the cdf of a weighted sum of N
i.i.d. RVs having equal average powers each, Ω, with weights
w� =

√
Ω�/Ω.

III. PERFORMANCE ANALYSIS OF EQUAL-GAIN

DIVERSITY RECEIVERS

Let us consider an N -branch EGC receiver operating over
independent, but not necessarily identically distributed, GG
fading channels. The baseband received signal in the �th
(� = 1, 2, . . . , N ) antenna is ζ� = wR� exp (j ψ�) + n�,
where w is the complex transmitted symbol, with Es =
E 〈|w|2〉 being the transmitted average symbols’ energy, R�
is the instantaneous fading envelope being modeled as a GG
distributed RV, ψ� is the instantaneous phase of the channel,
and n� is the instantaneous additive white Gaussian noise
(AWGN) sample with single-sided power spectral density N0

identical for all channels. The usual assumption is made that
the ψ�’s are known to the receiver.

The instantaneous SNR per symbol of the �th diversity
channel can be expressed as

γ� = R2
�

Es
N0

(18)

with its corresponding average SNR being

γ� = E 〈R2
�

〉 Es
N0

= (m�)2/β�

(
Ω�
m�

)2/β� Es
N0

(19)

where (ξ)u is the Pochhammer symbol defined as (ξ)u =
Γ(ξ + u)/Γ(ξ). Based on an interesting property of the
GG distribution, that the nth power of a GG distributed
RV with parameters (m�, β�,Ω�) is another GG distributed
RV with parameters (m�, β�/n,Ω�), it can be easily con-
cluded that γ� is also a GG distributed RV with parameters(
m�, β�/2, (Ξ� γ�)

β�/2
)

where Ξ� = 1/ (m�)2/β�
. Hence, by

using the formulae for {R�} given by (1)–(3), the correspond-
ing expressions for {γ�} can be easily derived, replacing β�
with β�/2 and Ω�/m� with (Ξ� γ�)

β�/2 helping us to study
the performance of multi-branch diversity receivers operating
over GG fading channels. For example, from (2), the cdf of
γ� can be derived as

Fγ�
(γ) = 1− 1

Γ (m�)
Γ

[
m�,

(
γ

Ξ� γ�

)β�/2
]
. (20)

According to the above mentioned property, hereafter in this
paper, V and W are modified as

V =
√
n
(√

2 π
)N+1−n−p N∏

i=1

(2n/βi)
mi−1/2

Γ (mi)
(21a)
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and

W =
1
nn

N∏
i=1

(Ξi γi)
n

(
2n
βi

)2n/βi

(21b)

with p = 2n
∑N
i=1(1/βi) and l� = 2 (

∏�
i=1 ki)/β�.

A. Moments of the Output SNR

The instantaneous EGC output SNR per symbol is given by

γegc =
1
N

(
N∑
i=1

√
γi

)2

. (22)

Using the multinomial identity [19, eq. (24.1.2)], the nth-order
moment of γegc, μn = E 〈γnegc〉, can be derived as

μn =
1
Nn
E
〈(

N∑
i=1

√
γi

)2〉

=
(2n)!
Nn

2n∑
k1,k2,...,kN =0

k1+k2+···+kN =2n

E
〈

N∏
i=1

γ
ki/2
i /ki!

〉
.

(23)

Since the diversity input branches are uncorrelated, the mean
product term in the above equation can be expressed as

E
〈

N∏
i=1

γ
ki/2
i

〉
=

N∏
i=1

E
〈
γ
ki/2
i

〉
. (24)

By substituting (3) and (24) in (23), the moments of the EGC
output SNR for independent but not necessarily identically
distributed input branches can be expressed in closed form as

μn =
(2n)!
Nn

2n∑
k1,k2,...,kN=0

k1+k2+···+kN =2n

N∏
i=1

(Ξi γi)
ki/2

ki! Γ (mi)
Γ
(
mi +

ki
βi

)
.

(25)
1) Average output SNR: By setting n = 1 in (25), the EGC

average output SNR per symbol, γegc = μ1, can be obtained
in closed form as

γegc =
1
N

⎡
⎣ N∑
i=1

γi + 2
N∑
i=2

i−i∑
j=1

√
Ξi Ξj γi γj

Γ (mi) Γ (mj)

×Γ
(
mi +

1
βi

)
Γ
(
mj +

1
βj

)]
.

(26)

For m� = 1 and β� = β ∀�, (26) reduces to a known
expression [8, eq. (18)] for Weibull fading channels. Moreover,
for m� = m and β� = 2 ∀�, (26) reduces to another known
expression [20, eq. (19)] for Nakagami-m fading channels.

2) Amount of fading: By using (25), the amount of fading
(AoF), defined as the ratio of the variance to the square

average SNR per symbol, i.e., AF
�
= var(γegc)/γ2

egc, can be
expressed in a simple closed form as

AF
�
=
μ2

μ2
1

− 1. (27)

B. Outage Probability

By using (12), (17), (18), and (22), a lower bound for γegc

can be expressed as γegc ≥ γ∗egc = N
∏N
i=1 γ

1/N
i . The cdf of

γ∗egc can be derived by substituting y = (γ/N)N in (10), i.e.,

Fγ∗egc(γ) =
V
(√

2 π
)n−1

√
n

G p,1
1,p+1

[
(γ/N)nN

Wnn

∣∣∣ 1

I2n(β�;m�),0

]
.

(28)
If γth is a certain specified threshold, then the outage

probability is defined as the probability that γegc falls below
γth. An upper bound for this probability can be obtained by
replacing γ with γth in (28) as

Pout (γth) ≤ Fγ∗egc (γth) . (29)

C. Average Bit Error Probability

One straightforward approach to obtain a bound for the
ABEP, P be, is to average the conditional bit error probability,
Pbe(γ), over the pdf of γ∗egc, i.e.,

P be ≤
∫ ∞

0

Pbe(γ) fγ∗egc(γ) dγ. (30)

By taking the first derivative of Fγ∗egc(γ) in (28) with respect
to γ, the corresponding pdf can be obtained as

fγ∗egc(γ) =
N
√
nV

γ
(√

2 π
)1−n G p,0

0,p

[
(γ/N)nN

W nn

∣∣∣ −
I2n(β�;m�)

]
.

(31)
Moreover, for Pbe(γ) there are well-known generic expres-
sions for two different sets of modulation schemes:

i) BPSK, BFSK, M -ary differentially encoded phase-
shift keying (M -DEPSK), quadrature phase-shift keying
(QPSK), M -ary phase-shift keying (M -PSK), M -ary
frequency-shift keying (M -FSK), and M -ary differential
PSK (M -DPSK) in the form of

Pbe(γ) = A erfc
(√

B γ
)

(32)

where erfc(·) is the well-known complementary error
function [16, eq. (8.250/4)];

ii) Differential BPSK (DBPSK) and M -ary noncoherent
FSK (M -NFSK), in the form of

Pbe(γ) = A exp(−B γ). (33)

The particular values of A and B in (32) and (33) depend on
the specific modulation scheme employed and can be found
in [21]. Next, (30) is solved in closed form for each of the
above two sets of signals.

1) M -PSK, M -FSK, M -DEPSK, and M -DPSK: Using
(30), (31), and (32), it can be easily recognized that for this
first set of modulation schemes, the evaluation of definite
integrals, which include Meijer’s, power, and exponential
functions, is required. Since such integrals are not tabulated,
the solution can be found with the aid of [18, eq. (21)], and
thus the ABEP can be upper bounded as

P be ≤ AV√
π n

1(√
2 π
)n (N−1)

×G p , 2nN
2nN,p+nN

[
nn (N−1)

W BnN

∣∣∣Δ(nN ;1) ,Δ(nN ;1/2)

I2n(β�;m�),Δ(nN ;0)

]
.

(34)
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Fig. 1. First branch normalized EGC average output SNR as a function of
m for N = 3.

2) DBPSK and M -NFSK: Similarly to the first set, for this
second set (i.e., for DBPSK and M -NFSK), an upper bound
for the ABEP can be derived as

P be ≤ AV
√
N(√

2 π
)n (N−1)

G p,nN
nN,p

[
nn(N−1)

WBnN

∣∣∣ Δ(nN ;1)

I2n(β�;m�)

]
. (35)

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, using the previous mathematical analysis,
numerical and simulation results are presented for the perfor-
mance of EGC receivers operating over GG fading channels.
For these performance evaluation results we consider the
general case of not necessarily equal γ�’s. Particularly, an
exponentially decaying power delay profile (PDP) is adopted

γ� = γ1 exp[−δ (�− 1)] (36)

with δ being the power decaying factor. For the convenience
of the presentation of the performance evaluation results and
without any loss of generality, it will be assumed that m� = m
and β� = β ∀�.

Using (26), Fig. 1 presents the first branch normalized
average output SNR, γegc/γ1, of a three-branch EGC receiver
as a function of m, for several values of β and δ. It is noted
that as m and/or β increases, γegc/γ1 improves, while the
combining loss of the receiver gets more accentuated as δ
increases. Similar behavior has been also observed in [20] for
Nakagami-m fading channels. By numerically evaluating (27),
in Fig. 2, AF is plotted as a function of β, for N = 2 and for
several values of m. As expected, AF decreases as β and/or
m increases.

Having numerically evaluated (29), in Fig. 3, upper bounds
for Pout are presented as a function of the normalized outage
threshold, γth/γ, for m = 2, i.i.d. input branches (i.e.,
γ� = γ ∀�), and different values of β and N . The obtained
results clearly show that Pout improves with an increase of N

Fig. 2. Amount of fading at the output of the combiner as a function of β
for N = 2 and i.i.d. branch SNRs.

and/or β. In order to verify the tightness of the bounds, curves
obtained by means of computer simulations are also included
for comparison purposes. By comparing the performances
it is evident that the numerical results for the bounds (see
(29)) are very close to the equivalent simulated ones which
represent the exact Pout performance. This observation clearly
demonstrates the accuracy of the proposed bounds. It is also
noted that as β increases, the proposed bounds become even
tighter. However, as N increases, the difference between the
two performance results slightly increases. In Fig. 4, Pout is
plotted as a function of the first branch normalized outage
threshold, γth/γ1, for β = 2.5, N = 2, and γ1 = 0.5 γ2.
These results suggest that the higher m is, the smaller are
the differences between numerical and computer simulation
results for Pout. For example, at Pout = 10−3, the differences
between them for m = 1, 2, and 4 are less than 2, 1, and 0.5
dB, respectively. The trend of the performance, as illustrated
in Figs. 3 and 4, can be explained as follows. It is clear that
the smaller the difference between the terms of the left hand
side (LHS) and right hand side (RHS) of (14), the tighter are
the bounds. In fact, the equality in (14) holds if and only if all
R�’s are equal with each other, i.e., R1 = R2 = · · · = RN . For
relatively large values of m�’s and/or β�’s, all fading envelopes
R� will be, with high probability, close to their average value,
and thus, it is expected that R�’s will take similar values. As
for N , the smaller its value is the tighter are the bounds. This
happens because both bounds and exact curves move towards
the performance obtained for N = 1. In fact, from (14) it can
be seen that for N = 1 these two curves coincide.

Using (34) and (35), the ABEP performance of an N -branch
EGC receiver for several coherent and noncoherent binary and
multilevel modulation schemes has been obtained. In Figs. 5
and 6, the ABEP, P be, of DBPSK is plotted as a function
of γ for i.i.d. fading statistics. In Fig. 5, Pbe is plotted as a
function of γ, for β = 3 and several values of m. As expected,
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Fig. 3. Outage probability as a function of the average input SNR for m = 2
and i.i.d. branch SNRs.
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Fig. 4. Outage probability as a function of the first branch normalized
average input SNR for β = 2.5 and γ1 = 0.5 γ2.

the obtained performance evaluation results show that P be

improves with an increase of γ. For comparison purposes
the curves for the corresponding exact P be, obtained via
computer simulations, are also included in the same figure. By
comparing the numerically evaluated results with the computer
simulated ones, we deduce a close match between them. For
example in Fig. 5, for Pbe = 10−5, N = 6 and m = 2, their
difference is less than 0.5 dB. In Fig. 6, P be is plotted as a
function of γ, for m = 2 and several values of β. As for m, β,
and N , similar findings with those observed from Figs. 3 and
4 can also be extracted. Fig. 7 presents P be of M -PSK with
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Fig. 5. ABEP of EGC with DBPSK modulation format as a function of the
average input SNR per bit for β = 3 and i.i.d. branch SNRs.

Fig. 6. ABEP of EGC with DBPSK modulation format as a function of the
average input SNR per bit for m = 2 and i.i.d. branch SNRs.

Gray encoding as a function of γ for N = 3, m = 2, β = 2.5,
i.i.d. input branches, and several values of M . As expected,
for a fixed γ, Pbe degrades with increasing M . Furthermore,
the higher M , the tighter the bounds. Finally, in Fig. 8, P be

of 8-PSK with Gray encoding is plotted as a function of γ1

for β = 2.5, δ = 0.2, and M = 8. Again here we note the
tightness of the proposed bounds.

V. CONCLUSIONS

Capitalizing on the product of N GG RVs, its mgf, pdf,
and cdf were obtained in closed form. These expressions were
used to derive a closed-form union upper bound for the cdf



SAGIAS et al.: ON THE PERFORMANCE ANALYSIS OF EQUAL-GAIN DIVERSITY RECEIVERS OVER GENERALIZED GAMMA FADING CHANNELS 2973

0 5 10 15 20
10-6

10-5

10-4

10-3

10-2

10-1

M = 128

M = 4

M = 16

M = 64

 

 

A
ve

ra
ge

 B
it 

Er
ro

r P
ro

ba
bi

lit
y

Average Input SNR per Bit (dB)

  Bounds
  Simulations

M = 256

M-PSK

M = 8

M = 32

Fig. 7. ABEP of a triple-branch EGC with Gray encoded M -PSK modulation
as a function of the average input SNR per bit for m = 2, β = 2.5, and i.i.d.
branch SNRs.

of the sum of GG distributed RVs. Based on this bound,
the performance of N -branch EGC receivers operating over
GG fading channels was studied and important performance
measures such as the outage probability and the ABEP were
obtained in closed form. By comparing numerical evaluation
and computer simulation results, it was shown that the higher
the value of m and/or β and/or the smaller the value of N ,
the tighter are the proposed bounds.
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APPENDIX

PROOF OF THEOREM 1

In order to prove Theorem 1, we follow a similar procedure
as in [22]. Starting from the definition of the mgf of Y , i.e.,

MY (s) = E 〈exp (−s Y )〉 (A–1)

and by using (1) and (4), MY (s) can be written as

MY (s) =

[
N∏
i=1

(
mi

Ωi

)mi βi
Γ (mi)

]

×
∫ ∞

0

· · ·
∫ ∞

0

∫ ∞
0

(
N∏
i=1

rmi βi−1
i

)
exp

(
−s

N∏
i=1

ri

)

× exp

(
−

N∑
i=1

mi

Ωi
rβi

i

)
dr1 dr2 · · · drN

(A–2)

-5 0 5 10 15 20
10-6

10-5

10-4

10-3

10-2

10-1

N = 6

Simulations

 

 

A
ve

ra
ge

 B
it 

Er
ro

r P
ro

ba
bl

ity
First Branch Average Input SNR per Bit (dB)

          m = 1
          m = 2
          m = 4

Bounds

N = 2

8-PSK

Fig. 8. ABEP of EGC with Gray encoded 8-PSK modulation as a function
of the average SNR per bit of the first input branch for β = 2.5 and δ = 0.2.

which after applying the transformation z� = rβ�

� can be
rewritten as

MY (s) =

[
N∏
i=1

(
mi

Ωi

)mi 1
Γ (mi)

]

×
∫ ∞

0

· · ·
∫ ∞

0

∫ ∞
0

(
N∏
i=1

zmi−1
i

)
exp

(
−s

N∏
i=1

z
1/βi

i

)

× exp

(
−

N∑
i=1

mi

Ωi
zi

)
dz1 dz2 · · · dzN .

(A–3)

With the aid of [18, eq. (11)], the above multiple integrals can
be expressed in terms of Meijer’s functions as

MY (s) =

[
N∏
i=1

(
mi

Ωi

)mi 1
Γ (mi)

]

×
∫ ∞

0

zmN−1
N G1,0

0,1

[
mN

ΩN
zN

∣∣∣−
0

]
· · ·
∫ ∞

0

zm2−1
2

×G1,0
0,1

[
m2

Ω2
z2

∣∣∣−
0

] ∫ ∞
0

zm1−1
1 G1,0

0,1

[
s

N∏
i=1

z
1/βi

i

∣∣∣−
0

]

×G1,0
0,1

[
m1

Ω1
z1

∣∣∣−
0

]
dz1 dz2 · · · dzN .

(A–4)

In order to solve the above N -fold integral, the following
properties for Δ (·; ·) should be taken into consideration:

Property 1: For any real x and positive integers k and p,
it holds that

Δ[k; Δ(p; x)] = Δ(k p; x). (A–5)
Property 2: For any real x and integer k, it holds that the

sum of terms included in Δ(k; x), i.e., S =
∑N−1

i=0 (x+ i)/k,
is given by

S = x+
k − 1

2
. (A–6)
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Starting from the inner integral (i.e., that on z1), continuing
towards the outer one (i.e., that on zN ), and using Properties 1
and 2, successive integrations of the form∫ ∞

0

zm�−1
� Ga,bc,d

[
Ψ zϕ�

∣∣∣H
J

]
G1,0

0,1

[
m�

Ω�
z�

∣∣∣−
0

]
dz�

arise due to the fact that each of these integrals can be solved
in terms of a Meijer’s function using [18, eq. (22)], with a, b, c,
d ∈ N , Ψ, ϕ ∈ �∗, and H , J ∈ �. Hence, after N successive
integrations, (A–2) can be expressed in closed form as in (5).
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